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Abstract—We develop a general theory for the local sensitivity
of optimal points of constrained network optimization problems
under perturbations of the constraints. For the network flow
problem, we show that local perturbations on the constraints
have an impact on the components of the optimal point that
decreases exponentially with the graph-theoretical distance. The
exponential rate is controlled by the spectral radius of a sub-
stochastic transition matrix of a killed random walk associated
to the network. For graphs where this spectral radius is well-
behaved (bounded, for instance) as a function of the dimension
of the network, our theory yields the first-known incarnation of
the decay of correlation principle in constrained optimization.

Index Terms—sensitivity of optimal point, decay of correlation,
network flow, killed random walk

I. INTRODUCTION

Consider the problem of minimizing a twice continuously
differentiable strongly convex function f : x → f(x) given
the equality constraint Ax = b, where A is a full row rank
matrix. Let x?(b) denote the unique solution of this problem,
as a function of the constraint vector b. How does x?(b)i —
the i-th component of x?(b) — behave upon perturbation of
ba — the a-th component of b? Results on the sensitivity
analysis for optimization procedures are typically stated only
with respect to the optimal objective function, i.e., f(x?(b)),
not with respect to the point where the optimum is attained,
i.e., x?(b). But can we express ∂x?(b)i

∂ba
itself as a function of

f , A, and b, and how does this quantity behave with respect
to i and a, and the network topology? These are the type of
questions that we address, from the point of view of network
locality and decay of correlation. Our main contributions are:

1) (General theory) Provide the first systematic analysis of
decay of correlation for optimization procedures.

2) (Network flow problem) Show that the optimal network
flow problem structurally exhibits decay of correlation.
Provide a characterization of correlations in terms of
spectral analysis of killed random walks.

We consider the widely-studied class of optimal network
flow problems that has been fundamental in the development
of the theory of polynomial-times algorithms for optimizations
(see [1] and references therein, or [2] for book reference).
Here a directed graph G = (V,E) is given with its structure
encoded in the vertex-edge incidence matrix A. To each vertex
a ∈ V is associated an external flow ba ∈ R. To each edge
i ∈ E is associated a cost function fi : xi ∈ R→ fi(xi) ∈ R,
where xi is the flow along edge i. Here x?(b) = (x?(b)i)i∈E

represents the flow that minimizes the total cost
∑
i∈E fi in

the network and that satisfies the conservation law Ax = b so
that at each vertex the total flow is zero, where b = (ba)a∈V is
the external flow. In this context, the quantity ∂x?(b)i

∂ba
can be

interpreted as a measure of the “correlation” between edge i
and vertex a. One of our main results shows that the magnitude
of the correlation |∂x

?(b)i
∂ba

| is upper bounded by a quantity
that decays exponentially with the graph-theoretical distance
between i and a, with rate given by the spectral radius of a sub-
stochastic transition matrix of a killed random walk associated
to the network. For graphs where this spectral radius is well-
behaved (bounded, for instance) as a function of the dimension
of the network, our theory yields the first-known incarnation of
the decay of correlation principle in constrained optimization.

The concept of decay of correlation has been widely studied
in statistical mechanics and probability theory, starting with
the seminal work of Dobrushin [3] to investigate the problem
of uniqueness of Gibbs measures on infinite graphs (for book
references see [4] and [5]). In this setting, decay of corre-
lation characterizes the effective neighborhood dependency of
random variables in a probabilistic network. Since the work of
Dobrushin, this concept has found many applications beyond
statistical physics, see [6] for instance. However, even when
the underlying problem is completely deterministic, such as
in classical optimization procedures, the decay of correlation
property is typically established upon endowing the model
with a probabilistic structure: randomness and independence
are embedded in various ways so that the desired decay of
correlation property can be established and exploited. The only
case we are aware of where the decay of correlation property
has been explicitly considered in a purely deterministic setting
in optimization is treated in [7]. In this paper the authors use
decay of correlation to prove the convergence of the min-
sum message passing algorithm to solve the class of separable
unconstrained convex optimization problems. Yet, decay of
correlation is simply regarded as a tool to prove convergence
guarantees for the specific algorithm at hand, and no general
theory is built around it. On the other hand, the need to
address diverse large-scale graphical models applications in
the optimization and machine learning domain prompts to
investigate the foundations of deterministic correlation decay,
and to develop a general theory that can then inspire a
principled use of this concept for local distributed algorithms.



