Statistical Machine Learning
Hilary Term 2019

Pier Francesco Palamara
Department of Statistics
University of Oxford

Slide credits and other course material can be found at:

http://www.stats.ox.ac.uk/~palamara/SML19.html

February 6, 2019

http://www.stats.ox.ac.uk/~palamara/SML19.html

Supervised Learning

Last time: Overfitting, model selection

Fitting the housing price data with high order polynomials

Sale Price

.
055

7000

3000 4000 5000 6000

0 .
1000 2000
Square footage

Note that the price would go to zero (or negative) if you buy bigger ones! This
is called poor generalization/overfitting.

R(f) = RY™(f) + overfit penalty.

@ Cross-validation can be used to estimate R(f) and select the adequate

model complexity.
@ Another possible strategy is to try to estimate the overfit penalty (e.g. via

regularization).

Building models to trade bias with variance

Prediction error

Underfit:
high bias
low variance

Overfit:
low bias
high varianc

Test
error

Just right

Training error

Model complexity/flexibility

@ Building a machine learning model involves trading between its bias and
variance. We will see many examples in the next lectures:

@ Bias reduction at the expense of a variance increase: building more complex
models, e.g. adding nonlinear features and additional parameters,
increasing the number of hidden units in neural nets, using decision trees
with larger depth, decreasing the regularization parameter.

e Variance reduction at the expense of a bias increase: early stopping, using
k-nearest neighbours with larger k, increasing the regularization parameter.

Regularization

@ Flexible models for high-dimensional problems require many parameters.
@ With many parameters, learners can easily overfit.

@ Regularization: Limit flexibility of model to prevent overfitting.

@ Add term penalizing large values of parameters 6.

N
) 1 o
nblnRN(fg) + Al0]f = min E L(yi, fo(xi)) + A0S
i=1

where p > 1, and ||6]|, = (3_%_, |6;]7)"/* is the L, norm of 6 (also of
interest when p € [0,1), but is no longer a norm).
@ Also known as shrinkage methods—parameters are shrunk towards 0.

@)\ is a tuning parameter (or hyperparameter) and controls the amount
of regularization, and resulting complexity of the model.

Regularization

3
25
ol
151
! — .01
— .10
— .50
0.5 104
—15
2.0
0 L L L L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4

L, regularization profile for different values of p.

Types of Regularization

@ Ridge regression / Tikhonov regularization: p = 2 (Euclidean norm)
@ LASSO: p = 1 (Manhattan norm)
@ Sparsity-inducing regularization: p < 1 (nonconvex for p < 1)

@ Elastic net' regularization: mixed L,/L, penalty:

N
mein % ZL(yi; folz)) +A[(1— a)|6]13 + a|6]]1]

— L
— L2
10 Elastic Net

-15 -1.0 —0.5 0.5 1.0 15

0.0
61
TFigure source: http:/scikit-learn.sourceforge.net

http://statweb.stanford.edu/~tibs/lasso.html

Regularized linear regression

A new loss or error function to minimize

Ry (0,60) = > (yn — 0", —00)° + A|6]3

n

where)\ > 0 controls the model complexity, “shrinking” weights towards 0.

@ If A\ —» +oo, then

o~

-0

@ If A — 0, back to normal OLS (Ordinary Least Squares).

For regularized linear regression: the solution changes very little (in form)
from the OLS solution

argmin > (y, — 0", — 00)> + A|6]13 = & = (X"X + A1) X"y

and reduces to the OLS solution when \ = 0, as expected.

As long as \ > 0, the optimization problem remains convex.

Example: overfitting with polynomials

Our regression model
M
y=2 Oma"
m=1

Regularization would discourage large parameter values as we saw with the
OLS solution, thus potentially preventing overfitting.

