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1. Role of submodularity in probability?
•Combinatorial optimization: Submodularity extensively studied.
Let V be a finite set and f : S ∈ 2V −→ f (S) ∈R be a set function.

∆i f (S) := f (S ∪ {i })− f (S) (gradient of f )

Function f is submodular if for each i , j 6∈ S, i 6= j

∆i∆ j f (S) ≡∆ j f (S ∪ {i })−∆ j f (S) ≤ 0 (Hessian of f )

•Probability: Submodularity recently investigated to compute P(S 3 i ) in

P(S = S) := e−β f (S)

Z
, β> 0.

ISSUE: (Djolonga and Krause, 2014) bounds exp. bad in |V | := cardV .

Q: Can we get dimension-free bounds?

Q: Is submodularity right notion?

2. Fast mixing MCMC: control on Hessian
GOAL: Investigate fundamental property of f to get fast mixing MCMC.

Consider local-update (Glauber dynamics type) Markov chains:
(systematic-scan, Metropolis-Hasting algorithm also considered in the paper)

ALGORITHM 1. Random-scan Gibbs sampler
Sample S0 ∈ 2V from a given distribution (e.g., uniform); Set S ← S0;
for s = 1, . . . , t do

for |V | times do
Sample i ∈V uniformly. Draw C ∈{0,1} with P(C =0)= 1

1+exp∆i f (S\{i });
If C = 0 then set S ← S \ {i }, else set S ← S ∪ {i };

Ss ← S;
Output: Markov chain S0,S1, . . . ,St .

MAIN RESULT: For a generic set function f , if
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where S[1], . . . ,S[N ] are N independent copies of the Markov chain.

•Proof relies on theory of Dobrushin uniqueness for Gibbs measures.
•Key result: Bound does not depend on dimension |V |.
•Key property: Dimension-free uniform control on Hessian.
•Submodularity not enough: Phase transition as a function of β for
convergence rate of Glauber dynamics for Ising model.

NOTE: No previous literature on Hessian of set functions.

3. Hessian and decay of correlation
Hessian captures decay of correlations in probability.
Examples in metric space (d is metric):
•Exponential decay of correlations: maxS∈2V :S 63i , j |∆i∆ j f (S)| ≤αe−α′d(i , j ).

•Finite-range correlations: maxS∈2V :S 63i , j |∆i∆ j f (S)| ≤
c if d(i , j ) ≤ r,

0 if d(i , j ) > r.

4. Hessian and curvature
•Many results in submodular optimization for monotone functions (i.e.,
∆i f (S) ≥ 0 for each i ,S) rely on notion of curvature (based on gradient):

c := 1−min
i∈V

minS∈2V :S 63i∆i f (S)

f ({i })
= 1−min

i∈V

∆i f (V \ {i })

f ({i })
∈ [0,1].

We have c = 0 if and only if function is modular, i.e., f (S) =∑
i∈S wi .

Curvature is convenient as easy to compute (minimum is over |V | terms).
•Hessian is a more natural concept to characterize “curvature".
•Hessian also captures locality.−1 −c −c

−c . . . −c
−c − c −1

≤ ∆i∆ j f (S)

f ({i })∧ f ({ j })
≤

 c −1 0 0
0 . . . 0
0 0 c −1


• In general maxS∈2V :S 63i , j |∆i∆ j f (S)| is not easy to compute (maximum is
over 2|V |−2 terms). However:
– In many canonical applications (cut function, coverage function, etc.)
Hessian is sparse and can be easily computed or uniformly bounded.

– In other applications (e.g., determinantal point processes) more assump-
tions are needed to uniformly control Hessian.

5. Cut function
• (V ,E) complete graph. Li j = L j i ≥ 0 weight associated to edge {i , j } ∈ E .
• f (S) = f (V \ S) :=∑

k∈S
∑
`∈V \S Lk` and f (∅) = f (V ) := 0.

• ∆i∆ j f (S) =−2Li j for any S ∈ 2V .
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6. Coverage function
•V set of points in R2. Bi ball centered at i ∈V . f (S) := Vol(

⋃
i∈S Bi ).

• |∆i∆ j f (S)| = Vol
(
Bi ∩B j \

⋃
k∈S Bk

)
≤ Vol(Bi ∩B j )
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7. Determinantal point process
•V ={1, . . . ,n}. L∈Rn×n pos. definite. (Xv)v∈V Gaussian r.v.’s covariance L.
• f (S) := logdetLS where LS := (Li j )i , j∈S and f (∅) := 0.

• ∆i∆ j f (S) =−2I (Xi ; X j |XS)

•CAVEAT: Conditional mutual information not monotone in S (6= entropy).

8. Back to optimization!
NEXT STEP: Use Hessian in combinatorial optimization.

•Dimension-free uniform control on Hessian can be exploited to get fastest
convergence rates for ordinary greedy-type algorithms.

•Work to be posted soon on arXiv.


