
Statistical Machine Learning

Pier Francesco Palamara
Department of Statistics

University of Oxford

Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML19_BDI.html

http://www.stats.ox.ac.uk/~palamara/SML19_BDI.html

Naïve Bayes

Naïve Bayes

Naïve Bayes Naïve Bayes

Naïve Bayes: overview

Naïve Bayes: another plug-in classifier with a simple generative model -
it assumes all measured variables/features are independent given the
label.
Easy to mix and match different types of features, handle missing data.
Often used with categorical data, e.g. text document classification.

A basic standard model for text classification consists of considering a
pre-specified dictionary of p words and summarizing each document i by a
binary vector xi (“bag-of-words”):

x
(j)
i =

{
1 if word j is present in document
0 otherwise.

where the presence of the word j is the j-th feature/dimension.

Naïve Bayes Naïve Bayes

Toy Example

Predict voter preference in US elections

Voted in Annual State Candidate
2012? Income Choice

Y 50K OK Clinton
N 173K CA Clinton
Y 80K NJ Trump
Y 150K WA Clinton
N 25K WV Johnson
Y 85K IL Clinton
...

...
...

...
Y 1050K NY Trump
N 35K CA Trump
N 100K NY ?

Naïve Bayes Naïve Bayes

Naïve Bayes Classifier (NBC)

In order to fit a generative model, we’ll express the joint distribution as
p(x, y | θ,π) = p(y | π) · p(x | y,θ)

To model p(y | π), we’ll use parameters πc such that
∑

c πc = 1
p(y = c | π) = πc

For class-conditional densities, for class c = 1, . . . , C, we will have a
model: p(x | y = c,θc)

We assume that the features are conditionally independent given the
class label

p(x | y = c,θc) =
D∏

j=1
p(xj | y = c,θjc)

Clearly, the independence assumption is “naïve” and never satisfied. But
model fitting becomes very very easy.
Although the generative model is clearly inadequate, it actually works
quite well. Goal is predicting class, not modelling the data!

Naïve Bayes Naïve Bayes

Naïve Bayes Classifier (NBC)

In our example,

p(y = clinton | π) = πclinton

p(y = trump | π) = πtrump

p(y = johnson | π) = πjohnson

Given that a voter supports Trump

p(x | y = trump,θtrump)

models the distribution over x given y = trump and θtrump

Similarly, we have p(x | y = clinton,θclinton) and p(x | y = johnson,θjohnson)

We need to pick “model” for p(x | y = c,θc)

Estimate the parameters πc, θc for c = 1, . . . , C

Naïve Bayes Model

Naïve Bayes Classifier (NBC)

Real-Valued Features
xj is real-valued annual income
Example: Use a Gaussian model, so θjc = (µjc, σ

2
jc)

Can use other distributions, age is probably not Gaussian!

Categorical Features
xj is categorical with values in {1, . . . ,K}
Use the multinoulli distribution, i.e. xj = i with probability µjc,i

K∑
i=1

µjc,i = 1

The special case when xj ∈ {0, 1}, use a single parameter θjc ∈ [0, 1]

Naïve Bayes Model

Naïve Bayes Classifier (NBC)

Assume that all the features are binary, i.e. every xj ∈ {0, 1}
(In this case, the log-discriminant function of each class assumes the
form ac + b>c x for class c. Verify this.)
If we have C classes, overall we have only O(CD) parameters, θjc for
each j = 1, . . . , D and c = 1, . . . , C

Without the conditional independence assumption
We have to assign a probability for each of the 2D combination
Thus, we have O(C · 2D) parameters!
The ‘naïve’ assumption breaks the curse of dimensionality and avoids
overfitting!

Naïve Bayes Model

Maximum Likelihood for the NBC

Let us suppose we have data 〈(xi, yi)〉Ni=1 i.i.d. from some joint
distribution p(x, y)
The probability for a single datapoint is given by:

p(xi, yi|θ,π) = p(yi|π) · p(xi|θ, yi) =
C∏

c=1
πI(yi=c)

c ·
C∏

c=1

D∏
j=1

p(xij |θjc)I(yi=c)

Let Nc be the number of datapoints with yi = c, so that
∑C

c=1 Nc = N

We write the log-likelihood of the data, assuming points are i.i.d.:

log p(D | θ,π) =
C∑

c=1
Nc log πc +

C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc)

The log-likelihood is easily separated into sums involving different
parameters!

