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Plug-in Classification

@ Consider the 0-1 loss and the risk:
K
{ (v, (X)X = x} 3" Lk, f(2)P(Y = kX = z)
k=1

The Bayes classifier provides a solution that minimizes the risk:

feayes(z) = argmaxmpgr(x).
k=1,.. K

@ We know neither the conditional density g, nor the class probability 7!
@ The plug-in classifier chooses the class

f(z) = arg max TGk (),
k=1,....K

@ where we plugged in
o estimates 7, of 7, and k =1,..., K and
o estimates g () of conditional densities,

@ Linear Discriminant Analysis is an example of plug-in classification.



Summary: Linear Discriminant Analysis

@ LDA: a plug-in classifier assuming multivariate normal conditional density
gk (z) = gr(x|prk, X) for each class k sharing the same covariance X:

1
an{aln, 2) =) S e (— o = ) T = ) )

@ LDA minimizes the squared Mahalanobis distance between x and iy,
offset by a term depending on the estimated class proportion 7:

fioa(z) = argmax log Ty (z|fik, 3)
ke{l,...,K}
o (1 P 1Ar§1A) (AflA)T
= gmax | logmy Ly T e D TV A
ke{l,...K} 2

terms depending on k linear in =

1 ~
= argmin —(z —ix) "' 2Nz — fx) — log 7.
ke{l,...K} 2

squared Mahalanobis distance



Discriminant analysis

LDA projections
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Figure by R. Gutierrez-Osuna



analysis

LDA vs PCA projections

LDA separates the groups better.
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Fisherfaces

Eigenfaces vs. Fisherfaces, Belhumeur et al. 1997

http://ieeexplore.ieee.org/document/598228/


http://ieeexplore.ieee.org/document/598228/

\Quadratic Discriminant Analysis
Conditional densities with different covariances

Given training data with K classes, assume a parametric form for conditional
density gx(x), where for each class

XY =k ~ N(ug,2r),

i.e., instead of assuming that every class has a different mean u;, with the
same covariance matrix X (LDA), we now allow each class to have its own
covariance matrix.

Considering log g (x) as before,

log mygr(z) = const+log(my) — % (log [Sk| + (& — )" S5 (@ — )
= const+ log(my) — % (log [Sk| + p IS ,uk)
+up St — %xTEglx
= ak—|—bka:—|—x CLT.

A quadratic discriminant function instead of linear.



\Quadratic Discriminant Analysis
Quadratic decision boundaries

Again, by considering that we choose class k over &/,

ar +blz + alcpx — (ap + Lz + 2T e )

= a, +bfx+xTc*x >0

we see that the decision boundaries of the Bayes Classifier are quadratic
surfaces.

@ The plug-in Bayes Classifer under these assumptions is known as the
Quadratic Discriminant Analysis (QDA) Classifier.



Discriminant analysis \Quadratic Discriminant Analysis

QDA
LDA classifier:
fion(z) = argmin {(m ) S N — i) — 2log(%k)}
ke{l,....K}
QDA classifier:

~

faoa(z) = argmin {(z = )" Sk (@ — fix) — 2log(Fr) + log(ISk]) |
ke{1,....K}

for each point = € X where the plug-in estimate i, is as before and %, is (in
contrast to LDA) estimated for each class k = 1,..., K separately:

1 R R
Xp=— > (s — i) (g — ix) "
§ Jyj=k



Discriminant analysis \Quadralic Discriminant Analysis

Computing and plotting the QDA boundaries.

##fit QDA
iris.gda <- gda(x=iris.data,grouping=ct)

##create a grid for our plotting surface

X

508 NK

<- seq(-6,6,0.02)

<- seq(-4,4,0.02)

<- as.matrix (expand.grid(x,y),0)
<- length (x)

<- length (y)

iris.qdp <- predict (iris.qgda, z) $class
contour (x,y,matrix(iris.qgdp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE,

1lty=2)



\Quadralic Discriminant Analysis
Iris example: QDA boundaries
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\Quadralic Discriminant Analysis
Iris example: QDA boundaries
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@ Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.

@ If the covariances of different classes are very distinct, QDA will probably
have an advantage over LDA.

@ Parametric models are only ever approximations to the real world,
allowing more flexible decision boundaries (QDA) may seem like a
good idea. However, there is a price to pay in terms of increased
variance and potential overfitting.



\Quadratic Discriminant Analysis
Regularized Discriminant Analysis

In the case where data is scarce, to fit

@ LDA, need to estimate K x p 4+ p x p parameters

@ QDA, need to estimate K x p + K X p X p parameters.
Using LDA allows us to better estimate the covariance matrix ¥. Though QDA
allows more flexible decision boundaries, the estimates of the K covariance
matrices X, are more variable.
RDA combines the strengths of both classifiers by regularizing each
covariance matrix X in QDA to the single one X in LDA

Yp(a)=aXp +(1—a)X  forsome «a € [0,1].
This introduces a new parameter « and allows for a continuum of models

between LDA and QDA to be used. Can be selected by Cross-Validation for
example.



