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Last time: Loss function and risk

How good is the prediction? We can use a loss function
L : Y × Y 7→ R+ to formalize the quality of the prediction.
Typical loss functions for regression:

Squared loss
L(Y, f(X)) = (f(X)− Y )2 .

Absolute loss
L(Y, f(X)) = |f(X)− Y | .

Risk
For a given loss function L, the risk R of a learned function f is given by the
expected loss

R(f) = EPXY
[L(Y, f(X))] ,

where the expectation is with respect to the true (unknown) joint distribution of
(X,Y ).

The risk is unknown, but we can compute the empirical risk:

RN (f) = 1
N

N∑
i=1

L(yi, f(xi)).



Hypothesis space and Empirical Risk Minimization

Hypothesis space H is the space of functions f under consideration.
Inductive bias: necessary assumptions on “plausible” hypotheses
Find best function in the space of hypothesis H minimizing the risk:

f? = argmin
f∈H

EX,Y [L(Y, f(X))]

Empirical Risk Minimization (ERM): minimize the empirical risk instead,
since we typically do not know PX,Y .

f̂ = argmin
f∈H

1
N

N∑
i=1

L(yi, f(xi))

How complex should we allow functions f to be? If hypothesis space H is
“too large”, ERM will overfit. Function

f̂(x) =
{
yi if x = xi,

0 otherwise

will have zero empirical risk, but is useless for generalization, since it has
simply “memorized” the dataset.



Linear regression: Solution in matrix form

Compact expression

RN (θ) = ||Xθ − y||22 =
{
θTXTXθ − 2

(
XTy

)T
θ
}

+ const

Gradients of Linear and Quadratic Functions
∇xb>x = b

∇xx>Ax = 2Ax (symmetric A)
Normal equation

∇θRN (θ) ∝XTXθ −XTy = 0

This leads to the linear regression solution1

θ =
(
XTX

)−1
XTy

1Also see PRML book, Section 3.1.2 for a geometric interpretation.



Nonlinear basis functions
Can we learn non-linear functions? We can use a nonlinear mapping

φ(x) : x ∈ RD → z ∈ RM

For instance, we could use polynomials of increasing order, φk(xi) = xki

The linear regression solution has a new design matrix

Φ =


φ(x1)T

φ(x2)T

...
φ(xN )T

 ∈ RN×M , θLMS =
(
ΦTΦ

)−1 ΦTy



Regression with nonlinear basis functions
Fitting samples from a sine function: underrfitting as f(x) is too simple
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Better fit for higher order, but overfitting as f(x) is too flexible
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More complex features lead to better results on the training data, but
potentially worse results on new data, e.g., test data!



Overfitting can be quite disastrous

Fitting the housing price data with M = 7

Note that the price would go to zero (or negative) if you buy bigger ones!
This is called poor generalization/overfitting.



Validation and Cross-Validation

Validation and Cross-Validation



Validation and Cross-Validation

Generalization

Generalization ability: what is the out-of-sample (testing) error of the
learner f?
Two important factors determining generalization ability:

Model complexity
Training data size

We learn f by minimizing some variant of empirical risk Remp
N (f)- what

can we say about the true risk R(f)?



Validation and Cross-Validation

Empirical vs True Risk

In general,
R(f) = Remp

N (f) + overfit penalty.

Overfit penalty depends on the complexity of the model (also see
Vapnik-Chervonenkis, or VC theory).
We will look at two strategies to tune a model’s complexity:

(Cross-)Validation, where we estimate R(f) to calibrate the model
Regularization, where we try to approximate a model’s overfit penalty

testing error can be obtained by setting aside some of the data.
testing error 6= training error.
For any example not used in training:

E [L (ytest, f(xtest))] = R(f).
But for examples used in training:

E [L (ytrain, f(xtrain))] 6= R(f).



Validation and Cross-Validation

Learning Curves

Model complexity/flexibility
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Fixed dataset size, varying model complexity.



Validation and Cross-Validation

Learning Curves
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Fixed model complexity, varying dataset size.
Two models: one simple, one complex. Which is which?



