tf-demo

May 8, 2019

1 Image classification on the MNIST data set using convolutional neu-
ral networks

[1]: import matplotlib.pyplot as plt
import numpy as np

from tensorflow.data import Dataset, experimental

from tensorflow.keras.backend import clear_session

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

clear_session() # Reset notebook state

We're using MNIST, a database of hand-written digits commonly used for training and testing
image processing and machine learning techniques. The database is split into 60,000 training
examples and 10,000 test examples. The digits are stored as 28-pixel 8-bit grayscale images. For
each digit, a numerical label of 0-9 is provided.

[2]: (x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train.shape, y_train.shape, x_test.shape, y_test.shape

[2]: ((60000, 28, 28), (60000,), (10000, 28, 28), (10000,))

First, let’s visualise some of the training data.
[3]: fig, axes = plt.subplots(9,9,figsize=(9,9))

for i, ax in enumerate(axes.flatten()):

ax.imshow(x_train[i], cmap='gray')

ax.set_title(f'Label : {y_train[ill}"')

ax.get_xaxis() .set_visible(False)

ax.get_yaxis() .set_visible(False)
fig.tight_layout ()

b
=
o
L
b
o
o
=
b
o
o
I
b
or
o
-
b
or
o
o
b
or
o
P
b
o
o
-
b
o
o
L
b
or
T
-

M
&
L
~[
[
B
=
W
—

b
=2
o
o
b
o
o
[
b
o
o
LA
b
o
o
[
b
=2
o
=)
b
=2
o
-
b
o
o
-
b
o
o
~a
b
o
-
e

*
2
B
]
B
—
N
L
S

b
or
o
=)
b
o
o
w
b
o
o
I
b
o
o
o
b
or
o
o
b
or
o
-
b
o
o
-
b
o
o
[
b
o
®
I

o
o
K4
[sY:
<[
~
=
N
=

b
[=n
i3
L
b
[=n
i3
~
b
o
il
-
b
o
o
L
b
or
o
o
b
[=n
i3
o
b
[=n
i3
o
b
o
o
=1
b
o
o
LA

W
N
N
Bl
ok
&
o
S
B

b
o
w
=
b
o
o
o
b
o
il
-~
b
o
o
=]
b
o
il
-
b
o
w
(=)
b
o
D
B
b
o
o
o
b
o
o
w

-~
©
El
<f
—I
=
=
~
=

b
=
o
o
b
o
o
o
b
o
o
[
b
or
o
[r
b
or
o
w
b
or
o
L
b
o
o
=
b
o
o
-
b
or
T
I

o
)
v,
]
]
w
Q
N
i

b
(=
m
o
b
o
E
o
b
o
E
=1
b
o
o
o
b
o
o
I
b
(=
o
-
b
o
E
I
b
o
E
I
b
o
®
e

-
S
o
o
K3
~
L
=
>

b
or
o
o
b
o
o
=Y
b
o
o
LA
b
o
o
o
b
or
o
-
b
or
o
o
b
o
o
o
b
o
o
-
b
o
®
-

>
N
4
EN:
~f
[
o
=
N

b
o
il
ot
b
o
i
=)
by
o
i
w
b
o
o
=]
b
o
o
ra
b
o
il
ot
b
o
i
,_.
by
o
i
-
b
o
o
o

=
S
>
By
~E
~
~
N
o

In Keras, 2D convolutional layers take 3D tensors with dimensions (height, width, channels)
as input. Since our images are grayscale, the input data has only a single channel,. We reshape the
training data into 3D tensors, and convert the 8-bit integer values to floats.

[4]: x_train = x_train.reshape((60000, 28, 28, 1))
X_test = x_test.reshape((10000, 28, 28, 1))

X_train, x_test = x_train / 255.0, x_test / 255.0

2 Building a CNN using the Keras API

The Sequential model allows us to build up our neural network’s architecture by chaining together
layers. This is a good place to get started with Keras, and covers the majority of real-world use

[5]:

[6]:

cases.
model = Sequential()

We first use a series of convolution and pooling layers to extract features from the images. Let’s
add one of each to the model.
convl = Conv2D(filters=32, kernel_size=[5, 5], padding='same',,
—activation='relu', input_shape=(28, 28, 1))
pooll = MaxPooling2D(pool_size=[2, 2])
model .add(convil)
model . add (pooll)

We can inspect the architecture of our model.