Our results represent a first step in this direction. The general
characterization that we give to ∂x?(b)i

∂ba
(Theorem 2.1 below)

can be interpreted as a first instance of comparison theorems
for constrained optimization procedures, along the lines of
the comparison theorems established in probability theory
to capture stochastic decay of correlation and control the
difference of high-dimensional distributions (see [8] and [3]).

The rest of the paper is organized as follows. In Section
II we develop the local sensitivity analysis to characterize
the correlation term ∂x?(b)i

∂ba
as a function of f , A, and b for

generic equality-constrained convex problems, making explicit
the interplay between the Hessian of f and the structure of the
constraint matrix A. In Section III we introduce the minimum-
cost network flow problem, and in Section IV we specialize
the local sensitivity analysis of Section II to this problem.
We show that the optimal network flow problem structurally
exhibits decay of correlation (point-to-point, point-to-set, and
set-to-point) that can be captured via the spectral analysis of
killed random walks on graphs.

II. LOCAL SENSITIVITY FOR CONSTRAINED OPTIMIZATION

Let V be a finite set — to be interpreted as the “variable
set” — with cardinality |V|, and let f : RV → R be a strongly
convex function, twice continuously differentiable. Let F be
a finite set — to be interpreted as the “factor set” — with
cardinality |F|, and let A ∈ RF×V . Consider the following
optimization problem over x ∈ RV :

minimize f(x)

subject to Ax = b,

where b ∈ RF . Assume that |F| ≤ |V| and that A has full rank
|F|, so that the equality constraint represents an independent
set of equations. Let the function f and the matrix A be
fixed, and let us consider the solution of the optimization
problem above as a function of the vector b. It is easy to
verify that strong convexity implies that this problem has a
unique optimal solution. For each b ∈ RF , let

x?(b) := arg min
{
f(x) : x ∈ RV , Ax = b

}
.

The following theorem establishes that the function x? is
continuously differentiable, and it provides a local character-
ization of the way a perturbation of the constraint vector b
affects the optimal solution x?(b). In textbooks, results on the
sensitivity analysis for optimization procedures as a function
of the parameters of the model are typically stated only with
respect to the optimal objective function, i.e., f(x?(b)), not
with respect to the point where the optimum is attained, i.e.,
x?(b), as in the following theorem.

Theorem 2.1: Let f : RV → R be a strongly convex
function, twice continuously differentiable. Let A ∈ RF×V
be a full rank matrix, with |F| ≤ |V|. For each b ∈ RF , let
H(b) := ∇2f(x?(b)), L(b) := AH(b)−1AT , where AT is the
transpose of A, and define

D(b) := H(b)−1ATL(b)−1.

Then, x? is continuously differentiable, and for each i ∈ V ,
a ∈ F , and b ∈ RF , we have

∂x?(b)i
∂ba

= D(b)ia.

Proof Define the function Φ from RV × RF to RV × RF as

Φ

(
x
ν

)
:=

(
∇f(x) +AT ν

Ax

)
.

For each b ∈ RF , the minimizer x?(b) satisfies the Karush-
Kuhn-Tucker (KKT) conditions

Φ

(
x?(b)
ν?(b)

)
=

(
0
b

)
, (1)

where ν?(b) ∈ RF is the optimal dual variable. By Hadamard
global inverse theorem (see [9] for instance), it can be shown
that the function Φ is a C1 diffeomorphism, namely, it is
continuously differentiable, bijective, and its inverse is also
continuously differentiable. In particular, this means that the
functions x? : b ∈ RF → x?(b) and ν? : b ∈ RF → ν?(b)
are continuously differentiable. Differentiating both sides of
(1) with respect to ba, a ∈ F , by the chain rule we find

J(b)

(
∂x?(b)
∂ba
∂ν?(b)
∂ba

)
=

(
0
ea

)
, J(b) :=

(
H(b) AT

A 0

)
,

where H(b) := ∇2f(x?(b)) and (ea)a′ := 1a=a′ , with 1 being
the indicator function. As the function f is strongly convex,
the Hessian ∇2f(x) is positive definite for every x ∈ RV ,
hence it is invertible. As A is full rank, the quantity L(b) :=
AH(b)−1AT ∈ RF×F is positive definite for every b ∈ RF .
To see this, let y ∈ RF , y 6= 0. Since AT has full column rank,
we have z = AT y 6= 0, and as H(b) is positive definite we
have yTAH(b)−1AT y = zTH(b)−1z > 0. Therefore, L(b) is
invertible, and the inverse of the block matrix J(b) reads (not
writing the dependence on b)

J−1 =

(
H−1 −H−1ATL−1AH−1 H−1ATL−1

L−1AH−1 −L−1

)
.

