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Supervised Learning

Last time: Overfitting, model selection
Fitting the housing price data with high order polynomials

Note that the price would go to zero (or negative) if you buy bigger ones! This
is called poor generalization/overfitting.

R(f) = Remp
N (f) + overfit penalty.

Cross-validation can be used to estimate R(f) and select the adequate
model complexity.
Another possible strategy is to try to estimate the overfit penalty (e.g. via
regularization).



Supervised Learning

Building models to trade bias with variance

Model complexity/flexibility
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Building a machine learning model involves trading between its bias and
variance. We will see many examples in the next lectures:

Bias reduction at the expense of a variance increase: building more complex
models, e.g. adding nonlinear features and additional parameters,
increasing the number of hidden units in neural nets, using decision trees
with larger depth, decreasing the regularization parameter.
Variance reduction at the expense of a bias increase: early stopping, using
k-nearest neighbours with larger k, increasing the regularization parameter.



Supervised Learning Regularization

Regularization

Flexible models for high-dimensional problems require many parameters.
With many parameters, learners can easily overfit.
Regularization: Limit flexibility of model to prevent overfitting.
Add term penalizing large values of parameters θ.

min
θ
RN (fθ) + λ‖θ‖ρρ = min

θ

1
N

N∑
i=1

L(yi, fθ(xi)) + λ‖θ‖ρρ

where ρ ≥ 1, and ‖θ‖ρ = (
∑p
j=1 |θj |ρ)1/ρ is the Lρ norm of θ (also of

interest when ρ ∈ [0, 1), but is no longer a norm).
Also known as shrinkage methods—parameters are shrunk towards 0.
λ is a tuning parameter (or hyperparameter) and controls the amount
of regularization, and resulting complexity of the model.



Supervised Learning Regularization

Regularization
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Supervised Learning Regularization

Types of Regularization

Ridge regression / Tikhonov regularization: ρ = 2 (Euclidean norm)
LASSO: ρ = 1 (Manhattan norm)
Sparsity-inducing regularization: ρ ≤ 1 (nonconvex for ρ < 1)
Elastic net1 regularization: mixed L1/L2 penalty:

min
θ

1
N

N∑
i=1

L(yi, fθ(xi)) + λ
[
(1− α)‖θ‖2

2 + α‖θ‖1
]

1Figure source: http://scikit-learn.sourceforge.net

http://statweb.stanford.edu/~tibs/lasso.html


Supervised Learning Regularization

Regularized linear regression
A new loss or error function to minimize

RN (θ, θ0) =
∑
n

(yn − θTxn − θ0)2 + λ‖θ‖2
2

where λ > 0 controls the model complexity, “shrinking” weights towards 0.

If λ→ +∞, then
θ̂ → 0

If λ→ 0, back to normal OLS (Ordinary Least Squares).

For regularized linear regression: the solution changes very little (in form)
from the OLS solution

argmin
∑
n

(yn − θTxn − θ0)2 + λ‖θ‖2
2 ⇒ θ̂ =

(
XTX + λI

)−1
XTy

and reduces to the OLS solution when λ = 0, as expected.

As long as λ ≥ 0, the optimization problem remains convex.



Supervised Learning Regularization

Example: overfitting with polynomials

Our regression model

y =
M∑
m=1

θmx
m

Regularization would discourage large parameter values as we saw with the
OLS solution, thus potentially preventing overfitting.

M = 0 M = 1 M = 3 M = 9
θ0 0.19 0.82 0.31 0.35
θ1 -1.27 7.99 232.37
θ2 -25.43 -5321.83
θ3 17.37 48568.31
θ4 -231639.30
θ5 640042.26
θ6 -1061800.52
θ7 1042400.18
θ8 -557682.99
θ9 125201.43



Supervised Learning Regularization

Overfitting in terms of λ
Overfitting is reduced from complex model to simpler one with the help of
increasing regularizers
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Supervised Learning Regularization

The effect of λ

Large λ attenuates parameters towards 0

lnλ = −∞ lnλ = −18 lnλ = 0
θ0 0.35 0.35 0.13
θ1 232.37 4.74 -0.05
θ2 -5321.83 -0.77 -0.06
θ3 48568.31 -31.97 -0.06
θ4 -231639.30 -3.89 -0.03
θ5 640042.26 55.28 -0.02
θ6 -1061800.52 41.32 -0.01
θ7 1042400.18 -45.95 -0.00
θ8 -557682.99 -91.53 0.00
θ9 125201.43 72.68 0.01



Supervised Learning Regularization

The effect of λ

Increasing λ reduces variance (left) and increases bias (right)2.

