
Algorithmic Foundations of Learning Lecture 3

Rademacher Complexity. Examples
Lecturer: Patrick Rebeschini Version: January 25, 2022

3.1 Introduction

In the last lecture we introduced the notion of Rademacher complexity and showed that it yields an upper
bound on the expected value of the uniform (over the choice of actions/rules) deviation between the expected
risk r and the empirical risk R, namely,

E sup
a∈A
{r(a)−R(a)} ≤ 2E Rad(L ◦ {Z1, . . . , Zn})

where we recall the notation
L := {z ∈ Z → `(a, z) ∈ R : a ∈ A}.

In this lecture we establish bounds for Rad(L◦{z1, . . . , zn}) for any z1, . . . , zn ∈ Z in the setting of regression.

In supervised learning, the observed examples correspond to pairs of points, i.e., Zi = (Xi, Yi) ∈ X × Y.
The point Xi is called feature or covariate, and the point Yi is its corresponding label. The set of admissible
decisions is a subset of the set functions from X to Y, i.e., A ⊆ B := {a : X → Y}, and the loss function is
of the form `(a, (x, y)) = φ(a(x), y), for a function φ : Y × Y → R+.

The regression setting is represented by the choice X = Rd for a given dimension d, Y = R. We have
S = {(X1, Y1), . . . , (Xn, Yn)} and s = {(x1, y1), . . . , (xn, yn)} which represents a realization of the training
sample. Let us recall the following notation:

A ◦ {x1, . . . , xn} := {(a(x1), . . . , a(xn)) ∈ Yn : a ∈ A}.

The following proposition shows how to use the contraction property of Rademacher complexity, Lemma
2.10, to relate the Rademacher complexity of the set of interest (which involves the loss function `) to the
Rademacher complexity of a set that only depends on A. The main idea is that we want to be able to relate
the quantity E supa∈A{r(a)−R(a)} to something that depends on a notion of complexity for A, for a general
class of loss functions (loss functions that are Lipschitz).

Proposition 3.1 Let the function ŷ → φ(ŷ, y) be γ-Lipschitz for any y ∈ Y.
Then, for any (x1, y1), . . . , (xn, yn) ∈ X × Y,

Rad(L ◦ {(x1, y1), . . . , (xn, yn)}) ≤ γ Rad(A ◦ {x1, . . . , xn})

Proof: By the contraction property of Rademacher complexity, Lemma 2.10, we get

Rad(L ◦ s) = E sup
a∈A

1

n

n∑
i=1

Ωiφ(a(xi), yi) = Rad((φ(· , y1), . . . , φ(· , yn)) ◦ A ◦ {x1, . . . , xn})

≤ γ Rad(A ◦ {x1, . . . , xn}).

Below we show how to control the quantity Rad(A ◦ {x1, . . . , xn}) for some function classes A of interest.

3-1

3-2 Lecture 3: Rademacher Complexity. Examples

3.2 Linear predictors `2/`2 constraints

In the case of `2/`2 constraints, the Rademacher complexity of linear predictors grows as
√
d.

Proposition 3.2 Let A2 := {x ∈ Rd → w>x : w ∈ Rd, ‖w‖2 ≤ c} for a positive constant c > 0. Then, for
any x1 . . . , xn ∈ Rd,

Rad(A2 ◦ {x1, . . . , xn}) ≤ c
maxi ‖xi‖2√

n
≤ cmax

i
‖xi‖∞

√
d√
n

Proof: First, consider the case c = 1. We have

n Rad(A2 ◦ {x1, . . . , xn}) = E sup
w∈Rd:‖w‖2≤1

n∑
i=1

Ωiw
>xi = E sup

w∈Rd:‖w‖2≤1

w>
(n∑
i=1

Ωixi

)
≤ sup
w∈Rd:‖w‖2≤1

‖w‖2 E
∥∥∥ n∑
i=1

Ωixi

∥∥∥
2

by Cauchy-Schwarz’s ineq. x>y ≤ ‖x‖2‖y‖2

≤ E

√√√√∥∥∥ n∑
i=1

Ωixi

∥∥∥2

2
≤

√√√√E
∥∥∥ n∑
i=1

Ωixi

∥∥∥2

2
by Jensen’s, as x→

√
x is concave

=

√√√√E

d∑
j=1

(n∑
i=1

Ωixi,j

)2

=

√√√√E

d∑
j=1

n∑
i=1

(Ωixi,j)2 as the Ωi’s are independent and EΩi = 0

=

√√√√E

n∑
i=1

‖xi‖22 ≤
√
nmax

i
‖xi‖2 as Ω2

i = 1.