As (
∂x?(b)
∂ba
∂ν?(b)
∂ba

)
= J(b)−1

(
0
ea

)
,

we have ∂x?(b)
∂ba

= H(b)−1ATL(b)−1ea and ∂x?(b)i
∂ba

=(
H(b)−1ATL(b)−1

)
ia

= D(b)ia for i ∈ V .

The quantity D(b)ia in Theorem 2.1 measures the impact
that a perturbation of the a-th component of the constraint
vector b has to the i-th component of the solution x?(b). Thus,
D(b)ia describes the “correlation” between i and a.

III. OPTIMAL NETWORK FLOW

We now introduce the minimum-cost network flow problem,
a cornerstone in the development of the theory of polynomial-
times algorithms for optimizations. We refer to [1] for an
account of the importance that this problem has had in the field
of optimization, and to [2] for book reference. The problem
formulation as here presented is taken from Chapter 10 in [10].



Consider a connected1 directed graph Ḡ := (V̄ , E), with
no self-edges and no multiple edges, with vertex set V̄ and
edge set E. Assume |V̄ | − 1 ≤ |E|. For each i ∈ E let xi
denote the flow on edge i, with xi > 0 if the flow is in the
direction of the edge, xi < 0 if the flow is in the direction
opposite the edge. For each a ∈ V̄ let b̄a be a given external
flow (source or sink) on the vertex a, with b̄a > 0 if the flow
enters the vertex, b̄a < 0 if the flow leaves the vertex. Assume
that the total of the source flows equals the total of the sink
flows, that is,

∑
a∈V̄ b̄a = 0. We assume that the flow satisfies

a conservation equation so that at each vertex the total flow
is zero. This conservation law can be expressed as Āx = b̄,
where Ā ∈ RV̄×E is the vertex-edge incidence matrix defined
for each a ∈ V̄ and i ∈ E as

Āai :=


1 if edge i leaves node a,
−1 if edge i enters node a,
0 otherwise,

and b̄ ∈ RV̄ represents the external flow. The conservation
equations represented by Āx = b̄ are redundant as we clearly
have 1T Ā = 0T (and 1T b̄ = 0), where 1 and 0 are the all-ones
and all-zeros vectors, respectively. To obtain an independent
set of equations we can disregard any of them. To this end,
henceforth, fix ā ∈ V̄ , let V := V̄ \ ā, and define the pair
G := (V,E). Note that G no longer has a graph structure as
we have removed ā and now there are some edges in E that
do not connect pairs of elements in V . Let A ∈ RV×E be
the restriction of Ā on G, that is, the matrix Ā with the ā-
th row removed, and define b̄V ∈ RV analogously, removing
from b̄ the entry associated to ā. The flow conservation is now
equivalently written as Ax = b̄V . Clearly, the matrix A has
full row rank |V | = |V̄ | − 1. Consider the following problem.

Optimal network flow problem For each edge i ∈ E let fi :
R→ R be its associated cost function, assumed to be strongly
convex and twice continuously differentiable. Let A ∈ RV×E
be defined as above, and let b = (ba)a∈V ∈ RV be given.
Then the optimal network flow problem is

minimize f(x) :=
∑
i∈E

fi(xi)

subject to Ax = b.

(2)

Notice that the structure G = (V,E) behind the constraint
equations Ax = b can be interpreted as a factor graph with
variable set V := E, factor set F := V , and where there is
an (undirected) edge between i ∈ V and a ∈ F if and only if
Aai 6= 0. This interpretation immediately yields the following
convenient notion of neighborhoods. For i ∈ E, a ∈ V , let

∂i := {a ∈ V : Aai 6= 0}, ∂a := {i ∈ E : Aai 6= 0}.