Naïve Bayes Model

Maximum Likelihood for the NBC

We have the log-likelihood for the NBC

log p(D | θ,π) =
C∑

c=1
Nc log πc +

C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc)

We can use maximum likelihood to estimate the parameters (we have
done this before). For instance, let’s estimate π. We have the following
optimization problem:

maximize
C∑

c=1
Nc log πc

subject to :
C∑

c=1
πc = 1

This constrained optimization problem can be solved using Lagrange
multipliers

Λ(π, λ) =
C∑

c=1
Nc log πc + λ

(
C∑

c=1
πc − 1

)

Naïve Bayes Model

Maximum Likelihood for the NBC
We can write the Lagrangean form:

Λ(π, λ) =
C∑

c=1
Nc log πc + λ

(
C∑

c=1
πc − 1

)
We can write the partial derivatives and set them to 0:

∂Λ(π, λ)
∂πc

= Nc

πc
+ λ = 0; ∂Λ(π, λ)

∂λ
=

C∑
c=1

πc − 1 = 0

The solution is obtained by setting
Nc

πc
+ λ = 0 → πc = −Nc

λ

As well as using the second condition,
C∑

c=1
πc − 1 =

(
C∑

c=1
−Nc

λ

)
− 1 = 0 → λ = −

C∑
c=1

Nc = −N

Thus, we get the estimates,
πc = Nc

N

Naïve Bayes Model

Maximum Likelihood for the NBC

We have the log-likelihood for the NBC

log p(D | θ,π) =
C∑

c=1
Nc log πc +

C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc)

We obtained the estimates, πc = Nc

N

We can estimate θjc by taking a similar approach

To estimate θjc we only need to use the jth feature of examples with
yi = c

Estimates depend on the model, e.g. Gaussian, Bernoulli, Multinoulli, etc.
Fitting NBC is very very fast!

Naïve Bayes Model

NBC: Handling Missing Data

Let’s recall our example about trying to predict voter preferences

Voted in Annual State Candidate
2012? Income Choice

Y 50K OK Clinton
N 173K CA Clinton
Y 80K NJ Trump
Y 150K WA Clinton
N 25K WV Johnson
Y 85K IL Clinton
...

...
...

...
Y 1050K NY Trump
N 35K CA Trump

? 100K NY ?

Suppose a voter does not reveal whether or not they voted in 2012

For now, let’s assume we had no missing entries during training

Naïve Bayes Model

NBC: Handling Missing Data
The prediction rule in a generative model is

p(y = c | xnew,θ) = p(y = c | θ) · p(xnew | y = c,θ)∑C
c′=1 p(y = c′|θ)p(xnew | y = c′,θ)

Let us suppose our datapoint is xnew = (?, x2, . . . , xD), e.g. (?,100K,NY)

p(y = c | xnew,θ) =
πc ·

∏D
j=1 p(xj | y = c,θcj)∑C

c′=1 p(y = c′|θ)
∏D

j=1 p(xj | y = c′,θjc)

Since x1 is missing, we can marginalize it out,

p(y = c | xnew,θ) =
πc ·

∏D
j=2 p(xj | y = c,θcj)∑C

c′=1 p(y = c′|θ)
∏D

j=2 p(xj | y = c′,θjc)

This can be done for other generative models, but marginalization requires
summation/integration

Naïve Bayes Model

NBC: Handling Missing Data

For Naïve Bayes Classifiers, training with missing entries is quite easy

Voted in Annual State Candidate
2012? Income Choice

? 50K OK Clinton
N 173K CA Clinton
? 80K NJ Trump
Y 150K WA Clinton
N 25K WV Johnson
Y 85K ? Clinton
...

...
...

...
Y 1050K NY Trump
N 35K CA Trump
? 100K NY ?

Let’s say for Clinton voters, 103 had voted in 2012, 54 had not, and 25, didn’t
answer

You can simply set θ = 103
157 as the probability that a voter had voted in 2012,

conditioned on being a Clinton supporter

Naïve Bayes Model

Naïve Bayes vs Logistic regression

“On Discriminative vs. Generative Classifiers: A comparison of logistic
regression and naive Bayes” by A. Ng and M. Jordan, NIPS 2001. m
represents training dataset size.