If c 6= 1, then we can rescale w>x = (w
‖w‖2)>(‖w‖2x) and the following equivalence concludes the proof:

{x ∈ Rd → w>x : w ∈ Rd, ‖w‖2 ≤ c} = {x ∈ Rd → w>(cx) : w ∈ Rd, ‖w‖2 ≤ 1}.

3.3 Linear predictors `1/`∞ constraints

In the case of `1/`∞ constraints, the Rademacher complexity of linear predictors only grows as
√

log d.

Proposition 3.3 Let A1 := {x ∈ Rd → w>x : w ∈ Rd, ‖w‖1 ≤ c} for a positive constant c > 0. Then, for
any x1 . . . , xn ∈ Rd,

Rad(A1 ◦ {x1, . . . , xn}) ≤ cmax
i
‖xi‖∞

√
2 log(2d)√

n

Lecture 3: Rademacher Complexity. Examples 3-3

Proof: First, consider the case c = 1. We have

n Rad(A1 ◦ {x1, . . . , xn}) = E sup
w∈Rd:‖w‖1≤1

n∑
i=1

Ωiw
>xi = E sup

w∈Rd:‖w‖1≤1

w>
(n∑
i=1

Ωixi

)
≤ sup
w∈Rd:‖w‖1≤1

‖w‖1 E
∥∥∥ n∑
i=1

Ωixi

∥∥∥
∞

by Hölder’s inequality x>y ≤ ‖x‖1‖y‖∞

≤ E
∥∥∥ n∑
i=1

Ωixi

∥∥∥
∞

Let tj := (x1,j , . . . , xn,j) ∈ Rn for any j ∈ 1 : d, and let T = {t1, . . . , td}. Then,

∥∥∥ n∑
i=1

Ωixi

∥∥∥
∞

= max
j∈1:d

∣∣∣ n∑
i=1

Ωixi,j

∣∣∣ = max
j∈1:d

∣∣∣ n∑
i=1

Ωitj,i

∣∣∣ = max
t∈T

∣∣∣ n∑
i=1

Ωiti

∣∣∣,
whose expectation looks like a Rademacher complexity apart from the absolute value (and the normalization
by 1/n). To remove the absolute value, note that for any ω1, . . . , ωn ∈ {−1, 1}n we have

max
t∈T

∣∣∣ n∑
i=1

ωiti

∣∣∣ = max
t∈T ∪T−

n∑
i=1

ωiti,

where we have defined T− = {−t1, . . . ,−td}, with −tj = (−x1,j , . . . ,−xn,j). Hence, we have

Rad(A1 ◦ {x1, . . . , xn}) ≤ Rad(T ∪ T−),

and the proof follows by Massart’s lemma as

Rad(T ∪ T−) ≤ max
t∈T ∪T−

‖t‖2
√

2 log |T ∪ T−|
n

≤
√
nmax

i
‖xi‖∞

√
2 log(2d)

n
.

If c 6= 1, then we can rescale w>x = (w
‖w‖1)>(‖w‖1x) and the following equivalence concludes the proof:

{x ∈ Rd → w>x : w ∈ Rd, ‖w‖1 ≤ c} = {x ∈ Rd → w>(cx) : w ∈ Rd, ‖w‖1 ≤ 1}.

3.4 Linear predictors simplex/`∞ constraints (Boosting)

Proposition 3.4 Let ∆d := {w ∈ Rd : ‖w‖1 = 1, w1, . . . , wd ≥ 0} and let A∆ := {x ∈ Rd → w>x : w ∈
∆d}. Then, for any x1 . . . , xn ∈ Rd,

Rad(A∆ ◦ {x1, . . . , xn}) ≤ max
i
‖xi‖∞

√
2 log d√
n

Proof: We have

n Rad(A∆ ◦ {x1, . . . , xn}) = E sup
w∈∆d

n∑
i=1

Ωiw
>xi = E sup

w∈∆d

w>
(n∑
i=1

Ωixi

)
.