The original graph Ḡ = (V̄ , E) can also be interpreted as a
factor graph, with variable set V , factor set F̄ := F ∪ ā ≡ V̄ ,

1A directed graph is connected if the undirected graph naturally associated
to it is connected.

and where there is an (undirected) edge between i ∈ V and
a ∈ F̄ if and only if Āai 6= 0. For each i ∈ E and a ∈ V̄ , let

∂̄i := {a ∈ V : Āai 6= 0}, ∂̄a := {i ∈ E : Āai 6= 0}.

As the objective function f in (2) is separable, without loss
of generality we assume that the subgraph (V,E \ ∂̄ā) is con-
nected. Otherwise, we can break the optimization problem (2)
into its disconnected parts, and treat each of them separately.

IV. LOCAL SENSITIVITY: KILLED RANDOM WALKS

In this section we use the local sensitivity analysis provided
by Theorem 2.1 to investigate the quantity ∂x?(b)i

∂ba
, i ∈ E,

a ∈ V , in the optimal network flow problem. For simplicity
of notation, henceforth we neglect to write explicitly the
dependence on b. For instance, we write x? to indicate x?(b).
We introduce a few quantities of interest. For each i ∈ E, let

wi :=

(
∂2fi(x

?
i )

∂x2
i

)−1

> 0,

which is strictly positive as fi is strongly convex by assump-
tion. Let W ∈ RV×V be the symmetric matrix defined as
follows, for each a, a′ ∈ V ,

Waa′ :=

{
wi if i = (a, a′) ∈ E or i = (a′, a) ∈ E,
0 otherwise,

and let D ∈ RV×V be the diagonal matrix with entries, for
each a ∈ V , da := Daa :=

∑
i∈∂a wi. Define L := D −W ,

or, entry-wise for each a, a′ ∈ V ,

Laa′ =


∑
i∈∂a wi if a = a′,

−wi if i = (a, a′) ∈ E or i = (a′, a) ∈ E,
0 otherwise.

From Theorem 2.1 we immediately have the following result
on the sensitivity of the optimal flow problem.

Lemma 4.1: For each a ∈ V , i = (a′, a′′) ∈ E we have

∂x?i
∂ba

= wi
{
L−1
a′a − L

−1
a′′a

}
,

where we adopt the convention that L−1
āa := 0 for any a ∈ V .

We now show how we can write ∂x?
i

∂ba
in terms of Neumann

power series of sub-stochastic matrices that have an interpre-
tation in terms of killed random walks on the undirected graph
(V, |E \ ∂̄ā|), as we discuss next. Here the notation |E \ ∂̄ā| is
used to denote the undirected edge set formed by the directed
edge set E\∂̄ā by mapping each directed edge to an undirected
edge that connects the same pair of nodes.

Let us first recall a few facts on sub-stochastic matrices.

Sub-stochastic matrix A sub-stochastic matrix is a matrix
with non-negative entries that has row sums less than or equal
to 1, with at least one row sum less than 1.

Given a sub-stochastic matrix P ∈ RV×V , define the distance
between a ∈ V and a′ ∈ V as follows

d(a, a′) := inf{t ≥ 0 : P taa′ 6= 0}.



The matrix P is irreducible (in the sense of Markov chains)
if d(a, a′) <∞ for each a, a′ ∈ V .

Lemma 4.2: Let P be a sub-stochastic matrix, and let ρ be
its spectral radius. Then, ρ ≤ 1. If P is irreducible then ρ < 1.

Proof See Corollary 6.2.28 in [11], for instance.

Henceforth, let P := D−1W ∈ RV×V , i.e., for a, a′ ∈ V ,

Paa′ =

{
wi∑

j∈∂a wj
if i = (a, a′) ∈ E or i = (a′, a) ∈ E,

0 otherwise.

Lemma 4.3: The matrix P is sub-stochastic and for each
a ∈ V and i = (a′, a′′) ∈ E we have

∂x?i
∂ba

=
wi
da

∞∑
t=0

{
(P t)a′a − (P t)a′′a

}
,

where we adopt the convention that Pāa := 0 for any a ∈ V .

Proof The matrix P is sub-stochastic as, clearly, if a 6∈ ∂̄ā
then

∑
a′∈V Paa′ = 1, while if a ∈ ∂̄ā then

∑
a′∈V Paa′ < 1.

As (V,E \ ∂̄ā) is connected by assumption, then P is irre-
ducible and by Lemma 4.2 the spectral radius of P is strictly
less than 1, so that the Neumann series

∑∞
t=0 P

t converges.
Then, the Neumann series expansion for L−1 reads

L−1 =

∞∑
t=0

(I −D−1L)tD−1 =

∞∑
t=0

P tD−1.