M=0 M=1 M=3 M=9
0o 0.19 0.82 0.31 0.35
01 -1.27 7.99 232.37
02 -25.43 -56321.83
03 17.37 48568.31
04 -231639.30
05 640042.26
06 -1061800.52
07 1042400.18
0 -557682.99
09 125201.43

Overfitting in terms of A

Overfitting is reduced from complex model to simpler one with the help of
increasing regularizers

A vs. residual error shows the difference of the model performance on
training and testing dataset

Training
Test

-35 -30 mA -25 -20

Supervised Learning \Regularization

The effect of A

Large)\ attenuates parameters towards 0

InA=-00 InA=-18 InA=0
fo 0.35 0.35 0.13
01 232.37 4.74 -0.05
02 -5321.83 -0.77 -0.06
03 48568.31 -31.97 -0.06
04 -231639.30 -3.89 -0.03
05 640042.26 55.28 -0.02
fs | -1061800.52 41.32 -0.01
0, | 1042400.18 -45.95 -0.00
05 -557682.99 -91.53 0.00
O 125201.43 72.68 0.01

The effect of A

Increasing A reduces variance (left) and increases bias (right)?.

Variance Bias
¢‘ nA=26 Y' ///7,\
S

2Bishop PRML Figure 3.5

SIEEEARCEGTI Regularization

L, promotes sparsity

92 'y 92 'y

© O

\ \ 01
L, regularization often leads to optimal solutions with many zeros, i.e., the

regression function depends only on the (small) number of features with
non-zero parameters. figure 3.4 of PRML.

Y
"

Regularization in R demo

http://www.stats.ox.ac.uk/~palamara/teaching/SML19/
lregularization.html

http://www.stats.ox.ac.uk/~palamara/teaching/SML19/regularization.html
http://www.stats.ox.ac.uk/~palamara/teaching/SML19/regularization.html

What if XTX is not invertible?

Can you think of any reasons why that could happen?

Answer 1: N < D. Intuitively, not enough data to estimate all the parameters.

Answer 2: X columns are not linearly independent. Intuitively, there are two
features that are perfectly correlated. In this case, solution is not unique.

Supervised Learning \Regularization

Ridge regression

Intuition: what does a non-invertible X* X mean? Consider the SVD of this
matrix:

A0 0 0

0 X O 0
xx=v| o -« -« . 0l|VT

0 -« -+ X\ O

0 --- -~ 0 0

where \y > Xy >--- X\, >0andr < D.

Regularization can fix this problem by ensuring all singular values are

non-zero
XTX + M =Vdiagh + A\ Aa+ A, -, AV T

where A > 0 and I is the identity matrix

' Computational and numerical optimization
Computational complexity

Bottleneck of computing the solution? The OLS problem has a simple,
closed-form solution. But computing it involves a number of matrix operations:

0=(X"X)" X"y

Matrix multiply of XTX ¢ R(C+1x(D+1)
Inverting the matrix X T X

How many operations do we need?
@ O(ND?) for matrix multiplication

@ O(D?) (e.g., using Gauss-Jordan elimination) or O(D?:37®) (recent
theoretical advances) for matrix inversion

@ Impractical for very large D or N

@ As an alternative, we could use numerical methods. This type of
approach is widely used in several other machine learning algorithms.
These methods are often the only available option, since sometimes we
don’t have a closed form solution available.

‘Computational and numerical optimization
Alternative method: an example of using numerical
optimization

(Batch) Gradient descent

e Initialize 6 to 6°) (e.g., randomly); set ¢ = 0; choose 7 > 0
@ Loop until convergence

@ Compute the gradient
VRy(0) = X" (X0 —y)
@ Update the parameters
0t =9 — VRN (0)
Q@it—t+1

What is the complexity of each iteration?

Gradient Descent

fiw)

Start at a random point

Gradient Descent

fiw)

Start at a random point

Determine a descent direction

Gradient Descent

fiw)

Start at a random point

Determine a descent direction
Choose a step size

Gradient Descent

fiw)

Start at a random point

Determine a descent direction
Choose a step size
Update

Gradient Descent

fiw)

Start at a random point

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

fiw)

Start at a random point
Repeat
| Determine a descent direction
Choose a step size
Update
Until stopping criterion is satisfied

Gradient Descent

fiw)

Start at a random point
Repeat
| Determine a descent direction
Choose a step size
Update
Until stopping criterion is satisfied

Gradient Descent

fiw)

Start at a random point
Repeat
Determine a descent direction
| Choose a step size
Update
Until stopping criterion is satisfied

Gradient Descent

fiw)