Naïve Bayes Model

Naïve Bayes vs Logistic regression

For infinite data
If generative model is correct (independence assumption holds)

ErrorLR,∞ ∼ ErrorNB,∞

If generative model is inaccurate (independence assumption does not hold)

ErrorLR,∞ < ErrorNB,∞

For finite data (e.g. n points, d features), NB will require less training to
converge to its (possibly asymptotically higher) error

ErrorLR,n ≤ ErrorLR,∞ +O

(√
d
n

)
ErrorNB,n ≤ ErrorNB,∞ +O

(√
log d

n

)

Naïve Bayes Model

Preventing numerical underflow (not examinable)

Generative classifiers often require multiplying a large number of small
quantities, leading to numerical underflow.

log p(y = c|x) = log
[

p(y = c)p(x|y = c)∑
c′ p(y = c′)p(x|y = c′)

]
= bc − log

[
C∑

c′=1
ebc′

]
bc , log p(x|y = c) + log p(y = c)

The terms ebc′ are extremely small (e.g. in Naive Bayes), but we cannot
sum in the log domain to evaluate log

∑
c′ ebc′ .

Idea: factor out the largest term1. For example:

log(e−120 + e−121) = log(e−120(e0 + e−1)) = log(e0 + e−1)− 120.

In general, having defined B = maxc bc:

log
∑

c

ebc = log
[(∑

c

ebc−B

)
eB

]
=
[

log
(∑

c

ebc−B

)]
+B

1Also see Murphy 3.5.3.

Naïve Bayes Model

Naïve Bayes code example: Titanic data I

Predicting Titatinc survival from passenger data using Naïve Bayes2:

#Install the package
install.packages("e1071")
#Loading the library
library(e1071)
?naiveBayes #The documentation also uses Titanic data
#Next load the Titanic dataset
data("Titanic")
#Save into a data frame and view it
Titanic_df=as.data.frame(Titanic)
#Creating data from table
#This will repeat each combination equal to the frequency
repeating_sequence=rep.int(seq_len(nrow(Titanic_df)),

Titanic_df$Freq)

#Create the dataset by row repetition created
Titanic_dataset=Titanic_df[repeating_sequence,]

Naïve Bayes Model

Naïve Bayes code example: Titanic data II

#We no longer need the frequency, drop the feature
Titanic_dataset$Freq=NULL

#Fitting the Naive Bayes model
Naive_Bayes_Model=naiveBayes(Survived ~.,

data=Titanic_dataset)
#What does the model say? Print the model summary
Naive_Bayes_Model

#Prediction on the dataset
NB_Predictions=predict(Naive_Bayes_Model,Titanic_dataset)
#Confusion matrix to check accuracy
table(NB_Predictions,Titanic_dataset$Survived)

2code from
https://r-posts.com/understanding-naive-bayes-classifier-using-r/

https://r-posts.com/understanding-naive-bayes-classifier-using-r/

K-NN

K-Nearest Neighbors

K-NN

Nearest neighbor (NN) classification/regression

Training
Store the entire training set.

Classification/regression rule

y = f(x) = ynn(x)

where nn(x) ∈ [N] = {1, 2, · · · ,N}, i.e., the index to one of the training
instances

nn(x) = argmin
n∈[N]

‖x− xn‖2
2 = argmin

n∈[N]

D∑
d=1

(xd − xnd)2

Inductive bias
Label of point is similar to the label of nearby points.

K-NN

Labeling an unknown flower type
Ex: Iris data (click here for all data)
Using two features: petal width and sepal length

se
pa

l l
en

gt
h

sepal length

se
pa

l w
id

th
pe

ta
l l

en
gt

h
pe

ta
l w

id
th

sepal width petal length petal width

?

Closer to red cluster: so labeling it as setosa

http://en.wikipedia.org/wiki/Iris_flower_data_set

K-NN

Visual example

In this 2-dimensional example, the nearest point to x is a red training instance,
thus, x will be labeled as red.

x1

x2

(a)

K-NN

How to measure nearness with other distances?
Previously, we use the Euclidean distance

nn(x) = argmin
n∈[N]

‖x− xn‖2
2

We can also use alternative distances

‖x− xn‖p =
(∑

d

|xd − xnd|p
)1/p

for p ≥ 1.
E.g., the L1 distance for p = 1 (i.e., city block
distance, or Manhattan distance)

nn(x) = argmin
n∈[N]

‖x− xn‖1

= argmin
n∈[N]