The final statement follows immediately from Theorem 4.1.

The matrix P can be interpreted as the transition matrix
of the killed random walk on the undirected weighted graph
(V, |E \ ∂̄ā|,W ) that is obtained by creating a cemetery at
ā in the (regular) random walk on the weighted graph (V ∪
ā, |E|, W̄ ), where the weight matrix W̄ ∈ R(V ∪ā)×(V ∪ā) is
defined, for each a, a′ ∈ (V ∪ ā), as

W̄aa′ :=

{
wi if i = (a, a′) ∈ E or i = (a′, a) ∈ E,
0 otherwise.

(3)

The (stochastic) transition matrix of the random walk on
(V ∪ ā, |E|, W̄ ) is given by the standard diffusion operator
P̄ := D̄−1W̄ , where D̄ ∈ R(V ∪ā)×(V ∪ā) is a diagonal matrix
with entries given, for each a ∈ (V ∪ ā), by da := D̄aa :=∑
i∈∂̄a wi. Creating a cemetery at ā means modifying the walk

so that ā becomes a recurrent state, i.e., once the walk is in
state ā it will go back to ā with probably 1. This is clearly done
by replacing the ā-th row of P̄ by a row with zeros everywhere
but in the ā-th coordinate, where the entry is equal to 1. The
killed random walk on V then corresponds to the transient
part of the (full) random walk on V ∪ ā with cemetery at ā.
Let X0, X1, X2, . . . denote the killed random walk on V with

P(Xt = a|Xt−1 = a′) := Pa′a

for any t. By the Monotone Convergence theorem for con-
ditional expectations we can take the infinite sum inside the
expectation in the computation below, and the quantity

Ga′a :=

∞∑
t=0

(P t)a′a = E

[ ∞∑
t=0

IXt=a

∣∣∣∣X0 = a′

]

is the mean expected number of times that the killed random
walk started at site a′ visits site a, also known as the Green
function of the random walk. Hence, modulo a multiplicative
factor, if i = (a′, a′′) ∈ E with a′, a′′ ∈ V , the identity
in Lemma 4.3 represents the difference in the expected
number of times the (killed) Markov chain (Xt)t≥0 visits site
a when it starts respectively from X0 = a′ and from X0 = a′′.

V. DECAY OF CORRELATION

We can characterize the identity in Theorem 4.3 in terms
of the spectral properties of the transition matrix P , as the
following lemma attests. In fact, this lemma considers the
matrix Γ := D1/2PD−1/2 = D−1/2WD−1/2 ∈ RV×V that
is symmetric and so it is easier to analyze than P . In what
follows, let d be the natural distance between vertices on the
undirected graph (V, |E \ ∂̄ā|). Henceforth, we also adopt the
convention that d(ā, a) = d(a, ā) = +∞ for any a ∈ V .

Lemma 5.1: Let (λa, ψa)a∈V be the pairs of real eigenvalues
and orthonormal eigenvectors of the symmetric matrix Γ For
each a ∈ V , define the vector φa ∈ RV as (φa)c :=√∑∞

t=0 λ
t
c

1√
da

(ψc)a, c ∈ V . Then, for each a ∈ V and
i = (a′, a′′) ∈ E, we have

∂x?i
∂ba

= wi(φa′ − φa′′)Tφa, (4)

where we adopt the convention that φā := 0. Moreover, for
each a, a′ ∈ V we have

φTa φa′ =
1a=a′

da′
+
∑
c∈V

Pacφ
T
c φa′ , (5)

0 ≤ φTa φa′ ≤
1√
dada′

ρd(a,a′)

1− ρ
, (6)

where ρ < 1 is the spectral radius of P .