Variance Bias
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Figure 3.5 Illustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter λ, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of ln λ (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).

2Bishop PRML Figure 3.5



Supervised Learning Regularization

L1 promotes sparsity

L1 regularization often leads to optimal solutions with many zeros, i.e., the
regression function depends only on the (small) number of features with
non-zero parameters. figure 3.4 of PRML.



Supervised Learning Regularization

Regularization in R demo

http://www.stats.ox.ac.uk/~palamara/teaching/SML19/
regularization.html

http://www.stats.ox.ac.uk/~palamara/teaching/SML19/regularization.html
http://www.stats.ox.ac.uk/~palamara/teaching/SML19/regularization.html


Supervised Learning Regularization

What if XTX is not invertible?

Can you think of any reasons why that could happen?

Answer 1: N < D. Intuitively, not enough data to estimate all the parameters.

Answer 2: X columns are not linearly independent. Intuitively, there are two
features that are perfectly correlated. In this case, solution is not unique.



Supervised Learning Regularization

Ridge regression

Intuition: what does a non-invertible XTX mean? Consider the SVD of this
matrix:

XTX = V


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 · · · · · · · · · 0
0 · · · · · · λr 0
0 · · · · · · 0 0

V >
where λ1 ≥ λ2 ≥ · · ·λr > 0 and r < D.

Regularization can fix this problem by ensuring all singular values are
non-zero

XTX + λI = V diag(λ1 + λ, λ2 + λ, · · · , λ)V >

where λ > 0 and I is the identity matrix



Supervised Learning Computational and numerical optimization

Computational complexity

Bottleneck of computing the solution? The OLS problem has a simple,
closed-form solution. But computing it involves a number of matrix operations:

θ =
(
XTX

)−1
XTy

Matrix multiply of XTX ∈ R(D+1)×(D+1)

Inverting the matrix XTX

How many operations do we need?
O(ND2) for matrix multiplication
O(D3) (e.g., using Gauss-Jordan elimination) or O(D2.373) (recent
theoretical advances) for matrix inversion
Impractical for very large D or N
As an alternative, we could use numerical methods. This type of
approach is widely used in several other machine learning algorithms.
These methods are often the only available option, since sometimes we
don’t have a closed form solution available.



Supervised Learning Computational and numerical optimization

Alternative method: an example of using numerical
optimization

(Batch) Gradient descent

Initialize θ to θ(0) (e.g., randomly); set t = 0; choose η > 0
Loop until convergence

1 Compute the gradient
∇RN (θ) = XT

(
Xθ(t) − y

)
2 Update the parameters
θ(t+1) = θ(t) − η∇RN (θ)

3 t← t+ 1

What is the complexity of each iteration?



Gradient Descent

Start at a random point
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Gradient Descent

Start at a random point

Determine a descent direction
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Gradient Descent

Start at a random point

Determine a descent direction
Choose a step size
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Gradient Descent

Start at a random point

Determine a descent direction
Choose a step size
Update

w

f(w)

w1 w0w*



Start at a random point 
Repeat 

Determine a descent direction 
Choose a step size 
Update 

Until stopping criterion is satisfied
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Start at a random point 
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Start at a random point 
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Start at a random point 
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Start at a random point 
Repeat 

Determine a descent direction 
Choose a step size 
Update 

Until stopping criterion is satisfied

Gradient Descent
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Start at a random point 
Repeat 

Determine a descent direction 
Choose a step size 
Update 

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w2 w1 w0w* …



Supervised Learning Computational and numerical optimization

Gradient descent

hθ(x) RN (θ1)



Supervised Learning Computational and numerical optimization

Gradient descent

hθ(x) RN (θ1)



Supervised Learning Computational and numerical optimization

Gradient descent

hθ(x) RN (θ1)



Supervised Learning Computational and numerical optimization

Gradient descent

hθ(x) RN (θ1)



Supervised Learning Computational and numerical optimization

Gradient descent

hθ(x) RN (θ1)



Supervised Learning Computational and numerical optimization

Gradient descent

hθ(x) RN (θ1)



Supervised Learning Computational and numerical optimization

Gradient descent

hθ(x) RN (θ1)



Supervised Learning Computational and numerical optimization

Gradient descent

hθ(x) RN (θ1)



Supervised Learning Computational and numerical optimization

Gradient descent

hθ(x) RN (θ1)



Supervised Learning Computational and numerical optimization

Seeing in action

Choosing the right η is important

small η is too slow?
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large η is too unstable?
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To see if gradient descent is working, print out function value at each
iteration.