D∑
d=1
|xd − xnd|

Figure: Green line is Euclidean
distance. Red, Blue, and Yellow
lines are L1 distance

K-NN

Decision boundary

For every point in the space, we can determine its label using the NN
classification rule. This gives rise to a decision boundary that partitions the
space into different regions.

x1

x2

(b)

K-NN

Regression/classification with K neighbors?
Classification rule

Every neighbor votes: suppose yn (the true label) for xn is c, then
vote for c is 1
vote for c′ 6= c is 0

We use the indicator function I(yn == c) to represent.
Aggregate everyone’s vote

vc =
∑

n∈knn(x)

I(yn == c), ∀ c ∈ [C]

Label with the majority

y = f(x) = argmax
c∈[C]

vc

Regression rule
Average across nearest neighbors:

y = f(x) =
∑

n∈knn(x) yn

K

K-NN

Example

K=1, Label: red

x1

x2

(a)

K=3, Label: red

x1

x2

(a)

K=5, Label: blue

x1

x2

(a)

K-NN

How to choose an optimal K?

x6

x7

K = 1

0 1 2
0

1

2

x6

x7

K = 3

0 1 2
0

1

2

x6

x7

K = 31

0 1 2
0

1

2

When K increases, the decision boundary becomes smooth.

K-NN

Hypeparameters in K-NN

Two practical issues about K-NN
Choosing key parameter K, the number of nearest neighbors

May be chosen using cross-valitation.
How does K affect bias/variance?

Choosing the right distance measure (e.g. Euclidean distance).
Those are not specified by the algorithm itself — resolving them
requires empirical studies and are task/dataset-specific.

K-NN

Preprocess data

Assumes all features are equally important!
Distances depend on units of the features.

Normalize data to have zero mean and unit standard deviation in each
dimension

Compute the means and standard deviations in each feature

x̄d = 1
N
∑

n

xnd, s2
d = 1

N − 1
∑

n

(xnd − x̄d)2

Scale the feature accordingly

xnd ←
xnd − x̄d

sd

Many other ways of normalizing data — you would need/want to try
different ones and pick them using (cross)validation

K-NN

Summary
Advantages of K-NN

Simple and easy to implement – just computing distance
Theoretically, has strong guarantees of “doing the right thing”

How well does K-NN do?

Theorem (Cover-Hart Inequality)

For the 1-NN rule f 1NN for binary classification, we have (see problem sheet),

R(f∗) ≤ R(f 1NN) ≤ 2R(f∗)(1−R(f∗)) ≤ 2R(f∗)

The expected risk is at worst twice that of the Bayes optimal classifier.

Disadvantages of K-NN
Computationally intensive: O(ND) for labeling a data point
Need a lot of data for large D. May want to reduce dimensions first.
Not useful for understanding relationships between attributes.
We need to “carry” the training data around (nonparametric approach).
Choosing the right distance measure and K can be involved.

K-NN

k-Nearest Neighbour Demo – R Code I

library(MASS)
load crabs data
data(crabs)
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)
project to first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- as.matrix(cb.ldp$x[,1:2])
y <- as.numeric(crabs[,2])-1
x <- x + rnorm(dim(x)[1]*dim(x)[2])*1.5
eqscplot(x,pch=2*y+1,col=1)
n <- length(y)

#get training indices
i <- sample(rep(c(TRUE,FALSE),each=n/2),n,replace=FALSE)

kNN <- function(k,x,y,i,gridsize=100) {

p <- dim(x)[2]

train <- (1:n)[i]
test <- (1:n)[!i]
trainx <- x[train,]
trainy <- y[train]
testx <- x[test,]
testy <- y[test]

trainn <- dim(trainx)[1]
testn <- dim(testx)[1]

gridx1 <- seq(min(x[,1]),max(x[,2]),length=gridsize)
gridx2 <- seq(min(x[,2]),max(x[,2]),length=gridsize)
gridx <- as.matrix(expand.grid(gridx1,gridx2))
gridn <- dim(gridx)[1]