Proof For simplicity of notation, let us label the elements of V
as {1, . . . , p}, where p := |V |. As Γ := D−1/2WD−1/2 is real
and symmetric, let (λ`, ψ`)

p
`=1 be the pairs of real eigenvalues

and orthonormal eigenvectors, i.e., ψTi ψj = Iij , I being the
identity matrix. The matrix Γ admits the spectral decompo-
sition Γ = ΨΛΨT , where Ψ = (ψ1, . . . , ψp) ∈ Rp×p is or-
thonormal, ΨT = Ψ−1, and Λ ∈ Rp×p is diagonal with entries
the eigenvalues of Γ. Clearly, P = D−1/2ΓD1/2 so that P
has eigenvalues/eigenvectors pairs given by (λ`, D

−1/2ψ`)
p
`=1

(note that the eigenvectors of P are no longer necessarily
orthonormal as (D−1/2ψi)

TD−1/2ψj = ψiD
−1ψj) and

P t = D−1/2ΨΛtΨTD1/2 = D−1/2

(
p∑
`=1

λt`ψ`ψ
T
`

)
D1/2.

As P is sub-stochastic and irreducible, by Lemma 4.2 the
spectral radius of P is strictly less than 1, i.e., ρ < 1, so that
the Neumann series

∑∞
t=0 P

t converges. We can write

G :=

∞∑
t=0

P t = D−1/2Ψ

∞∑
t=0

ΛtΨTD−1/2D = ΦTΦD,



where Φ :=
√∑∞

t=0 ΛtΨTD−1/2. Let Φ = (φ1, . . . , φp) with
φ` := Φe` we have (φ`)i = Φi` =

√∑∞
t=0 λ

t
i

1√
d`

(ψi)` and

Gik = dkφ
T
i φk =

√
dk
di

∑p
`=1(ψ`)i(ψ`)k

∑∞
t=0 λ

t
`. Clearly,

(4) follows from Lemma 4.3. Using the fact that |λ`| ≤ ρ for
each `, we get the following bound

Gik =

∞∑
t=d(i,k)

(P t)ik ≤
√
dk
di

ρd(i,k)

1− ρ

p∑
`=1

|ψ`|i|ψ`|k,

where |ψ`| is the vector made by the absolute values of the
components of ψ`. By Cauchy-Schwarz and the orthonormal-
ity of Ψ, we have

p∑
`=1

|ψ`|i|ψ`|k ≤
√

(ΨΨT )ii

√
(ΨΨT )kk = 1,

so that, for each i, k, 0 ≤ φTi φk ≤ 1√
didk

ρd(i,k)

1−ρ , where the
lower bound follows clearly from the fact that Gik ≥ 0. A
first step analysis yields

Gik =

∞∑
t=0

(P t)ik = Iik +

∞∑
t=1

(P t)ik = Iik +

p∑
l=1

Pi`G`k

so that φTi φk = 1i=k

dk
+
∑p
`=1 Pi`φ

T
` φk.

As a corollary of the previous lemma we immediately have
the following result, which shows how the optimal network
flow problem structurally exhibits exponentially-decreasing
correlation bounds with rate given by the spectral radius of
the associated sub-stochastic matrix.2 We use the notation
x ∧ y := min{x, y} and x ∨ y := max{x, y}.

Lemma 5.2 (Point-to-point): Let ρ < 1 be the spectral radius
of the matrix Γ = D1/2PD−1/2. For a ∈ V , i = (a′, a′′) ∈ E,∣∣∣∣∂x?i∂ba

∣∣∣∣ ≤ wi
da

1{a′=a or a′′=a} + γ
ρ(d(a′,a)∧d(a′′,a)−1)∨0

1− ρ
,

where α := maxa∈V,a′,a′′∈(V ∪ā)
W̄a′a′′
da

and

γ := α
∑
c∈V
|Pa′c − Pa′′c|

1√
dc
,

with Pāa := 0 and d(ā, a) = +∞ for any a ∈ V .

Proof Let a ∈ V and i = (a′, a′′) ∈ E. From (4) and (5),

∂x?i
∂ba

=
wi
da

(Ia′a − Ia′′a) + wi
∑
c∈V

(Pa′c − Pa′′c)φTc φa,

where we adopt the convention that Iāa := 0 and Pāa := 0
for any a ∈ V . Using (6),∣∣∣∣∂x?i∂ba

∣∣∣∣ ≤ wi
da
|Ia′a − Ia′′a|+

wi√
da

1

1− ρ
∑
c∈V
|Pa′c − Pa′′c| max

c∈V :Pa′c 6=0 or Pa′′c 6=0

ρd(c,a)

√
dc

.

2Lemma 5.2 yields decay of correlation bounds upon the assumption that
the spectral radius ρ < 1 is not too close to 1, as function of the network
size. The behavior of ρ is intrinsically linked to the topology of the underlying
graph, and needs to be checked on a case-by-case basis.

