
Statistical Machine Learning

Pier Francesco Palamara
Department of Statistics

University of Oxford

Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML19_BDI.html

http://www.stats.ox.ac.uk/~palamara/SML19_BDI.html

Logistic regression

Logistic regression

Logistic regression

Review

In LDA and QDA, we estimate p(x|y), but for classification we are mainly
interested in p(y|x)
Why not estimate that directly? Logistic regression1 is a popular way of
doing this.

1Despite the name “regression”, we are using it for classification!

Logistic regression

Linearity of log-odds and logistic function

a+ b>x models the log-odds ratio:

log p(Y = +1|X = x; a, b)
p(Y = −1|X = x; a, b) = a+ b>x.

Solve explicitly for conditional class probabilities (using
p(Y = +1|X = x; a, b) + p(Y = −1|X = x; a, b) = 1):

p(Y = +1|X = x; a, b) = 1
1 + exp(−(a+ b>x)) =: s(a+ b>x)

p(Y = −1|X = x; a, b) = 1
1 + exp(+(a+ b>x)) = s(−a− b>x)

where s(z) = 1/(1 + exp(−z)) is the logistic function.

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

Logistic regression

Fitting the parameters of the hyperplane
How to learn a and b given a training data set (xi, yi)ni=1?

Consider maximizing the conditional log likelihood:

`(a, b) =
n∑
i=1

log p(yi|xi) =
n∑
i=1

log s(yi(a+ b>xi)).

Equivalent to minimizing the empirical risk associated with the log loss:

R̂log(fa,b) = 1
n

n∑
i=1
− log s(yi(a+b>xi)) = 1

n

n∑
i=1

log(1+exp(−yi(a+b>xi)))

Logistic regression

Logistic Regression

Log-loss is differentiable, but it is not possible
to find optimal a, b analytically.
For simplicity, absorb a as an entry in b by
appending ’1’ into x vector, as we did before.
Objective function:

R̂log = 1
n

n∑
i=1
− log s(yix>i b)

Logistic Function

s(−z) = 1− s(z)
∇zs(z) = s(z)s(−z)

∇z log s(z) = s(−z)
∇2
z log s(z) = −s(z)s(−z)

Differentiate wrt b:

∇bR̂log = 1
n

n∑
i=1
−s(−yix>i b)yixi

∇2
bR̂log = 1

n

n∑
i=1

s(yix>i b)s(−yix>i b)xix>i � 0.

We cannot set ∇bR̂log = 0 and solve: no closed form solution. We’ll use
numerical methods.

w

g(w) Non-convex

Any local minimum is a global minimum

Where Will We Converge?

Least Squares, Ridge Regression and
Logistic Regression are all convex!

…

…

w

f(w) Convex

w*

Multiple local minima may exist
w*w!

…

Logistic regression Gradient descent

Convexity
How to determine convexity? f(x) is convex if

f
′′
(x) ≥ 0

Examples:
f(x) = x2, f

′′
(x) = 2 > 0

How to determine convexity in this case?
Matrix of second-order derivatives (Hessian)

H =

∂2f(x)
∂x12

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xD

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xD

.
∂2f(x)
∂x1∂xD

∂2f(x)
∂x2∂xD

. . . ∂2f(x)
∂x2

D

How to determine convexity in the multivariate case?
If the Hessian is positive semi-definite H � 0 , then f is convex.
A matrix H is positive semi-definite if and only if, ∀z,

zTHz =
∑
j,k

Hj,kzjzk ≥ 0

Logistic regression Gradient descent

Logistic Regression

Hessian is positive-definite: objective function is convex and there is a
single unique global minimum.
Many different algorithms can find optimal b, e.g.:

Gradient descent:

bnew = b+ ε
1
n

n∑
i=1

s(−yix
>
i b)yixi

Stochastic gradient descent:

bnew = b+ εt
1
|I(t)|

∑
i∈I(t)

s(−yix
>
i b)yixi

where I(t) is a subset of the data at iteration t, and εt → 0 slowly
(
∑

t
εt =∞,

∑
t
ε2

t <∞).
Conjugate gradient, LBFGS and other methods from numerical analysis.
Newton-Raphson:

bnew = b− (∇2
bR̂log)−1∇bR̂log

This is also called iterative reweighted least squares.