Start at a random point
Repeat
Determine a descent direction
Choose a step size
| Update
Until stopping criterion is satisfied

w* w2 wi wo

Gradient Descent

fiw)

Start at a random point

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

W* e W2 Wi Wo

Gradient descent

h(.) (:L')

Price $ (in 1000s)

oW A u o N
o (=] o o o o
o =) o (=] (=] (=]

—-
o
S

h(x) =-900-0.1 x

Training data I
— Current hypothesis

o

1000

2000 3000 4000
Size (feetz)

Ry (61)

0.1
0.2
0.3
0.4

05 . -) .
-1000 -500 0 500 1000 1500
)

2000

Gradient descent

h(.) (:L')

Price $ (in 1000s)

oW A u o N
o (=] o o o o
o =) o (=] (=] (=]

—-
o
S

-0.1
1 -0.2

-0.3
Training data I
— Current hypothesis

o

0.4
1000 2000 3000 4000

Size (feet®)

-0,5
-1000

Ry (61)

500 1000 1500
0y

-500 0

2000

Gradient descent

h(.) (:L')

w
=3
S

Price $ (in 1000s)

Training data
— Current hypothesis

1000

2000 3000 4000

Size (feet®)

Ry (61)

-0.1
-0.2
-0.3
-0.4

-0,5
-1000

-500 0 500 1000 1500
bo

2000

Supervised Learning \Computational and numerical optimization

Gradient descent

h(.) (:L')

Price $ (in 1000s)

voow A 0 o
o (=] o o o
S 3 53 3 3

—-
o
S

Training data I
— Current hypothesis

o

1000 2000 3000

Size (feet®)

4000

-0.1
-0.2
-0.3
-0.4

-0,5
-1000

Ry (61)

1000 1500

500 0 500
0y

2000

Supervised Learning \Computational and numerical optimization

Gradient descent

h(.) (:L')

Price $ (in 1000s)

oW A u o N
o (=] o o o o
o =) o (=] (=] (=]

—-
o
S

Training data I
— Current hypothesis
2000 3000 4000
Size (feet®)

o

1000

-0.2
0.3
0.4

-0,5
-1000

Ry (61)

1000 1500

500 0 500
0y

2000

Gradient descent

h(.) (:L')

Price $ (in 1000s)

oW A u o N
o (=] o o o o
o =) o (=] (=] (=]

—-
o
S

-0.1
1 -0.2

-0.3
Training data I
— Current hypothesis

o

0.4
1000 2000 3000 4000

Size (feet®)

-0,5
-1000

Ry (61)

500 1000 1500
0y

-500 0

2000

Supervised Learning \Computational and numerical optimization

Gradient descent

h(.) (:L')

Price $ (in 1000s)

oW A u o N
o (=] o o o o
o =) o (=] (=] (=]

—-
o
S

Training data I
— Current hypothesis
2000 3000 4000
Size (feet®)

o

1000

-0.1
-0.2
-0.3
-0.4

-0,5
-1000

Ry (61)

1000 1500

500 0 500
0y

2000

Supervised Learning \Computational and numerical optimization

Gradient descent

h(.) (:L')

Price $ (in 1000s)

oW A u o N
o (=] o o o o
o =) o (=] (=] (=]

—-
o
S

Training data I
— Current hypothesis
2000 3000 4000
Size (feet®)

o

1000

-0.2
0.3
0.4

-0,5
-1000

Ry (61)

1000 1500

500 0 500
0y

2000

Supervised Learning \Computational and numerical optimization

Gradient descent

h(.) (:L')

w A o N
S o o o 9
S &5 &5 S S

Price $ (in 1000s)

1)
=1
S

100 Training data I
— Current hypothesis
0

1000 2000 3000

Size (feet®)

4000

-0.1
-0.2
-0.3
-0.4

-0,5 - -
-1000 -500 0 500

Ry (61)

1500

1000

2000
bo

Seeing in action

Choosing the right 7 is important

small) is too slow? large 7 is too unstable?

To see if gradient descent is working, print out function value at each
iteration.

o The value should decrease at each iteration.

o Otherwise, adjust 7.