The statement of the corollary follows immediately from

min
c∈V :

Pa′c 6=0 or Pa′′c 6=0

d(c, a) = min
c∈V :
Pa′c 6=0

d(c, a) ∧ min
c∈V :
Pa′′c 6=0

d(c, a)

≥ (d(a′, a) ∧ d(a′′, a)− 1) ∨ 0,

where we used that, by the triangle inequality for the distance
d, (analogously for a′′)

min
c∈V :
Pa′c 6=0

d(c, a) ≥ min
c∈V :
Pa′c 6=0

{d(a, a′)− d(c, a′)} = d(a, a′)− 1,

with the convention that min{∅} = +∞ (note that {c ∈ V :
Pāc 6= 0} = ∅), and so also d(ā, a) = +∞ for any a ∈ V .

Lemma 5.2 yields point-to-point correlation bounds as it
shows that for each edge i and vertex a the quantity |∂x

?
i

∂ba
|

is bounded by a term that decreases exponentially with the
distance between i and a. While this result can be used to
bound the effect that a perturbation of a single component
of the constraint vector b has on a single component of the
optimal solution x?, this bound is typically not well-suited
to capture the aggregate impact that multiple perturbations
have on multiple components of the optimal point. Lemma
5.3 below addresses this issue by yielding point-to-set and
set-to-point correlation bounds. The point-to-set bound shows
that perturbing all the components of the constraint vector b
outside a ball of radius r centered at edge i has an effect on
x?i that decays exponentially with r. On the other hand, the
set-to-point bound shows that perturbing a single component
of the constraint vector b at vertex a has an impact on all
the components of x? outside a ball of radius r centered at
a that decays exponentially with r. The key property is that
these bounds do not depend, respectively, on the number of
the components of b being perturbed, nor on the number of
the components of x? being affected, which would otherwise
be the case if we were to use the point-to-point bound in
Lemma 5.2. The price to pay for this added versatility is that
the bounds in Lemma 5.3 depend on both ρ and ξ, respectively
the largest eigenvalue and the corresponding eigenvector of the
matrix Γ = D1/2PD−1/2. On the other hand, the bound in
Lemma 5.2 depends only on ρ.

Lemma 5.3 (Point-to-set and set-to-point): Let ρ < 1 be the
spectral radius of the matrix Γ = D1/2PD−1/2, and ξ ∈ RV
be the corresponding eigenvector. For each r ≥ 1,

∑
a∈V :

d(a′,a)∧d(a′′,a)≥r

∣∣∣∣∂x?i∂ba

∣∣∣∣ ≤ σ ρr−1

1− ρ
for i = (a′, a′′) ∈ E,

∑
i=(a′,a′′)∈E:

d(a′,a)∧d(a′′,a)≥r

∣∣∣∣∂x?i∂ba

∣∣∣∣ ≤ µ ρr−1

1− ρ
for a ∈ V ,



where α := maxa∈V,a′,a′′∈(V ∪ā)
W̄a′a′′
da

and

σ := α

(
max
a,c∈V

√
daξc√
dcξa

)(
max

(a′,a′′)∈E

∑
c∈V
|Pa′c−Pa′′c|

)
,

µ := α

(
max
a,c∈V

√
daξa√
dcξc

)max
c∈V

∑
(a′,a′′)∈E

|Pa′c − Pa′′c|

 ,

with Pāa := 0 and d(ā, a) = +∞ for any a ∈ V .

Proof We first prove the point-to-set bound. Let us define the
weighted supremum norm with weight ω ∈ RV+ as ‖y‖ω∞ :=

maxa∈V
|ya|
ωa
, for any vector y ∈ RV . The induced operator

norm reads ‖Y ‖ω∞ := maxa∈V
1
ωa

∑
a′∈V |Yaa′ |ωa′ , for any

matrix Y ∈ RV×V . As (ρ, ξ) is an eigenvalue/eigenvector pair
for Γ = D1/2PD−1/2, by defining ω := D−1/2ξ we have

Γξ = ρξ ↔ Pω = ρω ↔
∑
a′∈V

Paa′ωa′ = ρωa, a ∈ V.