The value should decrease at each iteration.
Otherwise, adjust η.



Supervised Learning Computational and numerical optimization

Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time
Initialize θ to θ(0) (anything reasonable is fine); set t = 0; choose η > 0
Loop until convergence

1 randomly choose training sample xt

2 Compute its contribution to the gradient

gt = (xT
tθ

(t) − yt)xt

3 Update the parameters
θ(t+1) = θ(t) − ηgt

4 t← t+ 1
How does the complexity per iteration compare with gradient descent?



Supervised Learning Computational and numerical optimization

Gradient descent: mini-summary

Batch gradient descent computes the exact gradient.
Stochastic gradient descent approximates the gradient with a single data
point; Its expectation equals the true gradient.
Mini-batch variant: trade-off between accuracy of estimating gradient and
computational cost
Similar ideas extend to other ML optimization problems.

For large-scale problems, stochastic gradient descent often works well.



Classification

Classification



Classification

Recall: Loss function

Suppose we made a prediction Ŷ = f(X) ∈ Y based on observation of
X.
How good is the prediction? We can use a loss function
L : Y × Y 7→ R+ to formalize the quality of the prediction.
Typical loss functions:

Squared loss for regression

L(Y, f(X)) = (f(X)− Y )2 .

Absolute loss for regression

L(Y, f(X)) = |f(X)− Y | .

Misclassification loss (or 0-1 loss) for classification

L(Y, f(X)) =
{

0 f(X) = Y
1 f(X) 6= Y

.

Many other choices are possible, e.g., weighted misclassification loss.
In classification, if estimated probabilities p̂(k) for each class k ∈ Y are
returned, log-likelihood loss (or log loss) L(Y, p̂) = − log p̂(Y ) is often
used.



Classification Bayes Classifier

The Bayes Classifier

What is the optimal classifier if the joint distribution (X,Y ) were known?
The density g of X can be written as a mixture of K components
(corresponding to each of the classes):

g(x) =
K∑
k=1

πkgk(x),

where, for k = 1, . . . ,K,
P(Y = k) = πk are the class probabilities,
gk(x) is the conditional density of X, given Y = k.

The Bayes classifier fBayes : x 7→ {1, . . . ,K} is the one with minimum
risk:

R(f) =E [L(Y, f(X))] = EX
[
EY |X [L(Y, f(X))|X]

]
=
∫
X
E [L(Y, f(X))|X = x] g(x)dx

The minimum risk attained by the Bayes classifier is called Bayes risk.
Minimizing E[L(Y, f(X))|X = x] separately for each x suffices.



Classification Bayes Classifier

The Bayes Classifier

Consider the 0-1 loss.
The risk simplifies to:

E
[
L(Y, f(X))

∣∣X = x
]

=
K∑
k=1

L(k, f(x))P(Y = k|X = x)

=1− P(Y = f(x)|X = x)

The risk is minimized by choosing the class with the greatest probability
given the observation:

fBayes(x) = arg max
k=1,...,K

P(Y = k|X = x)

= arg max
k=1,...,K

πkgk(x)∑K
j=1 πjgj(x)

= arg max
k=1,...,K

πkgk(x).

The functions x 7→ πkgk(x) are called discriminant functions. The
discriminant function with maximum value determines the predicted class
of x.



Classification Bayes Classifier

The Bayes Classifier: Example
A simple two Gaussians example: Suppose X ∼ N (µY , 1), where µ1 = −1
and µ2 = 1 and assume equal class probabilities π1 = π2 = 1/2.

g1(x) = 1√
2π

exp
(
− (x+ 1)2

2

)
and g2(x) = 1√

2π
exp

(
− (x− 1)2

2

)
.
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Optimal classification is fBayes(x) = arg max
k=1,...,K

πkgk(x) =
{

1 if x < 0,
2 if x ≥ 0.



Classification Bayes Classifier

The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?
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Looking at density in a log-scale, optimal classification is to select class 2 if
and only if x ∈ [0.34, 2.16].



Classification Bayes Classifier

Plug-in Classification

The Bayes Classifier:

fBayes(x) = arg max
k=1,...,K

πkgk(x).

We know neither the conditional densities gk nor the class probabilities
πk!
The plug-in classifier chooses the class

f(x) = arg max
k=1,...,K

π̂kĝk(x),

where we plugged in
estimates π̂k of πk and k = 1, . . . ,K and
estimates ĝk(x) of conditional densities,

Linear Discriminant Analysis is an example of plug-in classification.
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