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____Classioaion
Recall: Loss function

@ Suppose we made a prediction Y = f(X) € Y based on observation of
X.

@ How good is the prediction? We can use a loss function
L:Y x Y~ RT to formalize the quality of the prediction.

@ Typical loss functions:
e Squared loss for regression

L(Y, f(X)) = (f(X) = Y)*.
o Absolute loss for regression

L(Y, f(X)) = |f(X) = Y].
o Misclassification loss (or 0-1 loss) for classification

0 f(X)=Y
MKﬂXD—{lkmm¢Y~
Many other choices are possible, e.g., weighted misclassification loss.
@ In classification, if estimated probabilities p(k) for each class k € Y are
returned, log-likelihood loss (or log loss) L(Y,p) = —log p(Y) is often
used.



The Bayes Classifier

@ What is the optimal classifier if the joint distribution (X,Y") were known?
@ The density g of X can be written as a mixture of K components
(corresponding to each of the classes):

K
= Z gk (T)
k=1

where, fork=1,... K,
o P(Y = k) = m, are the class probabilities,
@ gi(x) is the conditional density of X, given Y = k.

@ The Bayes classifier fpayes : @ — {1,..., K} is the one with minimum
risk:

R(f) =E[L(Y, (X))] = Ex [Ey x[L(Y; £(X))/X]]
= | B FCO)X = alg(o)is

@ The minimum risk attained by the Bayes classifier is called Bayes risk.
@ Minimizing E[L(Y, f(X))|X = x] separately for each z suffices.



The Bayes Classifier

@ Consider the 0-1 loss.
@ The risk simplifies to:

K
{ (v, F(X))|X = x} 3" Lk, f(2))P(Y = KX = z)
k=1
=1 -P(Y = f(2)|X = z)

@ The risk is minimized by choosing the class with the greatest probability
given the observation:

fBayes(z) = argmaxP(Y =k|X = x)
k=1,..,K
N Tk (7)
= argmaxi argmax Tpgi(x).
ek T Mgy (@) e

@ The functions = — mgx(x) are called discriminant functions. The
discriminant function with maximum value determines the predicted class
of x.



The Bayes Classifier: Example

A simple two Gaussians example: Suppose X ~ N (uy,1), where py = —1
and us = 1 and assume equal class probabilities 71 = m = 1/2.

gl(x)\/%exp((w—’;lY) and gg(x):\/lgrexp<—(x_21)2>.

a
marginal density

. e 1 if 0,
Optimal classification is fgayes(z) = arg max mpgi(z) = L <
k K 2 ifxz>0.



The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?

conditional densities
0. 0.
I
conditional densities
le-11 le-04
I

1le-18

1le-25

0.
1e-32

Looking at density in a log-scale, optimal classification is to select class 2 if
and only if x € [0.34,2.16].



Plug-in Classification

@ The Bayes Classifier:

fRayes(z) = argmaxmpgi(z).
k=1,.. K

@ We know neither the conditional densities g, nor the class probabilities
7Tk;!

@ The plug-in classifier chooses the class

f(z) = arg max 7 g (),
k=1,..K

@ where we plugged in

o estimates 7, of 1, and k =1,..., K and
o estimates g () of conditional densities,

@ Linear Discriminant Analysis is an example of plug-in classification.



;Linear Discriminant Analysis
Linear Discriminant Analysis

@ LDA is the most well-known and simplest example of plug-in
classification.
@ Assume multivariate normal conditional density g () for each class k:

X|Y = k ~N (11, D),
gu() =(27) /2[5 exp (—i(z ) TS - m) ,

@ each class can have a different mean .,
o all classes share the same covariance Y.

@ For an observation z, the k-th log-discriminant function is
— _ 1 - Ty —1 o
log T gk () = ¢ + log my 2(517 pe) BT (T — )

The quantity (z — puz) "X~ (z — ug) is the squared Mahalanobis
distance between x and py.

e If ¥ = I, and m, = +, LDA simply chooses the class k with the nearest
(in the Euclidean sense) class mean.



;Linear Discriminant Analysis
Linear Discriminant Analysis

@ Expanding the term (z — ) "7z — ),

1
log migr(z) = ¢ + logm), — 3 (ugﬁfluk — 2 N7 e+ mTEflzL')

1
=c +logmy — 5;4;2*1/% +pl
@ Setting aj, = log(my) — 3t X'y, and by, = X1y, we obtain
log Trgr(z) = ¢ +ax + bl

i.e. a linear discriminant function in x.
@ Consider choosing class % over k’:

ar +bix > ap + bl & ay +b) x>0

where a, = a,, — apr and b, = by, — byr.

