
Algorithmic Foundations of Learning Lecture 1

Introduction
Lecturer: Patrick Rebeschini Version: February 9, 2022

1.1 Introduction

This course is about the algorithmic paradigms that lay the foundations of machine learning and the theory
that is needed for their design and analysis, with particular emphasis on the non-asymptotic methods for
the study of random structures in high-dimensional probability, statistics, and optimization.

This set of lecture notes is meant to offer a streamlined presentation of the material. Students are expected
to find and read the relevant chapters from the reading materials in [7, 6, 5, 3, 4, 10], which are all available
online, and to independently fill in the gaps intentionally left in these notes, particularly when it comes to
background knowledge.

As the statistics department in Oxford offers many courses in machine learning with an applied focus, this
course is intentionally only covering theoretical aspects. In particular, no simulations will be discussed.

This course investigates the following three main learning paradigms.

1. Offline Statistical Learning: Prediction.

2. Offline Statistical Learning: Estimation.

3. Online Statistical Learning.

Today we describe the first learning framework in depth, only quickly mentioning the other two.

Remark 1.1 (Notation) Throughout, we use UPPERCASE letters to denote random variables and low-
ercase letters to denote deterministic variables. We use cursive letters to denote sets. For a given set T , we
denote by |T | its cardinality. For a positive integer n, we use the notation [n] = {1, . . . , n}. For a vector

x = (x1, . . . , xd) ∈ Rd, p ≥ 1 we let ‖x‖p = (
∑d

i=1 |xi|p)1/p denote the `p norm and ‖x‖∞ = maxi∈[d] |xi|
denote the `∞ norm. We denote by x> the transpose of x. When dealing with linear algebra computations
(i.e. matrix-vector multiplications), we typically interpret x = (x1, . . . , xd) ∈ Rd as a column vector, instead
of writing x = (x1, . . . , xd)> ∈ Rd. This will be clear from the context.

1-1

1-2 Lecture 1: Introduction

1.2 Offline Statistical Learning: Prediction

The standard statistical learning framework for prediction is defined as follows [8].

Algorithm 1: Statistical Learning: Prediction

1. Observe a sample of training examples S = {Z1, . . . , Zn} ∈ Zn, assumed to be i.i.d. from an
unknown probability distribution supported on a space Z.

2. As a function of the random sample S (and possibly some external source of randomness), make
decision (or choose action) A ∈ A ⊆ B, where A is a chosen set of admissible actions, subset of a
larger set of actions B.

3. Let ` : B × Z → R+ be a given prediction loss function. Let r : B → R+ be the expected or
population risk, defined as the average loss function

r(a) := E `(a, Z)

where Z ∈ Z is a new, independent, test data point from the same unknown data distribution.
Define the excess risk as follows

r(A)− inf
a∈B

r(a)︸ ︷︷ ︸
excess risk

= r(A)− inf
a∈A

r(a)︸ ︷︷ ︸
estimation error

+ inf
a∈A

r(a)− inf
a∈B

r(a)︸ ︷︷ ︸
approximation error

Goal: Minimize and control the estimation error as a function of the sample size n and notions of
“complexity” of the action set A of the loss function `.

Remark 1.2 (On the definition of excess risk) The definition of expected risk holds for any determin-
istic action a:

r(a) := E `(a, Z).

If we consider a random action A, the notation r(A) refers to the random variable that is obtained by
evaluating the deterministic function r at the random action A. Hence, we have

r(A) 6= E `(A,Z),

as the left-hand side is random, while the right-hand side is deterministic (being the expected value of random
quantities). The correct expression are:

r(A) = E[`(A,Z)|A],

E r(A) = E `(A,Z),

where conditioning on A means conditioning on the randomness on which A depends, i.e. the training dataset
S and possibly other “external” sources of randomness in the case of randomized algorithms.