Logistic regression Gradient descent

Iterative reweighted least squares (IRLS)

We can write gradient and Hessian in a more compact form. Define
µi = s(x>i b), and the diagonal matrix S with µi(1− µi) on its diagonal.
Also define the vector c where ci = 1(yi = +1). Then

∇bR̂log = 1
n

n∑
i=1
−s(−yix>i b)yixi

= 1
n

n∑
i=1

xi(µi − ci)

= X>(µ− c)

∇2
bR̂log = 1

n

n∑
i=1

s(yix>i b)s(−yix>i b)xix>i

= X>SX

Logistic regression Gradient descent

Iterative reweighted least squares (IRLS)
Let bt be the parameters after t “Newton steps”.
The gradient and Hessian at step t are given by:

gt = XT(µt − c) = −XT(c− µt)
Ht = XTStX

The Newton Update Rule is:

bt+1 = bt −H−1
t gt

= bt + (XTStX)−1XT(c− µt)
= (XTStX)−1XTSt(Xbt + S−1

t (c− µt))
= (XTStX)−1XTStzt

Where zt = Xbt + S−1
t (c− µt). Then bt+1 is a solution of the “weighted least

squares” problem:

minimise
N∑
i=1

St,ii(zt,i − bTxi)2

Logistic regression Gradient descent

Linearly separable data

Assume that the data is linearly separable, i.e. there is a scalar α and a vector
β such that yi(α+ β>xi) > 0, i = 1, . . . , n. Let c > 0. The empirical risk for
a = cα, b = cβ is

R̂log(fa,b) = 1
n

n∑
i=1

log(1 + exp(−cyi(α+ β>xi)))

which can be made arbitrarily close to zero as c→∞, i.e. soft classification
rule becomes ±∞ (overconfidence)→ overfitting.

Regularization provides a solution to this problem.

Logistic regression Gradient descent

Multi-class logistic regression

The multi-class/multinomial logistic regression uses the softmax function to
model the conditional class probabilities p (Y = k|X = x; θ), for K classes
k = 1, . . . ,K, i.e.,

p (Y = k|X = x; θ) =
exp

(
w>k x+ bk

)∑K
`=1 exp

(
w>` x+ b`

) .
Parameters are θ = (b,W) where W = (wkj) is a K × p matrix of weights and
b ∈ RK is a vector of bias terms.

Logistic regression Gradient descent

Multi-class logistic regression

Logistic regression Gradient descent

Crab Dataset

library(MASS)
load crabs data
data(crabs)
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)
project into first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- cb.ldp$x[,1:2]
y <- as.numeric(ct==0)
eqscplot(x,pch=2*y+1,col=y+1)

Logistic regression Gradient descent

Crab Dataset

visualize decision boundary
gx1 <- seq(-6,6,.02)
gx2 <- seq(-4,4,.02)
gx <- as.matrix(expand.grid(gx1,gx2))
gm <- length(gx1)
gn <- length(gx2)
gdf <- data.frame(LD1=gx[,1],LD2=gx[,2])

lda <- lda(x,y)
y.lda <- predict(lda,x)$class
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==y.lda))
y.lda.grid <- predict(lda,gdf)$class
contour(gx1,gx2,matrix(y.lda.grid,gm,gn),

levels=c(0.5), add=TRUE,d=FALSE,lty=2,lwd=2)

Logistic regression Gradient descent

Crab Dataset

logistic regression
xdf <- data.frame(x)
logreg <- glm(y ~ LD1 + LD2, data=xdf, family=binomial)
y.lr <- predict(logreg,type="response")
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==(y.lr>.5)))
y.lr.grid <- predict(logreg,newdata=gdf,type="response")
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),

levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,lty=3,lwd=1)
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),

levels=c(.5), add=TRUE,d=FALSE,lty=1,lwd=2)

logistic regression with quadratic interactions
logreg <- glm(y ~ (LD1 + LD2)^2, data=xdf, family=binomial)
y.lr <- predict(logreg,type="response")
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==(y.lr>.5)))
y.lr.grid <- predict(logreg,newdata=gdf,type="response")
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),

levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,lty=3,lwd=1)
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),

levels=c(.5), add=TRUE,d=FALSE,lty=1,lwd=2)

Logistic regression Gradient descent

Crab Dataset : Blue Female vs. rest

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

Comparing LDA and logistic regression.

Logistic regression Gradient descent

Crab Dataset

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

Comparing logistic regression with and without quadratic interactions.