Validation and Cross-Validation

Optimizing Tuning Parameters

How can we optimize generalization ability,
via optimizing choice of tuning parameters,
model size, and learning parameters?
Suppose we have split data into training/test
set.
Test set can be used to determine
generalization ability, and used to choose
best setting of tuning parameters/model
size/learning parameters with best
generalization.
Once these tuning parameters are chosen,
still important to determine generalization
ability, but cannot use performance on test
set to gauge this anymore!

Training set

Test set

θ

generalization
performance



Validation and Cross-Validation

Validation error

Idea: split data into 3 sets: training set, test set, and validation set.
Out-of-sample average loss. For a dataset {x̃i, ỹi}vi=1 unseen in training

Rval(f) = 1
v

v∑
i=1

L (ỹi, f(x̃i))

E
[
Rval(f)

]
= R(f), Var

[
Rval(f)

]
� 1

v , i.e. Rval(f) = R(f)±O
(

1√
v

)
Just like testing error so far.
It becomes validation error only once it is used to change our learning.



Validation and Cross-Validation

Validation
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Validation and Cross-Validation

Validation

For each combination of tuning parameters γ:
Train our model on the training set, fit
parameters θ = θ(γ), obtaining decision
function fθ(γ).
Evaluate Rval

(
fθ(γ)

)
average loss on a

validation set.

Pick γ∗ with best performance on validation
set.
Using γ∗, train on both training and
validation set to obtain the optimal θ∗.
Rval(fθ(γ∗)) is now a biased estimate of
R(fθ(γ∗)) and can be overly optimistic!
Evaluate model with γ∗, θ∗ on test set,
reporting generalization performance.

Training set

Test set

θ

generalization
performance

Validation set Model
complexity



Validation and Cross-Validation

Bias introduced by validation

Example: Selecting between two equally bad classifiers f1 and f2:

R(f1) = R(f2) = 0.5.

Assume that we have independent unbiased estimators R1 = Rval(f1),
R2 = Rval(f2), both uniform on [0, 1]
Learning rule f? chosen to minimize Rval is either f1 or f2, so also equally
bad.
But Emin(R1,R2) = 1

3 (since Emin({U[0,1]}ni=1) = (n+ 1)−1), so in terms
of validation error it may appear that we are getting an improvement!



Validation and Cross-Validation

Validation error and Generalization

How contaminated are different parts of data in terms of being able to tell us
something about generalization ability?

Training data: fully contaminated, used in learning - Remp(f) is usually far
from R(f) (unless the model is too simple for the amount of data).
Validation data: partly contaminated, used in model selection /
meta-learning - Rval(f) is biased, but still useful, provided that:

we have a large enough validation set size v
we do not use it to select from a large number M of models
Typically,

R(f) ≤ Rval(f) + O

(√
logM
v

)
︸ ︷︷ ︸

overfit penalty of the meta-model

Test data: clean, not used for any part of learning.



Validation and Cross-Validation

Size of validation set?

In practice, there is just one dataset! If v is
used for computing validation error, then
only n− v used for training.

Small v : Rval(f−) is a bad estimate of
R(f−)
Large v : Rval(f−) is a reliable estimate of a
much worse risk (f− learned on much less
data than f )!

We are using:

R(f) ≈
(need small v)

R(f−) ≈
(need large v)

Rval(f−)

Wasteful to split into 3 subsets.
Different approach: cross-validation.
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Test set
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Validation and Cross-Validation

Cross-Validation

Training Training Training Validation Test

TrainingTraining Training Validation Test

TrainingTrainingTraining Validation Test

Training TrainingTrainingValidation Test



Validation and Cross-Validation

Cross-Validation

Basic approach:
Split training set into T folds.
For each γ and each t = 1, . . . , T :

Use fold t as validation set and the rest to train the model parameters θt(γ),
obtaining trained learner f−t,γ .

Rval
t (f−t,γ) =

1
|Fold(t)|

∑
i∈Fold(t)

L(yi, f−t,γ(xi))

Choose γ∗ which minimizes validation error averaged over folds

1
T

T∑
t=1

Rval
t (f−t,γ)

Train model with tuning parameter γ∗ on all training set to obtain fγ∗ .
Report generalization performance on test set.