Throughout the course we will assume that the minima are attained, and we denote them by

a? ∈ argmin
a∈A

r(a),

a?? ∈ argmin
a∈B

r(a),

Lecture 1: Introduction 1-3

(note that there could be multiple minimizers). The previous error decomposition can be written as

r(A)− r(a??)︸ ︷︷ ︸
excess risk

= r(A)− r(a?)︸ ︷︷ ︸
estimation error

+ r(a?)− r(a??)︸ ︷︷ ︸
approximation error

.

The quantity r(a??) is typically called the irreducible risk, or irreducible error.

The estimation error measures how much extra (average) loss the decision maker suffers by choosing action
A compared to an optimal decision in the admissible action set A. The estimation error is controlled by
the number of training examples n, and by notions of “complexity” of the set of actions A and of the loss
function `. The approximation error measures how closely actions in A can approximate actions in the larger
set B. Larger sets of admissible actions lead to smaller approximation error but higher estimation error.
This gives rise to the approximation-estimation tradeoff, also known as bias-complexity tradeoff.

Remark 1.3 (On randomness) As the data distribution is assumed to be unknown in this framework, the
risk function r can not be computed, and so also the excess risk and estimation error are uncomputable.
Nevertheless, the estimation error is used as a way to assess how well the chosen action performs, and the
goal of statistical learning is to control the estimation error by establishing upper bounds to it. The estimation
error is a random variable, as the learning rule A depends on the random sample S (and possibly on other
sources of “external” randomness). Controlling the estimation error means bounding its expected value, or
showing that the estimation error is small with a certain probability (possibly high probability), i.e., with
probability at least 1 − δ for a certain value of δ ∈ [0, 1]. As we will see, upper bounds on the estimation
error typically depend on notions of complexity of the set A and the loss function `, and they can be data-
dependent (i.e., depend on data distribution) or data-independent. On the other hand, the approximation
error is deterministic, as it simply deals with quantifying the error introduced by considering the family A
instead of the family B. As a result, statistical learning theory typically focuses on controlling the estimation
error, which is where probability plays a role. Controlling the approximation error and determining a suitable
class A is purely a problem of functional and numerical analysis.

Remark 1.4 (On regularization and No Free Lunch theorems) The restriction of the space of ad-
missible actions (a.k.a. functions or hypotheses) to a subset A of the original set B has to do with using
prior information on the learning system (as encoded by the choice of the subset A) over the original class
B (that represents lack of prior knowledge). This restriction (or other type of restrictions) is needed for the
following two main reasons:

• The so-called No Free Lunch theorem, which investigates what can happen to a given learning algorithm
when multiple distributions are considered. There are many versions available of the main principle.
One common version says that for every learning algorithm, or learner, (i.e. any prescription to choose
an action A ∈ B as a function of the data S), there exists a task (i.e. a data distribution P) on which it
fails, even though that task can be successfully learned by another learner. Using prior knowledge allows
us to restrict to A ⊆ B so to avoid distributions that will cause our learning task to fail. This is related
to the concept of PAC learnability in binary classification, which is a property that holds uniformly
over the choice of the data distribution. We refer to Chapter 5 of the book [6] for a discussion on these
lines.

• The general need to impose some form of regularization to avoid overfitting and solve the stochastic
problem of interest starting from a dataset S that only contains a finite amount of samples. Throughout
this course, in various specific examples, we will discuss various ways of imposing regularization and
why it is needed.