: model . summary ()

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 28, 28, 32) 832
max_pooling2d (MaxPooling2D) (None, 14, 14, 32) 0

Total params: 832
Trainable params: 832
Non-trainable params: O

The output of every conv2d and max_pooling2d layer is a 3D tensor of shape (height, width,
channels). By applying pooling layers between convolutional layers, we can reduce the width
and height as we go deeper in the network. Since smaller images are computationally cheaper to
process, we can afford to use more output channels in subsequent convolutional layers. Let’s add
another convolution with more output channels, along with another pooling layer.

conv2 = Conv2D(filters=64, kernel_size=[5, 5], padding='same',,
—activation='relu')

pool2 = MaxPooling2D(pool_size=[2, 2])

model .add (conv2)

model . add (pool2)

: model . summary ()

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 28, 28, 32) 832
max_pooling2d (MaxPooling2D) (None, 14, 14, 32) 0

[10]:

[11]:

[12]:

conv2d_1 (Conv2D) (None, 14, 14, 64) 51264

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 64) 0

Total params: 52,096
Trainable params: 52,096
Non-trainable params: O

To use the output from the convolutional layers to perform the classification, we feed the out-
put into one or more dense layers. We first flatten the output to create a 1D input layer, then add
dense layers on top. MNIST has ten classes, the digits 0-9, so we use a final dense layer with ten
outputs and a softmax activation to perform the classification.

flat = Flatten()

densel = Dense(units=64, activation='relu')
dense2 = Dense(units=10, activation='softmax')
model.add (flat)

model .add (densel)

model .add (dense?2)

model . summary ()

Model: "sequential"

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 28, 28, 32) 832 N
max_pooling2d (MaxPooling2D) (Nome, 14, 14, 32) o
conv2d_1 (Conv2D) (lNome, 14, 14, 64) 51264
max_pooling2d_1 (MaxPooling2 (Nome, 7, 7, 64) o
flatten (Flatten) (Nome, 3136) o
dense (Dense) (Nome, 64) 200768
dense_1 (Demnse) (Nome, 100 650

Total params: 253,514
Trainable params: 253,514
Non-trainable params: O

Finally, we need to specify the training strategy.

model . compile(optimizer="'adam',
loss="'sparse_categorical_crossentropy',

metrics=['accuracy'])

Here’s a helper function to create a new instance of the model.
[13]: def get_new_model():
clear_session() # Free up memory
model = Sequential()
model .add (Conv2D(filters=32, kernel_size=[5, 5], padding='same',
—activation='relu', input_shape=(28, 28, 1)))
model . add (MaxPooling2D(pool_size=[2, 2]))
model .add(Conv2D(filters=64, kernel_size=[5, 5], padding='same',,
—activation='relu'))
model.add (MaxPooling2D(pool_size=[2, 2]))
model .add (Flatten())
model . add (Dense(units=64, activation='relu'))
model .add (Dense(units=10, activation='softmax'))
model . compile(optimizer="'adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model

Let’s look at the final architecture of out model.
[14]: model.summary()

Model: "sequential"

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 28, 28, 32) 832 N
max_pooling2d (MaxPooling2D) (Nome, 14, 14, 32) o
conved_1 (Conv2D) (Nome, 14, 14, 64) 51264
max_pooling2d_1 (MaxPooling2 (Nome, 7, 7, 64) o
flatten (Flatten) (Nome, 3136) o
dense (Demse) (Nome, 64) 200768
dense_i (Dense) (Nome, 10) 650

Total params: 253,514
Trainable params: 253,514
Non-trainable params: O

3 Training and evaluating the model

Finally, we can train our model. For each training epoch, TensorFlow reports training progress
and accuracy during the training process.

[15]: model.fit(x_train, y_train, epochs=1)

60000/60000 [] - 30s 504us/sample - loss: 0.1201 -
accuracy: 0.9625

[15]: <tensorflow.python.keras.callbacks.History at 0x7£f0434064f60>

[16]: model.evaluate(x_test, y_test)

10000/10000 [=] - 1s 13bus/sample - loss: 0.0410 -
accuracy: 0.9867

[16]: [0.04095309815197252, 0.9867]

We can continue training this model for additional epochs if needed.
[17]: model.fit(x_train, y_train, epochs=2)

