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Supervised Learning

Unsupervised learning:
Visualize, summarize and compress data.
To “extract structure” and postulate hypotheses about data generating
process from “unlabelled” observations x1, . . . , xN .

Supervised learning:
In addition to the observations of X, we have access to their response
variables / labels Y ∈ Y: we observe {(xi, yi)}Ni=1.
Types of supervised learning:

Regression: a numerical value is observed and Y = R.
Classification: discrete responses, e.g. Y = {+1,−1} or {1, . . . , K}.

The goal is to accurately predict the response Y on new observations of X,
i.e., to learn a function f : Rp → Y, such that f(X) will be close to the true
response Y .
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Regression Example: House Price

Retrieve historical sales records
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Features used to predict

We will use properties of the house, e.g. squared meters, distance from train
station, etc.

Goal: predict price of another house given these properties.
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Classification Example: Lymphoma

We have gene expression measurements X of N = 62 patients for p = 4026
genes. For each patient, Y ∈ {0, 1} denotes one of two subtypes of cancer.

> str(X)
’data.frame’: 62 obs. of 4026 variables:
$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868 ...
$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330 ...
$ Gene 3 : num -0.776 -0.588 0.409 -0.991 -1.517 ...
$ Gene 4 : num -0.474 -1.588 0.219 0.978 -1.604 ...
$ Gene 5 : num -1.896 -1.960 -1.695 -0.348 -0.595 ...
$ Gene 6 : num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 7 : num -1.875 -1.818 0.317 0.387 0.041 ...
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668 ...
$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458 ...
$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848 ...
$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541 ...
$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358 ...

> str(Y)
num [1:62] 0 0 0 1 0 0 1 0 0 0 ...

Goal: predict cancer subtype given gene expressions of a new patient.
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Regression VS Classification



Supervised Learning Loss and Risk

Loss function

Suppose we made a prediction Ŷ = f(X) ∈ Y after observing X.
How good is the prediction? We can use a loss function
L : Y × Y 7→ R+ to formalize the quality of the prediction.
Typical loss functions:

Squared loss for regression

L(Y, f(X)) = (f(X)− Y )2 .

Absolute loss for regression

L(Y, f(X)) = |f(X)− Y | .

Misclassification loss (or 0-1 loss) for classification

L(Y, f(X)) =
{

0 f(X) = Y
1 f(X) 6= Y

.

Many other choices are possible, e.g., weighted misclassification loss.
In classification, if estimated probabilities p̂(k) for each class k ∈ Y are
returned, log-likelihood loss (or log loss) L(Y, p̂) = − log p̂(Y ) is often
used.
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Risk

paired observations {(xi, yi)}Ni=1 viewed as i.i.d. realizations of a random
variable (X,Y ) on X × Y with joint distribution PXY

Risk
For a given loss function L, the risk R of a learned function f is given by the
expected loss

R(f) = EPXY [L(Y, f(X))] ,

where the expectation is with respect to the true (unknown) joint distribution of
(X,Y ).

The risk is unknown, but we can compute the empirical risk:

RN (f) = 1
N

N∑
i=1

L(yi, f(xi)).
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Hypothesis space and Empirical Risk Minimization

Hypothesis space H is the space of functions f under consideration.
Inductive bias: necessary assumptions on “plausible” hypotheses
Find best function in the space of hypothesis H minimizing the risk:

f? = argmin
f∈H

EX,Y [L(Y, f(X))]

Empirical Risk Minimization (ERM): minimize the empirical risk instead,
since we typically do not know PX,Y .

f̂ = argmin
f∈H

1
N

N∑
i=1

L(yi, f(xi))

How complex should we allow functions f to be? If hypothesis space H is
“too large”, ERM will overfit. Function

f̂(x) =
{
yi if x = xi,

0 otherwise

will have zero empirical risk, but is useless for generalization, since it has
simply “memorized” the dataset.
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Linear Regression

We will use the framework of linear regression, which should be familiar to
you, to illustrate some of the key concepts of supervised learning.
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Linear regression: predicting the sale price of a house

We will use the house price example.
(This will be our training data)
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Correlation between square footage and sale price

The size of a house is a good predictor of its price.

Note: colors are not important here



Linear regression

Roughly linear relationship

The size of a house is a good predictor of its price.