In this course we will be interested in supervised learning, where the observed examples correspond to pairs
of points, i.e., Zi = (Xi, Yi) ∈ X × Y. The point Xi is called feature or covariate, and the point Yi is

1-4 Lecture 1: Introduction

the corresponding label. The set of admissible decisions is a subset of the set functions from X to Y, i.e.,
A ⊆ B := {a : X → Y}, and the loss function is of the form `(a, (x, y)) = φ(a(x), y), for a function
φ : Y ×Y → R+. In this setting, the goal is to use the training sample S to choose a predictor or hypothesis
a ∈ A that can be used to predict the label Y of a new test example (X,Y). In this case, the optimal
decision in B given by a?? = argmina∈B Eφ(a(X), Y) is called the Bayes decision rule, and its corresponding
value of risk r(a??) = Eφ(a??(X), Y) is called the Bayes risk. As the following lemma shows, the Bayes
decision rule for any loss function φ is the solution of a deterministic minimization problem, which depends
on the conditional distribution P(Y ∈ · |X) (via integrals with respect to this distribution, i.e., via the
conditional expectation). Recall that this distribution is not computable in our setting. In this setting,
statistical learning aims at finding actions that are as close as possible to the uncomputable Bayes decision
rule. It is instructive to keep in mind what the Bayes decision rules look like for the applications that we
will consider.

Lemma 1.5 (Bayes decision rule) We have

a??(x) = argmin
ŷ∈Y

E[φ(ŷ, Y)|X = x] = argmin
ŷ∈Y

∫
φ(ŷ, y) P(Y ∈ dy|X = x).

Proof: Let a?? given as in the statement of the lemma. We will prove that r(a??) ≤ r(a) for any a ∈ B. By
construction, for any ŷ ∈ Y we have

E[φ(a??(x), Y)|X = x] ≤ E[φ(ŷ, Y)|X = x]

so that, for any a ∈ B,
E[φ(a??(x), Y)|X = x] ≤ E[φ(a(x), Y)|X = x].

By the tower property of conditional expectations, we have

r(a??) = Eφ(a??(X), Y) = E E[φ(a??(X), Y)|X] ≤ E E[φ(a(X), Y)|X] = Eφ(a(X), Y) = r(a).

Example 1.6 (Regression) The regression setting is represented by the choice X = Rd for a given dimen-
sion d, Y = R, and B is the set of functions from X to Y.

Typical choices of loss functions φ are as follows.

• `2 loss function. φ(ŷ, y) = (ŷ − y)2. The Bayes decision rule is the conditional mean, a??(x) =
E[Y |X = x]. See Problem 1.2 in the Problem Sheets.

• `1 loss function. φ(ŷ, y) = |ŷ − y|. The Bayes decision rule is the conditional median, a??(x) =
Median[Y |X = x]. (note that the conditional median need not be unique)

Typical choices of admissible set A yield the following examples.

• Linear predictors. The set A of admissible actions is made by affine functions on Rd, i.e., a(x) =
w>x+b for parameters w ∈ Rd and b ∈ R, possibly with some restrictions on the values the parameters
can take, such as ‖w‖2 ≤ c or ‖w‖1 ≤ c for a positive constant c > 0.

• Neural networks. (to be defined later on in the course)

• Kernel methods. (to be defined later on in the course)

Lecture 1: Introduction 1-5

Remark 1.7 (Regression with the square loss) The regression setting with the square loss is a popular
framework for a variety of reasons, primarily for its simplicity as this setting often yields close form solutions
and expression that are easy to interpret. In this case, the approximation-estimation decomposition takes a
specific form, which is:

r(A)− r(a??)︸ ︷︷ ︸
excess risk

= r(A)− r(a?)︸ ︷︷ ︸
estimation error

+ r(a?)− r(a??)︸ ︷︷ ︸
approximation error

= E[(A(X)− a?(X))2|A]︸ ︷︷ ︸
estimation error

+ E[(a?(X)− a??(X))2])︸ ︷︷ ︸
approximation error

.

In this setting, another popular decomposition for the expected excess risk holds, the bias-variance decom-
position:

E r(A)− r(a??)︸ ︷︷ ︸
expected excess risk

= E
[(

E[A(X)|X]− a??(X)
)2]

︸ ︷︷ ︸
expected squared bias

+ E Var[A(X)|X]︸ ︷︷ ︸
expected variance

.