Epoch 1/2

60000/60000 [=] - 31s 509us/sample - loss: 0.0399 -
accuracy: 0.9875

Epoch 2/2

60000/60000 [] - 31s 523us/sample - loss: 0.0280 -

accuracy: 0.9908
[17]: <tensorflow.python.keras.callbacks.History at 0x7£04358e1710>

[18]: model.evaluate(x_test, y_test)

10000/10000 [=] - 1s 139us/sample - loss: 0.0438 -
accuracy: 0.9856

[18]: [0.04382402242935495, 0.9856]

4 Batch training

We can use TensorFlow datasets to shuffle our data and control how it is split into batches for
training.
[19]: BATCH_SIZE = 64
AUTOTUNE = experimental.AUTOTUNE
BUFFER_SIZE = len(y_train)

ds = Dataset.from_tensor_slices((x_train, y_train))

ds = ds.shuffle(buffer_size=len(y_train))
ds = ds.repeat()

ds = ds.batch(BATCH_SIZE)

ds = ds.prefetch(buffer_size=AUTOTUNE)

We set the buffer size equal to the size of the data set so that the entire data set is fully shuffled.
Using a smaller batch size reduces memory requirements but results in worse randomisation.
The bulffer is filled before any items are taken from it, so a large buffer can cause a delay when
beginning the dataset.

[21]: model = get_new_model()

Let’s see how the model improves as more training data are used. Here we train for 20 epochs.
At each step of the epoch, the next batch of training data is used to further train the model. Train-
ing set accuracy and training loss is reported at the end of each epoch.

[22]: model.fit(ds, epochs=20, steps_per_epoch=10)

Epoch 1/20

10/10 [] - 1s 94ms/step - loss: 2.0608 - accuracy:
0.3453

Epoch 2/20

10/10 [= ===] - Os 34ms/step - loss: 1.0828 - accuracy:
0.7266

Epoch 3/20

10/10 [= ===] - Os 32ms/step - loss: 0.6933 - accuracy:
0.7734

Epoch 4/20

10/10 [] - Os 33ms/step - loss: 0.4053 - accuracy:
0.8703

Epoch 5/20

10/10 [=] - Os 32ms/step - loss: 0.3661 - accuracy:
0.8828

Epoch 6/20

10/10 [=] - Os 35ms/step - loss: 0.3572 - accuracy:
0.8938

Epoch 7/20

10/10 [] - Os 37ms/step - loss: 0.3276 - accuracy:
0.8953

Epoch 8/20

10/10 [=] - Os 33ms/step - loss: 0.2763 - accuracy:
0.9203

Epoch 9/20

10/10 [] - Os 33ms/step - loss: 0.2268 - accuracy:
0.9328

Epoch 10/20

10/10 [] - Os 34ms/step - loss: 0.2412 - accuracy:
0.9187

Epoch 11/20

10/10 [=] - Os 33ms/step - loss: 0.1481 - accuracy:

0.9531

Epoch 12/20

10/10 [] - 0s 32ms/step - loss: 0.1906 - accuracy:
0.9500

Epoch 13/20

10/10 [=] - Os 33ms/step - loss: 0.1465 - accuracy:
0.9578

Epoch 14/20

10/10 [] - Os 32ms/step - loss: 0.1249 - accuracy:
0.9563

Epoch 15/20

10/10 [================== ===] - Os 32ms/step - loss: 0.1628 - accuracy:
0.9563

Epoch 16/20

10/10 [=] - Os 36ms/step - loss: 0.1373 - accuracy:
0.9500

Epoch 17/20

10/10 [] - Os 33ms/step - loss: 0.1606 - accuracy:
0.9547

Epoch 18/20

10/10 [= ===] - Os 32ms/step - loss: 0.1348 - accuracy:
0.9563

Epoch 19/20

10/10 [= ===] - Os 32ms/step - loss: 0.1243 - accuracy:
0.9609

Epoch 20/20

10/10 [] - Os 32ms/step - loss: 0.0855 - accuracy:
0.9703

[22]: <tensorflow.python.keras.callbacks.History at 0x7£f042c150668>

Finally, let’s see how the model performs on the test set.
[23]: model.evaluate(x_test, y_test)

10000/10000 [=] - 1s 136us/sample - loss: 0.1178 -
accuracy: 0.9647

[23]: [0.11776709721330553, 0.9647]

What if we continue training for another 20 epochs?
[24]: print('Training:')
model.fit(ds, epochs=20, steps_per_epoch=10)
print('Test:"')
model .evaluate (x_test, y_test)