K-NN

k-Nearest Neighbour Demo – R Code II

calculate distances
trainxx <- t((trainx*trainx) %*% matrix(1,p,1))
testxx <- (testx*testx) %*% matrix(1,p,1)
gridxx <- (gridx*gridx) %*% matrix(1,p,1)
testtraindist <- matrix(1,testn,1) %*% trainxx +
testxx %*% matrix(1,1,trainn) -
2*(testx %*% t(trainx))

gridtraindist <- matrix(1,gridn,1) %*% trainxx +
gridxx %*% matrix(1,1,trainn) -
2*(gridx %*% t(trainx))

predict
testp <- numeric(testn)
gridp <- numeric(gridn)
for (j in 1:testn) {

nearestneighbors <- order(testtraindist[j,])[1:k]
testp[j] <- mean(trainy[nearestneighbors])

}
for (j in 1:gridn) {

nearestneighbors <- order(gridtraindist[j,])[1:k]
gridp[j] <- mean(trainy[nearestneighbors])

}
predy <- as.numeric(testp>.5)

plot(trainx[,1],trainx[,2],pch=trainy*3+1,col=4,lwd=.5)
points(testx[,1],testx[,2],pch=testy*3+1,col=2+(predy==testy),lwd=3)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),

levels=seq(.1,.9,.1),lwd=.5,add=TRUE)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),

levels=c(.5),lwd=2,add=TRUE)
}

Evaluating performance

Evaluating performance

Evaluating performance Motivating example

Example: Spam Dataset
A data set collected at Hewlett-Packard Labs, that classifies 4601 e-mails as
spam or non-spam. 57 variables indicate the frequency of certain words and
characters.
> library(kernlab)
> data(spam)
> dim(spam)
[1] 4601 58
> spam[1:2,]
make address all num3d our over remove internet order mail receive will

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 0 0.00 0.00 0.64
2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 0 0.94 0.21 0.79
people report addresses free business email you credit your font num000

1 0.00 0.00 0.00 0.32 0.00 1.29 1.93 0 0.96 0 0.00
2 0.65 0.21 0.14 0.14 0.07 0.28 3.47 0 1.59 0 0.43
money hp hpl george num650 lab labs telnet num857 data num415 num85

1 0.00 0 0 0 0 0 0 0 0 0 0 0
2 0.43 0 0 0 0 0 0 0 0 0 0 0
technology num1999 parts pm direct cs meeting original project re edu table

1 0 0.00 0 0 0 0 0 0 0 0 0 0
2 0 0.07 0 0 0 0 0 0 0 0 0 0
conference charSemicolon charRoundbracket charSquarebracket charExclamation

1 0 0 0.000 0 0.778
2 0 0 0.132 0 0.372
charDollar charHash capitalAve capitalLong capitalTotal type

1 0.00 0.000 3.756 61 278 spam
2 0.18 0.048 5.114 101 1028 spam
> str(spam$type)
Factor w/ 2 levels "nonspam","spam": 2 2 2 2 2 2 2 2 2 2 ...

Evaluating performance Motivating example

Spam Dataset

Use logistic regression to predict spam/not spam.

let Y=0 be non-spam and Y=1 be spam.
Y <- as.numeric(spam$type)-1
X <- spam[,-ncol(spam)]

gl <- glm(Y ~ ., data=X,family=binomial)

Evaluating performance Motivating example

Spam Dataset
How good is the classification?

> table(spam$type)
nonspam spam

2788 1813
> proba <- predict(gl,type="response")
> predicted_spam <- as.numeric(proba>0.5)
> table(predicted_spam,Y)

Y
predicted_spam 0 1

0 2666 194
1 122 1619

> predicted_spam <- as.numeric(proba>0.95)
> table(predicted_spam,Y)

Y
predicted_spam 0 1

0 2766 810
1 22 1003

Advantage of a probabilistic approach: predictive probabilities give
interpretable confidence to predictions. Soft classification rules for other
classifiers, e.g., support vector machines can be poorly calibrated if we are to
interpret them as probabilities.

Evaluating performance Motivating example

Spam Dataset

We are viewing the prediction error on the training set. Not necessarily
representative of the generalization ability.
Separate in training and test set 50/50.
n <- length(Y)
train <- sample(n, round(n/2))
test<-(1:n)[-train]

Fit only on training set and predict on both training and test set.
gl <- glm(Y[train] ~ ., data=X[train,],family=binomial)

proba_train <- predict(gl,newdata=X[train,],type="response")
proba_test <- predict(gl,newdata=X[test,],type="response")

Evaluating performance Motivating example

Spam Dataset

Results for training and test set:

> predicted_spam_lr_train <- as.numeric(proba_train > 0.95)
> predicted_spam_lr_test <- as.numeric(proba_test > 0.95)

> table(predicted_spam_lr_train, Y[train])
predicted_spam_lr_train 0 1

0 1401 358
1 8 533

> table(predicted_spam_lr_test, Y[test])
predicted_spam_lr_test 0 1

0 1357 392
1 22 530

Note: testing performance is worse than training performance.