Sale price ≈ price_per_sqft × square_footage + fixed_expense



Linear regression Algorithm

Linear regression (ordinary least squares)

Setup
Input: x ∈ RD (covariates, predictors, features, etc)
Output: y ∈ R (responses, targets, outcomes, outputs, etc)
Hypotheses: hθ,θ0 : x→ y, with hθ,θ0(x) = θ0 +

∑
d θdxd = θ0 + θTx

θ = [θ1 θ2 · · · θD]T: weights, parameters. θ0 is the intercept (also called
bias).

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}
We will use the squared loss (differentiable):

(sale price - prediction)2 = (yn − hθ(xn))2

Could use other loss functions, e.g. absolute loss:

|sale price - prediction| = |yn − hθ(xn)|



Linear regression Algorithm

How do we learn parameters?
Minimize prediction error on training data

Hypothesis:
y = hθ(x) = θ0 + θ1x

We chose to minimize the squared loss. Empirical risk:

RN (θ) = 1
N

N∑
n=1

(yn − hθ(xn))2



Linear regression Algorithm

Intuiton behind the squared loss

Assume x ∈ R

hθ(x) RN (θ1)
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Intuiton behind the squared loss

Assume x ∈ R

hθ(x) RN (θ1)



Linear regression Algorithm

Intuiton behind the squared loss
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Intuiton behind the squared loss

hθ(x) RN (θ0, θ1)
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Intuiton behind the squared loss

hθ(x) RN (θ0, θ1)



Linear regression Algorithm

Intuiton behind the squared loss

hθ(x) RN (θ0, θ1)



Linear regression Univariate solution

A simple case: x is just one-dimensional (D=1)

Squared loss
(dropping the 1/N for simplicity)

RN (θ) =
∑
n

[yn − hθ(xn)]2 =
∑
n

[yn − (θ0 + θ1xn)]2

Analytical solution
For linear regression, the minimization can be done in closed form.

Identify stationary points by taking derivative with respect to parameters
and setting to zero

∂RN (θ)
∂θ0

= 0⇒ −2
∑
n

[yn − (θ0 + θ1xn)] = 0

∂RN (θ)
∂θ1

= 0⇒ −2
∑
n

[yn − (θ0 + θ1xn)]xn = 0



Linear regression Univariate solution

∂RN (θ)
∂θ0

= 0⇒ −2
∑
n

[yn − (θ0 + θ1xn)] = 0

∂RN (θ)
∂θ1

= 0⇒ −2
∑
n

[yn − (θ0 + θ1xn)]xn = 0

Simplify these expressions to get “Normal Equations”

∑
yn = Nθ0 + θ1

∑
xn

∑
xnyn = θ0

∑
xn + θ1

∑
x2
n

We have two equations and two unknowns. Solving we get:

θ1 =
∑

(xn − x̄)(yn − ȳ)∑
(xi − x̄)2 and θ0 = ȳ − θ1x̄

where x̄ = 1
n

∑
n xn and ȳ = 1

n

∑
n yn.
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Why is minimizing RN sensible?

Probabilistic interpretation
Noisy observation model

Y = θ0 + θ1X + η

where η ∼ N (0, σ2) is a Gaussian random variable
Likelihood of one training sample (xn, yn)

p(yn|xn;θ) = N (θ0 + θ1xn, σ
2) = 1√

2πσ
e−

[yn−(θ0+θ1xn)]2

2σ2
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Probabilistic interpretation (cont’d)

Log-likelihood of the training data D (assuming i.i.d)

LL(θ) = logP (D)

= log
N∏
n=1

p(yn|xn) =
∑
n

log p(yn|xn)

=
∑
n

{
− [yn − (θ0 + θ1xn)]2

2σ2 − log
√

2πσ
}

= − 1
2σ2

∑
n

[yn − (θ0 + θ1xn)]2 − N
2 log σ2 − N log

√
2π

= −1
2

{
1
σ2

∑
n

[yn − (θ0 + θ1xn)]2 + N log σ2

}
+ const

What is the relationship between minimizing RN and maximizing the
log-likelihood?



Linear regression Probabilistic interpretation

Maximum likelihood estimation

Estimating σ, θ0 and θ1 can be done in two steps
Maximize over θ0 and θ1

max logP (D)⇔ min
∑
n

[yn − (θ0 + θ1xn)]2← That is RN (θ)!