Logistic regression Gradient descent

Logistic regression Python demo

Single-class: https://github.com/vkanade/mlmt2017/blob/
master/lecture11/Logistic%20Regression.ipynb

Multi-class: https://github.com/vkanade/mlmt2017/blob/master/
lecture11/Multiclass%20Logistic%20Regression.ipynb

https://github.com/vkanade/mlmt2017/blob/master/lecture11/Logistic%20Regression.ipynb
https://github.com/vkanade/mlmt2017/blob/master/lecture11/Logistic%20Regression.ipynb
https://github.com/vkanade/mlmt2017/blob/master/lecture11/Multiclass%20Logistic%20Regression.ipynb
https://github.com/vkanade/mlmt2017/blob/master/lecture11/Multiclass%20Logistic%20Regression.ipynb

Logistic regression Gradient descent

Generative vs. Discriminative

Generative vs. Discriminative learning Generative vs Discriminative

Generative vs Discriminative Learning

Machine learning: learn a (random) function that maps a variable X
(feature) to a variable Y (class) using a (labeled) dataset
D = {(X1, Y1) , . . . , (Xn, Yn)}.

Generative Approach: learn P (Y,X) = P (Y |X)P (X).
Discriminative Approach: learn P (Y |X).

Generative vs. Discriminative learning Generative vs Discriminative

Generative Learning

Generative Approach: Finds a probabilistic model (a joint distribution
P (Y,X)) that explicitly models the distribution of both the features and
the corresponding labels (classes).
Example techniques: LDA, QDA, Naive Bayes (coming soon), Hidden
Markov Models, etc.

Generative vs. Discriminative learning Generative vs Discriminative

Discriminative Learning

Discriminative Approach: Finds a good fit for P (Y |X) without explicitly
modeling the generative process.
Example techniques: linear regression, logistic regression, K-nearest
neighbors (coming soon), SVMs, perceptrons, etc.
Example problem: 2 classes, separate the classes.

Generative vs. Discriminative learning Generative vs Discriminative

Generative vs Discriminative Learning

Generative Approach: Finds parameters that explain all data.

θ̂ = argmax
θ

n∑
i=1

log p(xi, yi|θ)

Makes use of all the data.
Flexible framework, can incorporate many tasks (e.g. classification,
regression, semi-supervised learning, survival analysis, generating new data
samples similar to the existing dataset, etc).
Stronger modeling assumptions, which may not be realistic (Gaussianity,
independence of features).

Discriminative Approach: Finds parameters that help to predict only
relevant data.

θ̂ = argmin
θ

1
n

n∑
i=1

L(yi, fθ(xi)) or θ̂ = argmax
θ

n∑
i=1

log p(yi|xi, θ)

Weaker modeling assumptions (thus often fewer violated assumptions and
better calibration of probabilities).
Learns to perform better on the given tasks.
Less immune to overfitting.
Easier to work with preprocessed data φ(x).

Naïve Bayes

Naïve Bayes

Naïve Bayes Naïve Bayes

Naïve Bayes: overview

Naïve Bayes: another plug-in classifier with a simple generative model -
it assumes all measured variables/features are independent given the
label.
Easy to mix and match different types of features, handle missing data.
Often used with categorical data, e.g. text document classification.

A basic standard model for text classification consists of considering a
pre-specified dictionary of p words and summarizing each document i by a
binary vector xi (“bag-of-words”):

x
(j)
i =

{
1 if word j is present in document
0 otherwise.

where the presence of the word j is the j-th feature/dimension.

Naïve Bayes Naïve Bayes

Toy Example

Predict voter preference in US elections

Voted in Annual State Candidate
2012? Income Choice

Y 50K OK Clinton
N 173K CA Clinton
Y 80K NJ Trump
Y 150K WA Clinton
N 25K WV Johnson
Y 85K IL Clinton
...

...
...

...
Y 1050K NY Trump
N 35K CA Trump
N 100K NY ?

Naïve Bayes Naïve Bayes

Naïve Bayes Classifier (NBC)

In order to fit a generative model, we’ll express the joint distribution as
p(x, y | θ,π) = p(y | π) · p(x | y,θ)

To model p(y | π), we’ll use parameters πc such that
∑
c πc = 1

p(y = c | π) = πc

For class-conditional densities, for class c = 1, . . . , C, we will have a
model: p(x | y = c,θc)

We assume that the features are conditionally independent given the
class label

p(x | y = c,θc) =
D∏
j=1

p(xj | y = c,θjc)

Clearly, the independence assumption is “naïve” and never satisfied. But
model fitting becomes very very easy.
Although the generative model is clearly inadequate, it actually works
quite well. Goal is predicting class, not modelling the data!

Naïve Bayes Naïve Bayes

Naïve Bayes Classifier (NBC)

In our example,

p(y = clinton | π) = πclinton

p(y = trump | π) = πtrump

p(y = johnson | π) = πjohnson

Given that a voter supports Trump

p(x | y = trump,θtrump)

models the distribution over x given y = trump and θtrump

Similarly, we have p(x | y = clinton,θclinton) and p(x | y = johnson,θjohnson)

We need to pick “model” for p(x | y = c,θc)

Estimate the parameters πc, θc for c = 1, . . . , C

Naïve Bayes Model

Naïve Bayes Classifier (NBC)

Real-Valued Features
xj is real-valued annual income
Example: Use a Gaussian model, so θjc = (µjc, σ2

jc)
Can use other distributions, age is probably not Gaussian!