See Problem 1.4 in the Problem Sheets. This decomposition gives rise to another tradeoff: to achieve small
expected excess risk, we need to find a predictor A ∈ A that simultaneously minimizes the expected square
bias and the expected variance. Note that in this decomposition, the randomness that is considered in the
conditional expectation and conditional variance (conditioned on a certain test feature X) is the randomness
in A, i.e. the randomness in the training data and, possibly, in other “external” sources. Given a test data
point X, the squared bias (E[A(X)|X]− a??(X))2 is a measure of the error on X that is due by considering
model A ∈ A instead of the best model a?? ∈ B. On the other hand, the variance Var[A(X)|X] is a measure
of the amount by which A(X) changes if we estimate A using different training data. In general, the “larger”
the class A is (i.e. the more “flexible” the methods we consider are), the higher the variance is and the smaller
the bias is.
If, additionally, one considers the case of linear predictors, the expressions derive above admit easy close
forms in terms of linear algebra quantities.

Example 1.8 (Classification) The classification setting is a particular case of regression, and it is repre-
sented by the choice X = Rd for a given dimension d, Y = {y1, . . . , yk} for a given k, and B is the set of
functions from X to Y. In this setting, the typical loss function is given by the zero-one loss.

• Zero-one loss function (a.k.a. true loss). φ(ŷ, y) = 1ŷ 6=y, namely,

φ(ŷ, y) =

{
1 if ŷ 6= y,

0 if ŷ = y.

By Lemma 1.5, the Bayes decision rule reads a??(x) = argmaxŷ∈Y P(Y = ŷ|X = x), also called
maximum a posteriori (MAP) estimate of Y given X. See Problem 1.2 in the Problem Sheets.

With the zero-one loss function we have r(a) = Eφ(a(X), Y) = P(a(X) 6= Y). In this course we will be
interested in binary classification where k = 2. The binary case is simpler, and encompasses most of the
key ideas that are needed to tackle the general case k > 2. For concreteness, we will consider the setting
Y = {−1, 1}. In this case, the admissible action set A is typically taken to be the sign of the predictors used
in regression, such as a(x) = sign(w>x+ b). It is also common to consider convex relaxation of the zero-one
loss. If Y = {−1, 1}, the loss functions are chosen of the form φ(ŷ, y) = ϕ(ŷy) for a function ϕ : R → R+.
The zero-one loss function can be written as 1ŷy≤0, so ϕ(u) = 1u≤0. Convex losses that uniformly bound
from above the zero-one loss, namely, 1u≤0 ≤ ϕ(u) for all u ∈ R, are given below.

• Exponential loss. ϕ(u) = e−u.

• Hinge loss. ϕ(u) = max{1− u, 0}.

• Logistic loss. ϕ(u) = log2(1 + e−u).

1-6 Lecture 1: Introduction

0

1

2

3

4

−2 0 2

x

v
a
lu

e

Loss

True

Exponential

Hinge

Logistic

Figure 1.1: Convex loss surrogates.

1.2.1 Statistics

In this course we will discuss some of the main algorithmic paradigms that are used to construct an action
A ∈ A as a function the training sample S = {Z1, . . . , Zn} with the goal to minimize the estimation
error r(A) − r(a?). An important class of algorithms that we will consider is based on the empirical risk
minimization (ERM) framework. ERM uses the empirical risk function R : B → R+ defined for any a ∈ B
as

R(a) :=
1

n

n∑
i=1

`(a, Zi)

as a computable proxy for the uncomputable expected/population risk function r. Notice that R is a random
function, as it depends on the training sample S. On the other hand, r is a deterministic function, as it is
defined as an expectation. By the Law of Large Numbers we know that for any fixed a ∈ B, as a function of
the number of data points n, the sequence of random variables (R(a))n≥0 converges almost surely to r(a).
Hence, even for any finite n it seems reasonable to consider the ERM problem infa∈AR(a) as a proxy for
the optimization problem infa∈A r(a). Let us use the notation

A? ∈ argmin
a∈A

R(a)

to denote any of the minimizers of R in A (again, we assume that the minimum is attained, but there could
be more than one minimum).