Training:
Epoch 1/20

10/10 [=
0.9641

Epoch 2/20
10/10 [=

0.9406
Epoch 3/20

10/10 [

0.9609
Epoch 4/20

10/10 [=
0.9672

Epoch 5/20
10/10 [=

0.9656
Epoch 6/20

10/10 [
0.9609
Epoch 7/20

10/10 [=
0.9641
Epoch 8/20

10/10 [
0.9547
Epoch 9/20

10/10 [

0.9594
Epoch 10/20
10/10 [=

0.9641
Epoch 11/20

10/10 [
0.9766
Epoch 12/20
10/10 [=

0.9688
Epoch 13/20

10/10 [=
0.9781
Epoch 14/20

10/10 [

0.9812
Epoch 15/20

10/10 [=
0.9750

Epoch 16/20
10/10 [=

0.9797
Epoch 17/20

1s

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

52ms/step

32ms/step

32ms/step

32ms/step

31ms/step

31ms/step

33ms/step

37ms/step

32ms/step

35ms/step

34ms/step

32ms/step

33ms/step

32ms/step

32ms/step

33ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0926

.1814

.1244

.0945

.1041

.1184

.0956

.1187

.1077

L1174

.0724

.1107

.0829

.0623

.0784

.0642

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

10/10 [================== ===] - Os 32ms/step - loss: 0.0955
0.9641

Epoch 18/20

10/10 [=] - Os 32ms/step - loss: 0.0985
0.9750

Epoch 19/20

10/10 [] - Os 36ms/step - loss: 0.0841
0.9766

Epoch 20/20

10/10 [= ===] - Os 32ms/step - loss: 0.0617
0.9812

Test:

10000/10000 [=== =] - 1s 136us/sample - loss: 0.0795 -

accuracy: 0.9750

accuracy:

accuracy:

accuracy:

accuracy:

[24]: [0.07947156231738627, 0.975]

We can keep training as long as we like. When all training examples have been used, the buffer
will be refilled with a random shuffling of the training data and training batches will continue to
be taken from the buffer.

[25]: print('Training:')
model.fit(ds, epochs=20, steps_per_epoch=10)
print('Test:"')
model .evaluate (x_test, y_test)

Training:

Epoch 1/20

10/10 [=] - 1s 51ms/step - loss: 0.0707 - accuracy:
0.9781

Epoch 2/20

10/10 [] - Os 33ms/step - loss: 0.1151 - accuracy:
0.9656

Epoch 3/20

10/10 [] - Os 34ms/step - loss: 0.0737 - accuracy:
0.9766

Epoch 4/20

10/10 [=] - Os 32ms/step - loss: 0.0700 - accuracy:
0.9766

Epoch 5/20

10/10 [] - Os 32ms/step - loss: 0.0588 - accuracy:
0.9812

Epoch 6/20

10/10 [= ===] - Os 32ms/step - loss: 0.0954 - accuracy:
0.9719

Epoch 7/20

10/10 [= ===] - Os 32ms/step - loss: 0.0616 - accuracy:
0.9828

Epoch 8/20

10

[25]:
[I:

10/10 [=
0.9812

Epoch 9/20
10/10 [=

0.9766
Epoch 10/20

10/10 [

0.9781
Epoch 11/20

10/10 [=
0.9891

Epoch 12/20
10/10 [=

0.9734
Epoch 13/20

10/10 [
0.9844
Epoch 14/20

10/10 [=
0.9859
Epoch 15/20

10/10 [
0.9844
Epoch 16/20

10/10 [

0.9891
Epoch 17/20
10/10 [=

0.9750
Epoch 18/20

10/10 [
0.9812
Epoch 19/20
10/10 [=

0.9766
Epoch 20/20

10/10 [=
0.9750
Test:

10000/10000 [
accuracy: 0.9727

[0.08643419327465818, 0.9727]

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

Os

11

32ms/step

32ms/step

34ms/step

33ms/step

31ms/step

32ms/step

32ms/step

32ms/step

32ms/step

33ms/step

32ms/step

34ms/step

32ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0661

.0620

.0645

.0441

.0890

.0611

.0380

.0466

.0365

.0763

L0772

.0830

.0546

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

] - 1s 141lus/sample - loss: 0.0864 -

	Image classification on the MNIST data set using convolutional neural networks
	Building a CNN using the Keras API
	Training and evaluating the model
	Batch training