‘Computational and numerical optimization
Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time
e Initialize 6 to 6 (anything reasonable is fine); set t = 0; choose n > 0

@ Loop until convergence

@ randomly choose training sample x:
@ Compute its contribution to the gradient

g = (mze(t) — Y1) T

© Update the parameters
o+l — g(t) _ ng,
Qt+t+1

How does the complexity per iteration compare with gradient descent?

' Computational and numerical optimization
Gradient descent: mini-summary

@ Batch gradient descent computes the exact gradient.
@ Stochastic gradient descent approximates the gradient with a single data
point; lts expectation equals the true gradient.
@ Mini-batch variant: trade-off between accuracy of estimating gradient and
computational cost
@ Similar ideas extend to other ML optimization problems.
e For large-scale problems, stochastic gradient descent often works well.

Classification

~

>

A

A

@
«®
&
o %

Classification

~ ++ +
"
S

S
S
S
S
N
N
S
S
S
S
S
-

AL
’ o
P
»

____Classioaion
Recall: Loss function

@ Suppose we made a prediction Y = f(X) €) based on observation of
X.

@ How good is the prediction? We can use a loss function
L:Y x Y~ RT to formalize the quality of the prediction.

@ Typical loss functions:
e Squared loss for regression

L(Y, f(X)) = (f(X) = Y)*.
o Absolute loss for regression

L(Y, f(X)) = |f(X) = Y].
o Misclassification loss (or 0-1 loss) for classification

0 f(X)=Y
MKﬂXD={1i%8¢Y~
Many other choices are possible, e.g., weighted misclassification loss.
@ In classification, if estimated probabilities (k) for each class k € Y are
returned, log-likelihood loss (or log loss) L(Y, p) = —log p(Y') is often
used.

The Bayes Classifier

@ What is the optimal classifier if the joint distribution (X,Y") were known?
@ The density g of X can be written as a mixture of K components
(corresponding to each of the classes):

K
= Z gk (T)
k=1

where, fork=1,... K,
o P(Y = k) = m, are the class probabilities,
@ gi(x) is the conditional density of X, given Y = k.

@ The Bayes classifier fpayes : @ — {1,..., K} is the one with minimum
risk:

R(f) =E[L(Y, (X))] = Ex [Ey x[L(Y; £(X))/X]]
= | B FCO)X = alg(o)is

@ The minimum risk attained by the Bayes classifier is called Bayes risk.
@ Minimizing E[L(Y, f(X))|X = x] separately for each z suffices.

The Bayes Classifier

@ Consider the 0-1 loss.
@ The risk simplifies to:

K
{ (v, F(X))|X = x} 3" Lk, f(2))P(Y = KX = z)
k=1
=1 -P(Y = f(2)|X = z)

@ The risk is minimized by choosing the class with the greatest probability
given the observation:

fBayes(z) = argmaxP(Y =k|X = x)
k=1,..,K
N Tk (7)
= argmaxi argmax Tpgi(x).
ek T Mgy (@) e

@ The functions = — mgx(x) are called discriminant functions. The
discriminant function with maximum value determines the predicted class
of x.

The Bayes Classifier: Example

A simple two Gaussians example: Suppose X ~ N (uy,1), where py = —1
and us = 1 and assume equal class probabilities 71 = m = 1/2.

gl(x)\/%exp((w—’;lY) and gg(x):\/lgrexp<—(x_21)2>.

a
marginal density

. e 1 if 0,
Optimal classification is fgayes(z) = arg max mpgi(z) = L <
k K 2 ifxz>0.

The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?

conditional densities
0. 0.
I
conditional densities
le-11 le-04
I

1le-18

1le-25

0.
1e-32

Looking at density in a log-scale, optimal classification is to select class 2 if
and only if x € [0.34,2.16].

Plug-in Classification

@ The Bayes Classifier:

fRayes(z) = argmaxmpgi(z).
k=1,.. K

@ We know neither the conditional densities g, nor the class probabilities
7Tk;!

@ The plug-in classifier chooses the class

f(z) = arg max 7p g (2),
k=1,..K

@ where we plugged in

e estimates 7 of mpyand k=1,..., K and
o estimates gi(x) of conditional densities,

@ Linear Discriminant Analysis is an example of plug-in classification.

	Supervised Learning
	Regularization
	Computational and numerical optimization

	Classification
	Bayes Classifier