Leave-One-Out (LOO) cross validation: one data item per fold, i.e.,
T = n.

Cross-validation can be computationally expensive (T× increase in
complexity).



Validation and Cross-Validation

Leave-One-Out Cross-Validation

Leave-one-out (LOO) cross validation: one data item per fold, i.e., T = n.
Since only one data item not used in training, R(f−t,γ) are all very close to
R(fγ) (small v benefit).
Thus,

1
n

n∑
t=1

Rval
t (f−t,γ) = 1

n

n∑
t=1

L(yt, f−t,γ(xt))

has a small variance (large v benefit).
All examples for validation and all examples for training.
summands are no longer independent



Model Complexity and Generalization

Learning Curves
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Fixed model complexity, varying dataset size.
Two models: one simple, one complex. Which is which?



Bias-Variance Tradeoff

Bias-Variance Tradeoff

Where does the prediction error come from?
Example: Squared loss in regression: X = Rp, Y = R,

L(Y, f(X)) = (Y − f(X))2

Optimal f is the conditional mean:

f∗(x) = E [Y |X = x]

Follows from R(f) = EXE
[

(Y − f (X))2
∣∣∣X] and

E
[

(Y − f (X))2
∣∣∣X = x

]
= E

[
Y 2∣∣X = x

]
− 2f (x)E [Y |X = x] + f (x)2

= Var [Y |X = x] + (E [Y |X = x]− f(x))2
.



Bias-Variance Tradeoff

Bias-Variance Tradeoff

Optimal risk is the intrinsic conditional variability of Y (noise):

R(f∗) = EX [Var [Y |X]]

Excess risk:

R(f)−R(f∗) = EX
[
Var [Y |X] + (f∗(X)− f(X))2 − Var [Y |X]

]
= EX

[
(f(X)− f∗(X))2

]
How does the excess risk behave on average?
Consider a randomly selected dataset D = {(Xi, Yi)}ni=1 and f (D) trained
on D using a model (hypothesis class) H.

ED
[
R(f (D))−R(f∗)

]
= EDEX

[(
f (D)(X)− f∗(X)

)2
]

= EXED
[(
f (D)(X)− f∗(X)

)2
]
.



Bias-Variance Tradeoff

Bias-Variance Tradeoff

Denote f̄(x) = EDf (D)(x) (average decision function over all possible
datasets)

ED
[(
f (D)(X)− f∗(X)

)2
]

= ED
[(
f (D)(X)− f̄(X)

)2
]

︸ ︷︷ ︸
VarX (H,n)

+
(
f̄(X)− f∗(X)

)2︸ ︷︷ ︸
Bias2

X
(H,n)

Now,
EDR(f (D)) = R(f∗) + EXVarX(H, n) + EXBias2

X(H, n)

Where does the prediction error come from?
Noise: Intrinsic difficulty of regression problem.
Bias: How far away is the best learner in the model (average learner over
all possible datasets) from the optimal one?
Variance: How variable is our learning method if given different datasets?



Bias-Variance Tradeoff

Learning Curves

training error

testing error

training dataset size

overfit

p
re

d
ic

ti
o

n
er

ro
r

bias

variance

training error

testing error

training dataset size
p

re
d

ic
ti

o
n

er
ro

r

bias

variance

overfit



Bias-Variance Tradeoff

Building models to trade bias with variance

Model complexity/flexibility
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Building a machine learning model involves trading between its bias and
variance. We will see many examples in the next lectures:

Bias reduction at the expense of a variance increase: building more complex
models, e.g. adding nonlinear features and additional parameters,
increasing the number of hidden units in neural nets, using decision trees
with larger depth, decreasing the regularization parameter.
Variance reduction at the expense of a bias increase: early stopping, using
k-nearest neighbours with larger k, increasing the regularization parameter.


	Validation and Cross-Validation
	Model Complexity and Generalization
	Bias-Variance Tradeoff