Categorical Features
xj is categorical with values in {1, . . . ,K}
Use the multinoulli distribution, i.e. xj = i with probability µjc,i

K∑
i=1

µjc,i = 1

The special case when xj ∈ {0, 1}, use a single parameter θjc ∈ [0, 1]

Naïve Bayes Model

Naïve Bayes Classifier (NBC)

Assume that all the features are binary, i.e. every xj ∈ {0, 1}
(In this case, the log-discriminant function of each class assumes the
form ac + b>c x for class c. Verify this.)
If we have C classes, overall we have only O(CD) parameters, θjc for
each j = 1, . . . , D and c = 1, . . . , C

Without the conditional independence assumption
We have to assign a probability for each of the 2D combination
Thus, we have O(C · 2D) parameters!
The ‘naïve’ assumption breaks the curse of dimensionality and avoids
overfitting!

Naïve Bayes Model

Maximum Likelihood for the NBC

Let us suppose we have data 〈(xi, yi)〉Ni=1 i.i.d. from some joint
distribution p(x, y)
The probability for a single datapoint is given by:

p(xi, yi|θ,π) = p(yi|π) · p(xi|θ, yi) =
C∏
c=1

πI(yi=c)
c ·

C∏
c=1

D∏
j=1

p(xij |θjc)I(yi=c)

Let Nc be the number of datapoints with yi = c, so that
∑C
c=1 Nc = N

We write the log-likelihood of the data, assuming points are i.i.d.:

log p(D | θ,π) =
C∑
c=1

Nc log πc +
C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc)

The log-likelihood is easily separated into sums involving different
parameters!

Naïve Bayes Model

Maximum Likelihood for the NBC

We have the log-likelihood for the NBC

log p(D | θ,π) =
C∑
c=1

Nc log πc +
C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc)

We can use maximum likelihood to estimate the parameters (we have
done this before). For instance, let’s estimate π. We have the following
optimization problem:

maximize
C∑
c=1

Nc log πc

subject to :
C∑
c=1

πc = 1

This constrained optimization problem can be solved using Lagrange
multipliers

Λ(π, λ) =
C∑
c=1

Nc log πc + λ

(
C∑
c=1

πc − 1
)

Naïve Bayes Model

Maximum Likelihood for the NBC
We can write the Lagrangean form:

Λ(π, λ) =
C∑
c=1

Nc log πc + λ

(
C∑
c=1

πc − 1
)

We can write the partial derivatives and set them to 0:

∂Λ(π, λ)
∂πc

= Nc
πc

+ λ = 0; ∂Λ(π, λ)
∂λ

=
C∑
c=1

πc − 1 = 0

The solution is obtained by setting
Nc
πc

+ λ = 0 → πc = −Nc
λ

As well as using the second condition,
C∑
c=1

πc − 1 =
(

C∑
c=1
−Nc
λ

)
− 1 = 0 → λ = −

C∑
c=1

Nc = −N

Thus, we get the estimates,
πc = Nc

N

Naïve Bayes Model

Maximum Likelihood for the NBC

We have the log-likelihood for the NBC

log p(D | θ,π) =
C∑
c=1

Nc log πc +
C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc)

We obtained the estimates, πc = Nc

N

We can estimate θjc by taking a similar approach

To estimate θjc we only need to use the jth feature of examples with
yi = c

Estimates depend on the model, e.g. Gaussian, Bernoulli, Multinoulli, etc.
Fitting NBC is very very fast!

Naïve Bayes Model

NBC: Handling Missing Data

Let’s recall our example about trying to predict voter preferences

Voted in Annual State Candidate
2012? Income Choice

Y 50K OK Clinton
N 173K CA Clinton
Y 80K NJ Trump
Y 150K WA Clinton
N 25K WV Johnson
Y 85K IL Clinton
...

...
...

...
Y 1050K NY Trump
N 35K CA Trump

? 100K NY ?