A first question that we set to investigate in this course is the development of upper bounds for the estimation
error that is obtained when the action A ∈ A chosen by the decision maker is given by the ERM rule A?,
namely, r(A?)− r(a?). We are interested in deriving two types of bounds.

Bounds in expectation: Find Expectation, a positive quantity (depending on n and A), such that

E r(A?)− r(a?) ≤ Expectation

Bounds in probability: Find UpperTail, a strictly decreasing function of ε, such that for any ε ≥ 0

P
(
r(A?)− r(a?) ≥ ε

)
≤ UpperTail(ε)

Lecture 1: Introduction 1-7

or, equivalently (setting UpperTail(ε) = δ), for any δ ∈ [0, 1]

P
(
r(A?)− r(a?) < UpperTail−1(δ)

)
≥ 1− δ.

To get an understanding of the main ideas that we need to develop, let us consider the following decomposition
of the estimation error:

r(A?)− r(a?) = r(A?)−R(A?) +R(A?)−R(a?)︸ ︷︷ ︸
≤0

+R(a?)− r(a?)

where the inequality below the curly brackets follows from the fact that by definition of A?, R(A?) ≤ R(a)
for any a ∈ A. It follows that

r(A?)− r(a?) ≤ r(A?)−R(A?) +R(a?)− r(a?).

Ideally, we would like to be able to derive bounds for the quantities on the right hand side of the previous
inequality. However, this is not an easy task as the action A? is possibly a very involved function of the
random sample S. Uniform learning is a learning paradigm that circumvents this problem by taking the
supremum in the above inequality over all possible actions in A, namely,

r(A?)− r(a?) ≤ sup
a∈A
{r(a)−R(a)}+ sup

a∈A
{R(a)− r(a)}︸ ︷︷ ︸

Statistics

We are then left with deriving bounds for the Statistics term, i.e., for the quantity supa∈A{r(a)−R(a)}
and its symmetric version. As we will see, this is now a more amenable task as for any deterministic a ∈ A,
the function R(a) is a simple function of the random sample S (recall that R(a) is a sum of independent
random variables).

Bounds in expectation: To establish bounds in expectation, it is enough to find ExpectationStats, a
positive quantity, such that

E sup
a∈A
{R(a)− r(a)} ≤ 1

2
ExpectationStats

E sup
a∈A
{r(a)−R(a)} ≤ 1

2
ExpectationStats

(1.1)

Clearly,

E r(A?)− r(a?) ≤ ExpectationStats

Establishing bounds of the type (1.1) falls within the scope of bounding the expected value of the supremum
of empirical processes, or, equivalently, establishing non-asymptotic results for the uniform law of large
numbers.

Bounds in probability: To establish bounds in probability, it is enough to find UpperTailStats, a strictly
decreasing function of ε such that for any ε ≥ 0

P
(

sup
a∈A
{R(a)− r(a)} ≥ E sup

a∈A
{R(a)− r(a)} + ε

)
≤ 1

2
UpperTailStats(ε)

P
(

sup
a∈A
{r(a)−R(a)} ≥ E sup

a∈A
{r(a)−R(a)} + ε

)
≤ 1

2
UpperTailStats(ε)

(1.2)

1-8 Lecture 1: Introduction

or, equivalently, for any δ ∈ [0, 1]

P
(

sup
a∈A
{R(a)− r(a)} < E sup

a∈A
{R(a)− r(a)} + UpperTailStats−1(2δ)

)
≥ 1− δ

P
(

sup
a∈A
{r(a)−R(a)} < E sup

a∈A
{r(a)−R(a)} + UpperTailStats−1(2δ)