By the Perron-Frobenius theorem, ξ has strictly positive entries
so ω is a well-defined weight vector and clearly ‖P‖ω∞ = ρ.
From the first step analysis

Ga′a :=

∞∑
t=0

(P t)a′a = Ia′a+

∞∑
t=1

(P t)a′a = Ia′a+
∑
c∈V

Pa′cGca,

Lemma 4.3 yields, for i = (a′, a′′) ∈ E,

∂x?i
∂ba

=
wi
da

(Ia′a − Ia′′a) +
wi
da

∑
c∈V

(Pa′c − Pa′′c)Gca. (7)

Hence, for any r ≥ 1 we have∑
a∈V :

d(a′,a)∧d(a′′,a)≥r

∣∣∣∣∂x?i∂ba

∣∣∣∣ ≤ wi
mina∈V da

∑
c∈V
|Pa′c−Pa′′c|·

· max
c∈V :

Pa′c 6=0 or Pa′′c 6=0

∑
a∈V :

d(a′,a)∧d(a′′,a)≥r

Gca.

For any c ∈ V such that Pa′c 6= 0 or Pa′′c 6= 0, by the triangle
inequality for the distance d we have

d(a′, a) ∧ d(a′′, a) ≤ (d(c, a) + d(a′, c)) ∧ (d(c, a) + d(a′′, c)),

so that d(a′, a) ∧ d(a′′, a) ≤ d(c, a) + 1, and since Gca =∑∞
t=d(c,a)(P

t)ca, we get∑
a∈V :

d(a′,a)∧d(a′′,a)≥r

Gca ≤
∑

a∈V :d(c,a)≥r−1

Gca

≤
∞∑

t=r−1

∑
a∈V

(P t)ca ≤
(

max
a,c∈V

ωc
ωa

) ∞∑
t=r−1

‖P t‖ω∞

≤
(

max
a,c∈V

ωc
ωa

) ∞∑
t=r−1

(‖P‖ω∞)
t

=

(
max
a,c∈V

ωc
ωa

)
ρr−1

1− ρ
.

Combining everything together we clearly get the first bound.
The proof of the set-to-point bound goes analogously. Let

us define the weighted L1 norm with weight ω ∈ RV+ as

‖y‖ω1 :=
∑
a∈V ωa|ya|, for any vector y ∈ RV . The induced

operator norm reads ‖Y ‖ω1 := maxa′∈V
1
ωa′

∑
a∈V ωa|Yaa′ |,

for any matrix Y ∈ RV×V . As Γ is clearly symmetric, by
defining ω := D1/2ξ this time we have

ξTΓ = ρξT ↔ ωTP = ρωT ↔
∑
a∈V

ωaPaa′ = ρωa′ , a
′ ∈ V,

and clearly ‖P‖ω1 = ρ. From identity (7), for any r ≥ 1,∑
i=(a′,a′′)∈E:

d(a′,a)∧d(a′′,a)≥r

∣∣∣∣∂x?i∂ba

∣∣∣∣ ≤ maxi∈E wi
da

∑
c∈V

∑
i=(a′,a′′)∈E

|Pa′c−Pa′′c|Gca1d(a′,a)∧d(a′′,a)≥r1Pa′c 6=0 or Pa′′c 6=0.

As 1d(a′,a)∧d(a′′,a)≥r1Pa′c 6=0 or Pa′′c 6=0 ≤ 1d(c,a)≥r−1 and∑
i=(a′,a′′)∈E:

d(a′,a)∧d(a′′,a)≥r

∣∣∣∣∂x?i∂ba

∣∣∣∣ ≤ maxi∈E wi
da

·

·

max
c∈V

∑
i=(a′,a′′)∈E

|Pa′c − Pa′′c|

 ∑
c∈V :d(c,a)≥r−1

Gca.

Since Gca =
∑∞
t=d(c,a)(P

t)ca, we get∑
c∈V :d(c,a)≥r−1

Gca ≤
∞∑

t=r−1

∑
c∈V :d(c,a)≥r−1

(P t)ca

≤
∞∑

t=r−1

∑
c∈V

(P t)ca ≤
(

max
a,c∈V

ωa
ωc

) ∞∑
t=r−1

‖P t‖ω1

≤
(

max
a,c∈V

ωa
ωc

) ∞∑
t=r−1

(‖P‖ω1 )
t

=

(
max
a,c∈V

ωa
ωc

)
ρr−1

1− ρ
.

Combining everything together we get the second bound.
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