3-4 Lecture 3: Rademacher Complexity. Examples

Note that for any vector v = (v1, . . . , vd) ∈ Rd we have (c.f. Proposition 8.6 for a general statement involving
convex hulls and for the proof)

sup
w∈∆d

w>v = max
j∈1:d

vj .

Then,

E sup
w∈∆d

w>
(n∑
i=1

Ωixi

)
= E max

j∈1:d

n∑
i=1

Ωixi,j = n Rad(T),

with T = {t1 . . . , td} with tj = (x1,j , . . . , xn,j) for any j ∈ {1, . . . , d}. The proof follows by Massart’s lemma
as

Rad(T) ≤ max
t∈T
‖t‖2

√
2 log |T |
n

≤
√
nmax

i
‖xi‖∞

√
2 log d

n
.

3.5 Feed-forward neural networks

Let us define a feed-forward neural networks with activation functions applied element-wise to its units.

A layer l(k) : Rdk−1 → Rdk consists of a coordinate-wise composition of an activation function σ(k) : R→ R
and an affine map, namely,

l(k)(x) := σ(k)(w(k)x+ b(k)),

for a given interaction matrix w(k) and bias vector b(k).

A feed-forward neural network with depth ι (and ι− 1 hidden layers) is given by the function f ιnn : Rd → R
defined as

f (ι)
nn(x) := l(ι) ◦ · · · ◦ l(1)(x) ≡ l(ι)(· · · l(2)(l(1)(x)) · · ·),

with d0 = d, dι = 1, σ(r) = σ for a given function σ for all r < ι, and σ(ι)(x) = x (i.e., the last layer is
simply an affine map).

The activation function σ is known to the design maker, while the interaction matrices and the bias vectors
are treated as parameters to tune. For instance, a class of neural networks with depth p is given by

A(ι)
nn := {x ∈ Rd → f (ι)

nn(x) : ‖w(k)‖∞ ≤ ω, ‖b(k)‖∞ ≤ β ∀k}, (3.1)

where for a given matrix m, the `∞ norm is defined as ‖m‖∞ := maxi
∑
j |mij |.

The Rademacher complexity of a feed-forward neural network can be bounded recursively by considering
each layer at a time. A bound that can be used for the recursion is given by the following proposition, that
expresses the Rademacher complexities at the outputs of one layer in terms of the outputs at the previous
layers.

Proposition 3.5 Let L be a class of functions from Rd to R that includes the zero function. Let σ : R→ R
be γ-Lipschitz and define L′ := {x ∈ Rd → σ(

∑m
j=1 wj lj(x) + b) ∈ R : |b| ≤ β, ‖w‖1 ≤ ω, l1, . . . , lm ∈ L}.

Then, for any x1, . . . , xn ∈ Rd,

Rad(L′ ◦ {x1, . . . , xn}) ≤ γ
(β√

n
+ 2ω Rad(L ◦ {x1, . . . , xn})

)
(3.2)

Lecture 3: Rademacher Complexity. Examples 3-5

Proof: We give a proof that makes use of several properties of Rademacher complexities introduced in the
previous lecture. Let

F : = {x ∈ Rd →
m∑
i=1

wj lj(x) ∈ R : ‖w‖1 ≤ ω, l1, . . . , lm ∈ L},

G : = {x ∈ Rd → b ∈ R : |b| ≤ β}.

By the contraction property and the summation property of Rademacher complexities, we have

Rad(L′ ◦ {x1, . . . , xn}) ≤ γ
(
Rad(F ◦ {x1, . . . , xn}) + Rad(G ◦ {x1, . . . , xn})

)
.

We first address the term Rad(F ◦{x1, . . . , xn}. As L contains the zero function by assumption, we will show
that

Rad(F ◦ {x1, . . . , xn}) ≤ ω Rad(conv(L − L) ◦ {x1, . . . , xn}),
where L − L = {l − l′ : l ∈ L, l′ ∈ L}. First of all, note that