Suppose a voter does not reveal whether or not they voted in 2012

For now, let’s assume we had no missing entries during training

Naïve Bayes Model

NBC: Handling Missing Data
The prediction rule in a generative model is

p(y = c | xnew,θ) = p(y = c | θ) · p(xnew | y = c,θ)∑C
c′=1 p(y = c′|θ)p(xnew | y = c′,θ)

Let us suppose our datapoint is xnew = (?, x2, . . . , xD), e.g. (?,100K,NY)

p(y = c | xnew,θ) =
πc ·

∏D
j=1 p(xj | y = c,θcj)∑C

c′=1 p(y = c′|θ)
∏D
j=1 p(xj | y = c′,θjc)

Since x1 is missing, we can marginalize it out,

p(y = c | xnew,θ) =
πc ·

∏D
j=2 p(xj | y = c,θcj)∑C

c′=1 p(y = c′|θ)
∏D
j=2 p(xj | y = c′,θjc)

This can be done for other generative models, but marginalization requires
summation/integration

Naïve Bayes Model

NBC: Handling Missing Data

For Naïve Bayes Classifiers, training with missing entries is quite easy

Voted in Annual State Candidate
2012? Income Choice

? 50K OK Clinton
N 173K CA Clinton
? 80K NJ Trump
Y 150K WA Clinton
N 25K WV Johnson
Y 85K ? Clinton
...

...
...

...
Y 1050K NY Trump
N 35K CA Trump
? 100K NY ?

Let’s say for Clinton voters, 103 had voted in 2012, 54 had not, and 25, didn’t
answer

You can simply set θ = 103
157 as the probability that a voter had voted in 2012,

conditioned on being a Clinton supporter

Naïve Bayes Model

Naïve Bayes vs Logistic regression

“On Discriminative vs. Generative Classifiers: A comparison of logistic
regression and naive Bayes” by A. Ng and M. Jordan, NIPS 2001. m
represents training dataset size.

Naïve Bayes Model

Naïve Bayes vs Logistic regression

For infinite data
If generative model is correct (independence assumption holds)

ErrorLR,∞ ∼ ErrorNB,∞

If generative model is inaccurate (independence assumption does not hold)

ErrorLR,∞ < ErrorNB,∞

For finite data (e.g. n points, d features), NB will require less training to
converge to its (possibly asymptotically higher) error

ErrorLR,n ≤ ErrorLR,∞ +O

(√
d
n

)
ErrorNB,n ≤ ErrorNB,∞ +O

(√
log d
n

)

Naïve Bayes Model

Preventing numerical underflow (not examinable)

Generative classifiers often require multiplying a large number of small
quantities, leading to numerical underflow.

log p(y = c|x) = log
[

p(y = c)p(x|y = c)∑
c′ p(y = c′)p(x|y = c′)

]
= bc − log

[
C∑
c′=1

ebc′

]
bc , log p(x|y = c) + log p(y = c)

The terms ebc′ are extremely small (e.g. in Naive Bayes), but we cannot
sum in the log domain to evaluate log

∑
c′ ebc′ .

Idea: factor out the largest term2. For example:

log(e−120 + e−121) = log(e−120(e0 + e−1)) = log(e0 + e−1)− 120.

In general, having defined B = maxc bc:

log
∑
c

ebc = log
[(∑

c

ebc−B

)
eB

]
=
[

log
(∑

c

ebc−B

)]
+B

2Also see Murphy 3.5.3.

Naïve Bayes Model

Naïve Bayes code example: Titanic data I

Predicting Titatinc survival from passenger data using Naïve Bayes3:

#Install the package
install.packages("e1071")
#Loading the library
library(e1071)
?naiveBayes #The documentation also uses Titanic data
#Next load the Titanic dataset
data("Titanic")
#Save into a data frame and view it
Titanic_df=as.data.frame(Titanic)
#Creating data from table
#This will repeat each combination equal to the frequency
repeating_sequence=rep.int(seq_len(nrow(Titanic_df)),

Titanic_df$Freq)

#Create the dataset by row repetition created
Titanic_dataset=Titanic_df[repeating_sequence,]

Naïve Bayes Model

Naïve Bayes code example: Titanic data II

#We no longer need the frequency, drop the feature
Titanic_dataset$Freq=NULL

#Fitting the Naive Bayes model
Naive_Bayes_Model=naiveBayes(Survived ~.,

data=Titanic_dataset)
#What does the model say? Print the model summary
Naive_Bayes_Model

#Prediction on the dataset
NB_Predictions=predict(Naive_Bayes_Model,Titanic_dataset)
#Confusion matrix to check accuracy
table(NB_Predictions,Titanic_dataset$Survived)

3code from
https://r-posts.com/understanding-naive-bayes-classifier-using-r/

https://r-posts.com/understanding-naive-bayes-classifier-using-r/

	Logistic regression
	Logistic Regression

	Logistic regression
	Gradient descent

	Generative vs. Discriminative learning
	Generative vs Discriminative

	Naïve Bayes
	Naïve Bayes

	Naïve Bayes Model