@ The Bayes classifier thus partitions X into regions with the same class
predictions via separating hyperplanes.

@ The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.



Linear Discriminant Analysis
Parameter Estimation

@ How to estimate the parameters of the LDA model?

@ We can achieve this by maximum likelihood (EM algorithm is not needed
here since the class variables y; are observed!)

@ Letn, = #{j : y; = k} be the number of observations in class k

O, (pk)ier, 3) =logp (s, v:) iy I, (k) ie1, S

=3 i o)
s 1
:c-q-z Z log 7, — 3 (10g|2| +(

-
Tj— pk) 2
k=1 j:yj:k;

ey — )

ML estimates:

~ ng
T =

2 1
n F ng
Juyj=k
. 1 &
r=— S (g — )y — i) "
k=1j:y;=k

@ Note: the ML estimate of X is biased. For an unbiased estimate we need
to divide by n — K.



Iris Dataset
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library (MASS)

data (iris)

##save class labels

ct <- unclass(iris$Species)
##pairwise plot
pairs(iris([,1:4],col=ct)
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Iris Dataset

Just focus on two predictor variables.

iris.data <- iris|[,3:4]
plot (iris.data, col=ct,pch=20,cex=1.5,cex.lab=1.4)
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Iris Dataset

Computing and plotting the LDA boundaries.

##£fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
<- seq(0,8,0.02)
<- seq(0,3,0.02)
length (x)
<- length (y)
<- as.matrix (expand.grid(x,y),0)
colnames (z) = colnames (iris.data)

N BB KX
A
|

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z)$class
contour (x,y,matrix (iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



Classification \Linear Discriminant Analysis

Iris Dataset
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'LDA and Dimensionality Reduction
Summary: Linear Discriminant Analysis

@ LDA: a plug-in classifier assuming multivariate normal conditional density
gx(z) = gr(x|pr, X) for each class k sharing the same covariance X:

1
anlalpn, 2) =) S e (— o = ) T = ) )

@ LDA minimizes the squared Mahalanobis distance between x and iy,
offset by a term depending on the estimated class proportion 7:

fioa(z) = argmax log Ty (|fik, &)
ke{l,...,K}
o (1 = 1Ar§1A) (AflA)T
= gmax | logmy Ly pe )+ 12 k)
ke{l,...K} 2

terms depending on k linear in =

1 ~
= argmin —(z —ix) 'Sz — fx) — log 7.
ke{l,...K} 2

squared Mahalanobis distance



'LDA and Dimensionality Reduction
Computations for LDA

@ LDA minimizes the squared Mahalanobis distance between x and jiy,
offset by a term depending on the estimated class proportion 7:

.1 T ~ ~
fipa(z) = argmin 5(1‘ — Mk)TZ Yo — i) — log .
ke{l,...,K}

squared Mahalanobis distance

@ Thus, LDA classification can be implemented as the following two steps:
(1) Sphere the data with respect to the common covariance estimate

K ~ ~ .
Y= %Zkzl Zj:yj:k(xj - Auk')(x]' - luk')T'

< D 20Uz, where S=UDU".

(2) Classify to the closest class mean uy}, in the transformed space, modulo the
effect of the estimated class proportions 7.



LDA and Dimensionality Reduction
Fisher's Reduced-Rank Linear Discriminant Analysis

@ In LDA, data vectors are classified based on Mahalanobis distance to
class means.

@ There is K class means and they lie on a (K — 1)-dimensional affine
subspace of ambient space R?: Decision function is unaffected by the
directions orthogonal to this subspace.

@ Projecting data vectors onto the subspace can be viewed as a
dimensionality reduction technique that preserves discriminative
information about the labels {y;}"_;: going from R? to R*~! and
potentially K — 1 < p.

@ Just like in PCA, we can visualise the structure in the data by choosing an

appropriate basis for the subspace and projecting data onto it -
immediate visualisation fully describing LDA for K = 3.

@ For K > 3, Fisher proposed to look for the change of basis that finds
directions that best separate the classes - the largest possible spread
of the centroids after sphering.



LDA projections
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Figure by R. Gutierrez-Osuna



\LDA and Dimensionality Reduction
Discriminant Coordinates: 2-classes

e Centroids are i, = ;- >, _; Ti-

@ Centroids prOjected on a vector v are given by my, = v fiy.

@ Variance of projected data on v given by s7 = =, _, (v x; —my)?.

@ Goal: find v such that the distance between centroids is maximized, while
projected clusters are “tight”:

(my —mg)?