Maximize over s = σ2 (we could estimate σ directly)

logP (D) = −1
2

{
1
σ2

∑
n

[yn − (θ0 + θ1xn)]2 + N log σ2

}
+ const

∂ logP (D)
∂s

= −1
2

{
− 1
s2

∑
n

[yn − (θ0 + θ1xn)]2 + N1
s

}
= 0

→ σ∗2 = s∗ = 1
N
∑
n

[yn − (θ0 + θ1xn)]2



Linear regression Multivariate solution in matrix form

Linear regression when x is D-dimensional
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Linear regression when x is D-dimensional

RN (θ) in matrix form

RN (θ) =
∑
n

[yn − (θ0 +
∑
d

θdxnd)]2 =
∑
n

[yn − θTxn]2

where we have redefined some variables (by augmenting)

x← [1 x1 x2 . . . xD]T, θ ← [θ0 θ1 θ2 . . . θD]T

which leads to

RN (θ) =
∑
n

(yn − θTxn)(yn − xT
nθ)

=
∑
n

θTxnx
T
nθ − 2ynxT

nθ + const.

=
{
θT

(∑
n

xnx
T
n

)
θ − 2

(∑
n

ynx
T
n

)
θ

}
+ const.
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RN(θ) in new notations

Design matrix and target vector

X =


xT

1
xT

2
...
xT

N

 ∈ RN×(D+1), y =


y1
y2
...
yN


Compact expression

RN (θ) = ||Xθ − y||22 =
{
θTXTXθ − 2

(
XTy

)T
θ
}

+ const
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Solution in matrix form

Compact expression

RN (θ) = ||Xθ − y||22 =
{
θTXTXθ − 2

(
XTy

)T
θ
}

+ const

Gradients of Linear and Quadratic Functions
∇xb>x = b

∇xx>Ax = 2Ax (symmetric A)
Normal equation

∇θRN (θ) ∝XTXθ −XTy = 0

This leads to the linear regression solution1

θ =
(
XTX

)−1
XTy

1Also see PRML book, Section 3.1.2 for a geometric interpretation.



Linear regression Multivariate solution in matrix form

Mini-Summary

Linear regression is the linear combination of features
f : x→ y, with f(x) = θ0 +

∑
d θdxd = θ0 + θTx

If we minimize residual sum of squares as our learning objective, we get
a closed-form solution of parameters
Probabilistic interpretation: maximum likelihood if assuming residual is
Gaussian distributed
D-dimensional case leads to compact expressions in matrix form.
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Nonlinear basis functions

Can we learn non-linear functions?

x

t

0 1

−1

0

1

We can use a nonlinear mapping

φ(x) : x ∈ RD → z ∈ RM

where M is the dimensionality of the new feature/input z (or φ(x)). Note that
M could be either greater than D or less than or the same.
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Nonlinear basis functions

Can we learn non-linear functions?
We can use a nonlinear mapping

φ(x) : x ∈ RD → z ∈ RM

For instance, we could use polynomials of increasing order, φk(xi) = xki

With the new features, we can apply our learning techniques to minimize our
errors on the transformed training data

for linear methods, prediction is still based on θTφ(x)
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Regression with nonlinear basis functions

Residual sum squares ∑
n

[θTφ(xn)− yn]2

where θ ∈ RM , the same dimensionality as the transformed features φ(x).

The linear regression solution can be formulated with the new design
matrix

Φ =


φ(x1)T

φ(x2)T

...
φ(xN )T

 ∈ RN×M , θLMS =
(
ΦTΦ

)−1 ΦTy
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Regression with nonlinear basis functions
Polynomial basis functions

φ(x) =


1
x
x2

...
xM

⇒ f(x) = θ0 +
M∑
m=1

θmx
m

Fitting samples from a sine function: underfitting as f(x) is too simple

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1



Nonlinear basis functions

Adding high-order terms

M=3

x

t

M = 3

0 1

−1

0

1

M=9: overfitting

x

t

M = 9

0 1

−1

0

1

More complex features lead to better results on the training data, but
potentially worse results on new data, e.g., test data!



Nonlinear basis functions

Overfitting

Parameters for higher-order polynomials are very large

M = 0 M = 1 M = 3 M = 9
θ0 0.19 0.82 0.31 0.35
θ1 -1.27 7.99 232.37
θ2 -25.43 -5321.83
θ3 17.37 48568.31
θ4 -231639.30
θ5 640042.26
θ6 -1061800.52
θ7 1042400.18
θ8 -557682.99
θ9 125201.43



Nonlinear basis functions

Overfitting can be quite disastrous

Fitting the housing price data with M = 7

Note that the price would go to zero (or negative) if you buy bigger ones!
This is called poor generalization/overfitting.
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