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1. Role of submodularity in probability?

= Combinatorial optimization: Submodularity extensively studied.
Let V be a finite set and f:S€2" — f(S) €R be a set function.

= f(Su{i}) — f(S) (gradient of f)

Function f is submodular if for each i,j &S, i # ]

AN f(S) = — <0  (Hessian of f)

= Probability: Submodularity recently investigated to compute P(S3 i) in

PSS =39):= :
/

L > 0.

ISSUE: (Djolonga and Krause, 2014) bounds exp. bad in [V|:=card V.

Q: Can we get dimension-free bounds?

Q: Is submodularity right notion?

2. Fast mixing MCMC: control on Hessian

[ GOAL: Investigate fundamental property of f to get fast mixing MCMC. ]

Consider local-update (Glauber dynamics type) Markov chains:
(systematic-scan, Metropolis-Hasting algorithm also considered in the paper)

ALGORITHM 1. Random-scan Gibbs sampler
Sample Sy € 2" from a given distribution (e.g., uniform); Set S < Sy;
for s=1,...,7 do
for |V| times do
Sample i€V uniformly. Draw Ce{0, 1} with [P’(C:O):Heprlif(S\{i});
If C=0 then set S — S\ {i}, else set S — Su{i};
S; < §;
Output: Markov chain Sy, S;,...,S,.

MAIN RESULT: For a generic set function f, if

Bl M| oo = ,BmaXZ M;;<y<l1 where M;ioc max |A;A;f(S)]
]EV Se2V:S87i,j

then Sy, S,,...,S; is fast mixing (mixing time 7(g) < Pog(m;_l)b and

1 & ik
—EIS ) —P(S>1 < |
N & ( 1) (S31) Y

, VN

., S are N independent copies of the Markov chain.

where SH! ..

= Proof relies on theory of Dobrushin uniqueness for Gibbs measures.
» Key result: Bound does not depend on dimension | V.
» Key property: Dimension-free uniform control on Hessian.

= Submodularity not enough: Phase transition as a function of [ for
convergence rate of Glauber dynamics for Ising model.

[ NOTE: No previous literature on Hessian of set functions. ]

3. Hessian and decay of correlation

Hessian captures decay of correlations in probability.
Examples in metric space (d is metric):

» Exponential decay of correlations: maxgesv.sy; i|A;A; f(S)] < ae A0

it d(i,j)<r,
it d(i,j)>r.

. . C
= Finite-range correlations: MaXseov.syi, il AiA; f(S)] < {
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4. Hessian and curvature

= Many results in submodular optimization for monotone functions (i.e.,

> (0 for each i, S) rely on notion of curvature (based on ):
c:=1—min : =1 —min , e [0, 1].
ieV fdih) iV f({i})
We have ¢ =0 if and only if function is modular, i.e., f(S) =) ;csw;.

Curvature is convenient as easy to compute (minimum is over |V| terms).

= Hessian is a more natural concept to characterize “curvature".
= Hessian also captures locality.

-1 —c -—-c _ AL A]f(S) c;l 0 8
—Cc .. —C
O f({z})/\f({]}) 0 0 c—1

» In general maxge,v.syi,i/|A;A;f(S)| is not easy to compute (maximum is
over 2!V17% terms). However:

—In many canonical applications (cut function, coverage function, etc.)
Hessian is sparse and can be easily computed or uniformly bounded.

—In other applications (e.g., determinantal point processes) more assump-
tions are needed to uniformly control Hessian.

5. Cut function

» (V,E) complete graph. L;; = L;; =0 weight associated to edge {i, j} € E.

f(S) — f(V\ 8) =2 kes2revisLke and f(@) = f(V) :=0.
 AGA -f(S) =—2L;; for any Se2V.
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f(S) with S={k, ¢, m} =Lji+Lj;~Lis—Ljp, AN f(S)=-2L;;

6. Coverage function

= V set of points in R*. B; ball centered at i € V. f(S) :=Vol(U;esB;).
N A]f(5)|—V01 ‘N B, \UkesBk <VOl(B N B))

f(S) Wlth S=1{k,/} [A:A; f(8S)]
/. Determinantal point process
={1,...,n}. LER™" pos. definite. (X,), ey Gaussian r.v.'s covariance L.

u f(S) p— logdetLS where LS — (Lij)i,jES and f(@) = 0.
= AAGF(S) = —21(X;; X1 Xs)
= CAVEAT: Conditional mutual information not monotone in S (# entropy).

8. Back to optimization!

{ NEXT STEP: Use Hessian in combinatorial optimization.

= Dimension-free uniform control on Hessian can be exploited to get fastest
convergence rates for ordinary greedy-type algorithms.

= Work to be posted soon on arXiv.