2 2
51+ 83

Figure from Hastie, Tibshirani and Friedman, Section 4.3.3


http://www-stat.stanford.edu/~tibs/ElemStatLearn/

'LDA and Dimensionality Reduction
Discriminant Coordinates: 2-classes

o Centroids are i, = ;- >_,., _ i
@ Centroids projected on a vector v are given by m; = v ' fi.
@ Variance of projected data on v given by s? = Zi;yi:k(UT%‘ —my)2.

@ Goal: find v such that the distance between centroids is maximized, while
projected clusters are “tight”:

(my —m2)*>  v'Bu

2 2 S
51+ 55 DY

where

B = (fiy — fiy)(fia — i) " (between-class covariance)
S=1S" (2 —fi,)(z —fi,,)T  (within-class covariance)

(verify above calculations).



LDA and Dimensionality Reduction
Discriminant Coordinates

@ More generally:
v Bv
vT S
where
B=L1F (i, —3) (s —7)7  (between-class covariance)
S =15 (2 —iy)(z —fi,,)T  (within-class covariance)

and B has rank at most K — 1.

)
. yd /)
) /-
v / /+ e
/ / 7
/ / / 7
e ( 7z
,,,,,,,,,,, oo . s
7 > e
( i B
AT 4

Figure from Hastie, Tibshirani and Friedman, Section 4.3.3


http://www-stat.stanford.edu/~tibs/ElemStatLearn/

'LDA and Dimensionality Reduction
Discriminant Coordinates

@ To solve for the optimal v, we first reparameterize it as u = S2v.

v By uT(ifé)TBf]’%u u' B*u

TS uTu uTu

where B* = (£-2)T BS 2.
@ We have solved something similar before. The maximization over u is
achieved by the first eigenvector u; of B°.

@ We also look at the remaining eigenvectors v, associated to the | non zero
eigenvalues and define the discriminant coordinates as v, = S,

@ The v;’s span exactly the affine subspace spanned by (i—lﬁk)kzl (these
vectors are given as the “linear discriminants” in the R-function 1da).



LDA and Dimensionality Reduction
Crabs Dataset

library (MASS)
data (crabs)

## create class labels (species+sex)
crabs$spsex=factor (paste (crabs$sp, crabs$sex, sep=""))
ct <- unclass (crabs$spsex)

## LDA on crabs in log-domain
cb.lda <- lda(log(crabs[,4:8]),ct)



LDA and Dimensionality Reduction
Crabs Dataset

> cb.lda
Call:
lda(log(crabs[, 4:8]), ct)

Prior probabilities of groups:
1 2 3 4
0.25 0.25 0.25 0.25

Group means:
FL RW CL CwW BD

1 2.564985 2.475174 3.312685 3.462327 2.441351
2 2.672724 2.443774 3.437968 3.578077 2.560806
3 2.852455 2.683831 3.529370 3.649555 2.733273
4 2.787885 2.489921 3.490431 3.589426 2.701580

Coefficients of linear discriminants:
LD1 LD2 LD3
FL -31.217207 -2.851488 25.719750
RW -9.485303 -24.652581 -6.067361
CL -9.822169 38.578804 -31.679288
CW 65.950295 -21.375951 30.600428
BD -17.998493 6.002432 -14.541487

Proportion of trace:
LD1 LD2 LD3
0.6891 0.3018 0.0091



LDA and Dimensionality Reduction
Crabs Dataset

cb.ldp <- predict (cb.lda)
pairs(cb.ldp$x, pch=ct,col=ct)
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Crabs Dataset

cb.ldpl2 <- cb.ldp$x[,1:2]
egscplot (cb.1ldpl2, pch=ct,col=ct)
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LDA and Dimensionality Reduction
Crabs Dataset

##
##

X

858 NK

##
##

display the decision boundaries

take a lattice of points in LD-space
<- seq(-6,7,0.02)

<- seq(-6,7,0.02)

<- as.matrix(expand.grid(x,y))

<- length (x)

<- length(y)

perform LDA on first two discriminant directions
.lda_new <- lda(cb.ldpl2,ct)

predict onto the grid

.1ldpp <- predict (cb.lda_new, z)$class

classes are 1,2,3 and 4 so set contours
at 1.5,2.5 and 3.5

contour (x,y,matrix (cb.ldpp,m,n),

levels=c(1.5,2.5,3.5),
add=TRUE, d=FALSE, 1ty=2)



'LDA and Dimensionality Reduction

Classification

Crabs Dataset




LDA vs PCA projections
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LDA separates the groups better.
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LDA and Dimensionality Reduction
LDA vs PCA projections
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LDA separates the groups better.




Fisherfaces

Eigenfaces vs. Fisherfaces, Belhumeur et al. 1997

http://ieeexplore.ieee.org/document/598228/


http://ieeexplore.ieee.org/document/598228/
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