Logistic regression




Review

@ In LDA and QDA, we estimate p(z|y), but for classification we are mainly
interested in p(y|z)

@ Why not estimate that directly? Logistic regression’ is a popular way of
doing this.

"Despite the name “regression”, we are using it for classification!



Logistic regression

@ One of the most popular methods for classification
@ Linear model on the probabilities

@ Dates back to work on population growth curves by Verhulst [1838, 1845,
1847]

@ Statistical use for classification dates to Cox [1960s]

@ Independently discovered as the perceptron in machine learning
[Rosenblatt 1957]

@ Main example of “discriminative” as opposed to “generative” learning

@ Naive approach to classification: we could do linear regression assigning
specific values to each class. Logistic regression refines this idea and
provides a more suitable model.



Logistic regression

@ Statistical perspective: consider ) = {0, 1}. Generalised linear model
with Bernoulli likelihood and logit link:

Y|X =x,a,b~ Bernoulli (s(a+b"z))

TN 1
sla+b'x)= e e pER AT

0 . . .
-8 -6 -4 -2 0 2 4 6 8

@ ML perspective: a discriminative classifier. Consider binary
classification with )y = {+1, —1}. Logistic regression uses a parametric
model on the conditional Y'|.X, not the joint distribution of (X,Y):

1
T+ exp(—y(a+bTx))°

p(Y =y|X =2;0,0) =



Logistic regression

Prediction Using Logistic Regression




Hard vs Soft classification rules

@ Consider using LDA for binary classification with ) = {41, —1}.
Predictions are based on linear decision boundary:

~ ~

Goa(e) = sign {log7 1941 (alfisr, 8) ~ log 7191 (alfi1, %) |
= sign{a+b'z}

for a and b depending on fitted parameters 6 = (741, 71, fip1, i1, ).

@ Quantity a + b = can be viewed as a soft classification rule. Indeed, it is
modelling the difference between the log-discriminant functions, or
equivalently, the log-odds ratio:

a+b'r= logp(Y = FlX = x,?\)
p(Y = -1|X =z;0)

@ f(x) =a+ bz corresponds to the “confidence of predictions” and loss
can be measured as a function of this confidence:
o exponential loss: L(y, f(z)) = e ¥/,
e log-loss: L(y, f(x)) = log(1 + e~ ¥/ (),
@ hinge loss: L(y, f(z)) = max{1l — yf(z),0}.



Logistic regression

Linearity of log-odds and logistic function

@ a + b2 models the log-odds ratio:

p(Y =+1|X = x;a,b) T
= b x.

p(Y = —-1|X = z;a,b) arbw

log

@ Solve explicitly for conditional class probabilities (using
p(Y =+11X =z;a,0) + p(Y = —=1|X = z;a,b) = 1):

1
YV =+1|X = z;a,b) = = b’
p( i % a,0) 1+exp(—(a+bTx)) sla+b a)
1
=s(—a—b'x)

Y =—-1|X = ux; =
p( ‘ x,a,b) 1+exp(+(a+bT:c))
where s(z) = 1/(1 + exp(—=z)) is the logistic function.

.
L/




Fitting the parameters of the hyperplane

How to learn a and b given a training data set (z;, y;)I,?
@ Consider maximizing the conditional log likelihood for Y = {+1, —1}:

s(a+bTa; if V=41
p(Y:y”X:x““’b):p(y”””i):{ 1(— s(a+b)T:ci) if v=-1

@ Noting that 1 — s(z) = s(—z), we can write the log-likelihood using the
compact expression:

log p(y:|xi) = log s(yi(a + b))

@ And the log-likelihood over the whole i.i.d. data set is:

(a,b) = Z log p(yi|zi) = Z log s(yi(a+b'z;)).
i=1

i=1



Logistic regression

Fitting the parameters of the hyperplane

How to learn « and b given a training data set (z;, y;),?
@ Consider maximizing the conditional log likelihood:

la,b) = Z log p(y;|z;) = Z log s(yi(a+b"2;)).

i=1
@ Equivalent to minimizing the empirical risk associated with the log loss:

n

Riog(fap) = %Z —log s(yi(a+b'z)) = %Zlog(l—kexp(—yi(a—i—bTm)))
i=1 i=1

— Zero-one loss
— Hinge loss
— Logistic loss

Ly, flz;))




Could we use the 0-1 loss?

@ With the 0-1 loss, the risk becomes:

R(fap) = Zstep —yi(a+0"2;))

@ But what is the gradient? ...
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