)
≥ 1− δ

In fact, with probability at least 1− 2δ we have (see Problem 1.3 in the Problem Sheets)

r(A?)− r(a?) ≤ sup
a∈A
{r(a)−R(a)}+ sup

a∈A
{R(a)− r(a)}

< E sup
a∈A
{R(a)− r(a)}+ E sup

a∈A
{r(a)−R(a)}+ 2 UpperTailStats−1(2δ)

≤ ExpectationStats + 2 UpperTailStats−1(2δ)

so that

P
(
r(A?)− r(a?) < ExpectationStats + 2 UpperTailStats−1(δ)

)
≥ 1− δ.

Establishing bounds of the type (1.2) falls within the scope of establishing concentration inequalities for
a deterministic function f of random variables Z1, . . . , Zn, namely, find UpperTailf , a strictly decreasing
function of ε such that for any ε ≥ 0

P
(
f(Z1, . . . , Zn)−E f(Z1, . . . , Zn) ≥ ε

)
≤ UpperTailf (ε)

or, equivalently, for any δ ∈ [0, 1],

P
(
f(Z1, . . . , Zn)−E f(Z1, . . . , Zn) < UpperTail−1f (δ)

)
≥ 1− δ.

In the case we are interested in, f(Z1, . . . , Zn) = supa∈A{R(a)− r(a)}. Concentration inequalities deal with
establishing how close a function of many random variables is to its expected value. These inequalities will
play a crucial role in this course.

1.2.2 Optimization

In the previous section we implicitly assumed that the decision maker who wants to adopt the ERM paradigm
can in fact compute A?, which amounts to solving the ERM optimization problem exactly. Hence, the focus
in the above was on investigating the statistical properties of A?. In practice, however, computing A? is
intractable (NP hard) for most problems of interest, so we need a more flexible strategy to solve our problem.
Furthermore, even when the ERM problem is tractable, the decision maker may still decide to run a more
computationally efficient algorithm to get an approximation A to the exact ERM minimizer A?. This is
the case, for instance, when computing A? involves inverting a n× n matrix which, in general, can be done
in time O(n3) via procedures based on Gaussian elimination. On the other hand, often (e.g. for positive
semidefinite matrices) an approximate solution to the inverse can be obtained in time O(n2) via methods
based on gradient descent (fast solvers) [9].

Henceforth, let us denote by A an approximation to the ERM minimizer (e.g. think of A as the output of
a gradient descent algorithm run to minimize the function R over elements in A). The approximation A is
also a random quantity, as it is a function of the data and possibly of other sources of randomness. Let us
consider the following new decomposition for the estimation error:

r(A)− r(a?) = r(A)−R(A) +R(A)−R(A?) +R(A?)−R(a?)︸ ︷︷ ︸
≤0

+R(a?)− r(a?),

Lecture 1: Introduction 1-9

which yields

r(A)− r(a?) ≤ R(A)−R(A?)︸ ︷︷ ︸
Optimization

+ sup
a∈A
{r(a)−R(a)}+ sup

a∈A
{R(a)− r(a)}︸ ︷︷ ︸

Statistics

The new term R(A) − R(A?) represents the Optimization term, and in this new setting computing error
bounds for the estimation error r(A)− r(a?) entails also computing error bounds for the optimization term.

Bounds in expectation: Find ExpectationOpt, a positive constant, such that

E[R(A)−R(A?)] ≤ ExpectationOpt

Clearly,
E r(A)− r(a?) ≤ ExpectationOpt + ExpectationStats

A comparison between the bound for the statistics term and for the optimization term can be used to
tune the optimization routine to find an approximate solution up to the precision given by the statistical
accuracy. For instance, following the guidelines in [1], we only need to solve the optimization problem up to
the precision needed so that the following holds:

ExpectationOpt . ExpectationStats

Bounds in probability: To establish bounds in probability, it is enough to find UpperTailOpt, a strictly
decreasing function of ε such that for any ε ≥ 0

P
(
R(A)−R(A?) ≥ E[R(A)−R(A?)] + ε

)
≤ UpperTailOpt(ε)

or, equivalently, for any δ ∈ [0, 1]

P
(
R(A)−R(A?) < E[R(A)−R(A?)] + UpperTailOpt−1(δ)

)
≥ 1− δ.