Rad(F ◦ {x1, . . . , xn} = Rad(F ′ ◦ {x1, . . . , xn})

where

F ′ := {x ∈ Rd →
m∑
i=1

wj lj(x) ∈ R : ‖w‖1 = ω, l1, . . . , lm ∈ L}

(this is because the maximum of a linear function of w over the constraint ‖w‖1 ≤ ω is achieved for the
values satisfying ‖w‖1 = ω; we already saw this type of arguments in the proof of Proposition 2.8). Then,
note that for any w ∈ Rm such that ‖w‖1 = 1 we have∑

i

wili =
∑
i:wi≥0

wi(li − 0) +
∑
i:wi<0

|wi|(0− li),

(here 0 represents the zero function) which is a convex combination of elements in L − L. Hence, by
applying in order the convex hall property, the summation property, and the scalar multiplication property
of Rademacher complexities, we find

Rad(F ◦ {x1, . . . , xn}) ≤ ω Rad(conv(L − L) ◦ {x1, . . . , xn}) = ω Rad((L − L) ◦ {x1, . . . , xn})
= ω Rad(L ◦ {x1, . . . , xn}) + ω Rad(−L ◦ {x1, . . . , xn}) = 2ω Rad(L ◦ {x1, . . . , xn}).

We now address the term Rad(G ◦ {x1, . . . , xn}). We have

n Rad(G ◦ {x1, . . . , xn})
)

= E sup
b:|b|≤β

b

n∑
i=1

Ωi ≤ E sup
b:|b|≤β

|b|
∣∣∣ n∑
i=1

Ωi

∣∣∣ = βE
∣∣∣ n∑
i=1

Ωi

∣∣∣ ≤ β√n,
where the last inequality follows by Jensen’s inequality, as E|

∑n
i=1 Ωi| = E

√
(
∑n
i=1 Ωi)2 ≤

√
E[(
∑n
i=1 Ωi)2] =√

n using the independence of the Ωi’s and that Ω2
i = 1.

We are now ready to give a bound for the full neural network. We can use Proposition 3.5 to run the recursion,
noticing that the last layer involves a linear function (which is 1-Lipschitz). The first layer requires a different
treatment, and we can use Proposition 3.3.

Proposition 3.6 Let σ be λ-Lipschitz. Let A(ι)
nn be defined as in 3.1. Then, for any x1 . . . , xn ∈ Rd,

Rad(A(ι)
nn ◦ {x1, . . . , xn}) ≤

1√
n

(
β + 2ωβλ

ι−3∑
k=0

(2ωλ)k + 2ω(2ωλ)ι−2 max
i
‖xi‖∞

√
2 log(2d)

)

3-6 Lecture 3: Rademacher Complexity. Examples

Proof: As the last layer of the neural network is linear, i.e., σ(ι)(x) = x, we can apply Proposition 3.5 with
γ = 1 (as σ(ι) is 1-Lipschitz) once and then apply (3.2) in Proposition 3.5 with γ = λ for ι − 2 times. We
find

Rad(A(ι)
nn ◦ {x1, . . . , xn}) ≤

β√
n

+ 2ω
(βλ√

n

ι−3∑
k=0

(2ωλ)k + (2ωλ)ι−2Rad(A1 ◦ {x1, . . . , xn})
)
.

3.6 Remarks on generalization errors

The bounds derived in this lecture assert that to achieve good generalization guarantees one needs to use a
training sample size n that exceeds the “complexity” of the learning model, where complexity is captured
by certain functions of the number of model parameters, their magnitude, and possibly other structural
properties (Lipschitz constants, etc.). In the case of linear models, the number of model parameters p
coincides with the dimensionality of the data d, i.e. p = d. In the examples we considered in this lecture,
the complexity of these models is controlled by either the square-root of the number of parameters,

√
p, for

`2/`2 constraints, or by the square-root of the logarithm of the number of parameters,
√

log p, for `1/`∞
and simplex/`∞ constraints. The magnitude of the model parameters plays a role as multiplicative factors
depending on either the `2 or `1 norms. In the example of a feed-forward neural network, on the other
hand, the model parameters are {w(k), b(k), k ∈ {1, . . . , ι}}, so in general p 6= d and typically p � d. Here
the interplay between the number of model parameters, their magnitude (as captures by the boundedness
constants ω and β) and other structural properties (the Lipschitz constant λ) is more involved, as already
attested by the bound given in Proposition 3.6 (note that for this bound not to become trivial in the limit
of an infinite number of layers, ι→∞, it would have to be 2ωλ < 1, which is a restrictive requirement not
needed in practice). Investigating meaningful notions of complexity for neural networks is an active topic of
research.