Evaluating performance Motivating example

Spam Dataset
Compare with LDA.
library(MASS)
lda_res <- lda(x=X[train,],grouping=Y[train])

proba_lda_test <- predict(lda_res,newdata=X[test,])$posterior[,2]
predicted_spam_lda_test <- as.numeric(proba_lda_test > 0.95)

> table(predicted_spam_lr_test, Y[test])
predicted_spam_lr_test 0 1

0 1357 392
1 22 530

> table(predicted_spam_lda_test, Y[test])
predicted_spam_lda_test 0 1

0 1361 533
1 18 389

LDA has a larger number of false positives but a smaller number of false
negatives.

Above results are for a single threshold (0.95) - how to keep track of what
happens across multiple thresholds?
More generally, how to compare the classifiers fairly when the number of
positive and negative examples is very different?

Evaluating performance Performance Measures and ROC

Performance Measures

Confusion matrix:
True state 0 1

Prediction 0 # true negative # false negative
1 # false positive # true positive

Accuracy: (T P + T N)/(T P + T N + F P + F N).
Error rate: (F P + F N)/(T P + T N + F P + F N).
Sensitivity (true positive rate): T P/(T P + F N).
Specificity (true negative rate): T N/(T N + F P).
False positive rate (1-Specificity): F P/(T N + F P).
Precision: T P/(T P + F P).
Recall (same as Sensitivity): T P/(T P + F N).
F1: harmonic mean of precision and recall.

As we vary the prediction
threshold c from 0 to 1:

Specificity varies from 0 to 1.
Sensitivity goes from 1 to 0.

class 1class 0

minimize error
high

specificity
high

sensitivity

Evaluating performance Performance Measures and ROC

ROC Curves

ROC curve plots sensitivity versus specificity as threshold varies.

cvec <- seq(0.001,0.999,length=1000)
specif <- numeric(length(cvec))
sensit <- numeric(length(cvec))
speciflr <- numeric(length(cvec))
sensitlr <- numeric(length(cvec))

for (cc in 1:length(cvec)){
sensit[cc] <- sum(proba_lda_test> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
specif[cc] <- sum(proba_lda_test<=cvec[cc] & Y[test]==0)/sum(Y[test]==0)
sensitlr[cc] <- sum(proba_test> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
speciflr[cc] <- sum(proba_test<=cvec[cc] & Y[test]==0)/sum(Y[test]==0)

}
plot(specif,sensit,xlab="Specificity",ylab="Sensitivity",type="l",lwd=2)
lines(speciflr,sensitlr,col=’red’,lwd=2)

Evaluating performance Performance Measures and ROC

ROC (Receiver Operating Characteristic) Curves

ROC curve: plot TPR (sensitivity) vs FPR (1-specificity). LDA = blue; LR = red.

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LR beats LDA on this dataset in terms of the area under ROC (AUC):
probability that the classifier will score a randomly drawn positive
example higher than a randomly drawn negative example. Also called
Wilcoxon-Mann-Whitney statistic.

Evaluating performance Performance Measures and ROC

ROC Curves

R library ROCR contains various performance measures, including AUC.

> library(ROCR)
> pred_lr <- prediction(proba_test,Y[test])
> perf <- performance(pred_lr, measure = "tpr", x.measure = "fpr")
> plot(perf,col=’red’,lwd=2)
> pred_lda <- prediction(proba_lda_test,Y[test])
> perf <- performance(pred_lda, measure = "tpr", x.measure = "fpr")
> plot(perf,col=’blue’,add=TRUE,lwd=2)
> abline(a=0,b=1)
> auc_lda <- as.numeric(performance(pred_lda,"auc")@y.values)
> auc_lda
[1] 0.9472542
> auc_lr <- as.numeric(performance(pred_lr,"auc")@y.values)
> auc_lr
[1] 0.9673279

	Naïve Bayes
	Naïve Bayes

	Naïve Bayes Model
	K-NN
	Evaluating performance
	Motivating example
	Performance Measures and ROC