Proceeding as above (see Problem 1.3 in the Problem Sheets), we find

P
(
r(A)− r(a?) < ExpectationStats + ExpectationOpt

+ 2 UpperTailStats−1(2δ/3) + UpperTailOpt−1(δ/3)
)
≥ 1− δ.

1.3 Offline Statistical Learning: Estimation

The standard statistical learning framework for estimation is defined as follows.

Algorithm 2: Statistical Learning: Estimation

1. Observe a sample of training examples S = {Z1, . . . , Zn} ∈ Zn, assumed to be i.i.d. from a
probability distribution supported on Z that is parametrized by a parameter a? ∈ A.

2. As a function of the random sample S (and possibly some external source of randomness), choose a
parameter A ∈ A.

3. Suffer a loss `(A, a?) where ` : A×A → R+ is a given estimation loss function.

Goal: Minimize and control the estimation error `(A, a?) as a function of the sample size n and
notions of “complexity” of the action set A of the loss function `.

1-10 Lecture 1: Introduction

In some settings, the prediction and estimation problems are closely connected. See Problem 1.4 in the
Problem Sheets.

1.4 Online Statistical Learning

The standard online statistical learning framework is defined as follows [2].

Algorithm 3: Online Statistical Learning

At every time step t = 1, 2, . . . , n:

1. Choose an action At ∈ A (possibly using some external source of randomness), where A is a set of
admissible actions.

2. A data point Zt ∈ Z is sampled from an unknown distribution. The setting where Zt is revealed
to the player is called the full information setting. The setting where Zt is not revealed to the
player is called the limited information setting, or bandit setting.

3. Suffer a loss `(At, Zt) where ` : A×Z → R+ is a given loss function. Let r : A → R+ be the
expected/population risk, defined as the average loss function

r(a) := E `(a, Z)

Define the normalized pseudo-regret as follows

1

n

n∑
t=1

r(At)− inf
a∈A

r(a)

Goal: Minimize and control the normalized pseudo-regret as a function of the sample size n and
notions of “complexity” of the action set A of the loss function `.

The cumulative pseudo-regret is the difference between the cumulative average loss of the player and the
cumulative average loss of the best action in hindsight (i.e., the having access to the data points Z1, . . . , Zn).

Remark 1.9 (Offline and online statistical learning) The main difference between the offline statis-
tical learning framework for prediction defined in Algorithm 1 and the online statistical learning frame-
work is that in the former case the action A ∈ A can be chosen to be a function of the full training data
Z1, . . . , Zn, while in the latter case each function At can only be a function of the information available at
time t, namely, {A1, . . . , At−1} and {Z1, . . . , Zt−1} in the full information setting, or {A1, . . . , At−1} and
{`(A1, Z1), . . . , `(At−1, Zt−1)} in the bandit setting.

References

[1] Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems, pages 161–168, 2008.

[2] Sébastien Bubeck. Introduction to online optimization. Lecture Notes, pages 1–86, 2011.

[3] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.

Lecture 1: Introduction 1-11

[4] Tor Lattimore and Csaba Szepesvári. Bandit algorithms, 2018.

[5] Philippe Rigollet. Mathematics of Machine Learning. MIT Course, 2015.

[6] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

[7] Ramon van Handel. Probability in high dimension. Technical report, PRINCETON UNIV NJ, 2014.

[8] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 1995.

[9] Nisheeth K Vishnoi et al. Lx= b. Foundations and Trends® in Theoretical Computer Science, 8(1–
2):1–141, 2013.

[10] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019.

