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“Deep Learning est mort.
Vive Differentiable Programming!” - Yann LeCun

Yeah, Differentiable Programming is little more than a
rebranding of the modern collection of Deep Learning
techniques, the same way Deep Learning was a rebranding
of the modern incarnations of neural nets with more than
two layers.

The important point is that people are now building a new
kind of software by assembling networks of parameterized
functional blocks and by training them from examples using
some form of gradient-based optimization....It’s really very
much like a regular program, except it’s parameterized,
automatically differentiated, and trainable/optimizable.
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Artificial
Intelligence




Artificial Intelligence

= Al problems are difficult and complex.

" Impossible to manually programme explicit solutions.

* Modern deep learning approach developed to tackle this difficulty
and complexity.

* We “programme” a solution space by specifying neural network
architecture and objective function.

* The system then searches in solution space by optimizing (learning) on
large data sets, taking advantage of modern computing hardware.
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Deep Learning Infrastructure

= Computational Infrastructure critical to deep learning (and ML):

= software instructures allow easy building of neural networks, automating
away most low-level operations.

 hardware allows fast training, and scalable productionisation.
* Culture of sharing code via open source releases.

= large datasets and difficult, shared, challenges pushing frontier forward.
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Learning Parameterised Functions

RS
0" = arg min -~ ;L(yia fo(x:)) + All0]

* Modern deep learning frameworks allow for construction and
learning of parameterised functions.

= Consists of basic building blocks composed into computation graphs.
= Highly expressive and flexible.

* Modular: reusable complex building blocks are themselves composed of
simpler building blocks.

= Computation graph structure expresses prior knowledge.

* Learning using stochastic gradient descent (on multiple CPUs,
GPUs, clusters) is automated and scalable.
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Building Blocks




Neural Networks
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Building Blocks

= Linear/fully-connected/dense = softmax
r— Wz +0b softmax(xy,...,T,)
= sigmoid _ ( exp (1) exp(zn) )
1 >oexp(x;) "7 ). exp(x;)
o(x) =
1 4+ exp(—)
= Losses
= tanh
tanh(x) _ exp(:z:) — exp(—:zj) Crossgntropy t y Zt log y;
exp(x) + exp(—)
Square(t,y) = ||t — yl|3
= relu Hinge(t,y) = max(0,1 -t - y)

relu(z) = max(0, x)
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Building Blocks

= Convolution

0

= max pooling

P‘max} 0
>‘max} 0
>‘max} -0
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Optimization




Gradient Descent

1o
0* = arg min 2_; L(y;, fo(x;))] + AD(8||6o)

= lterative procedure:

1=1

1 n
P+ = g0 ¢, (n > VL(yi, fo (1)) + AV DO 'QO))

* Two questions:
= scalability to large data sets?

* how to compute derivatives?
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Stochastic Gradient Descent

= Estimate gradient of loss using “minibatches” of data:

pli+1) — g(t) _ €¢ (‘Bt Z VL yu Jo) (ZE’L)) T AVD(H(t)HHO))

1€ B

* Reduce computation cost from O(n) to O(|Bq|).

= More data is always better, as long as you have the compute to handle it.

= Stochastic gradients are unbiased estimates = convergence theory.

= Stochasticity can help regularise and alleviate over-fitting

IR
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Automatic Differentiation

= Two major approaches: forward mode, and reverse mode AD.

inputs intermediate values outputs
Oh Ok
(95137; X +H—»0O—» h >O>g »(}—> f ahj
Vintermediate nodes h; Vintermediate nodes h;
Vinput nodes x; ¥ Youtput nodes f;
a > f
Vv
b g
W
h
— 3.
——/ C
y

* Forward: O(#inputs*#nodes). Reverse: O(#outputs*#nodes).
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Some Examples




Convolutional Networks (Convnets)
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* Both filter banks and layers are 4D tensors (arrays of numbers).
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Hierarchy of Parts
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Convnet Implementation in Keras

(x_train, y_train), (x_test, y_test) =
cifar10.load_data()

X_train = x_train.astype('float32')

X_test = x_test.astype('float32')

X_train /= 255

X_test /=255

y_train = keras.utils.to_categorical(y_train,
num_classes)

y_test = keras.utils.to_categorical(y_test,
num_classes)

model = Sequential()
model.add(Conv2D(32, (3, 3), padding=‘same’,
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

N S

A~

model.add(Conv2D(64, (3, 3), padding='same’))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
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SB2b/SM4 - Deep Learning

model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

opt = keras.optimizers.rmsprop(Ir=0.0001,
decay=1e-6)

model.compile(loss="'categorical_crossentropy’,
optimizer=opt,
metrics=['accuracy'))

model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
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GoogleNet Architecture

/g\\ OXFORD ‘(' ) DeepMind SB2b/SM4 - Deep Learning ywteh



Sequence Models

= Natural language processes

PRP VBZ NNS INDET NN
She sells seashells by the seashore

= Genomics

Regulation Introns
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Recurrent Neural Networks

PRP VBZ NNS IN DET
* A A * A
5 3 ) } A

She sell seashells by the
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Recurrent Neural Networks

PRP VBZ NNS IN DET NN
* A A * A A
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She sell seashells by the seashore
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Recurrent Neural Networks

PRP VBZ NNS IN DET NN
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She sell seashells by the seashore
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Recurrent Neural Networks

ht — O'(Wth —+ bh)
2y = tanh(W,z;_1 + Woay + b))

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM)
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Machine Translation with seqg2seq

<EOS>

_)E

—
—
—
—
s —>» —>» x
X —» —>» <
n — —> N
—>

>
oy
(@]

<EOS>

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-
with-neural-networks
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Attention

It is fun and easy to do sentiment analysis! —» 2%

| don’t like reading all of the negative Tweets! ——————————p I
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Attention

Key-value memory store

K, 4

K, Va
Query Q

K; V3

Ky Vy
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Attention

Key-value memory store

K, 4

K, Va
Query Q

K; V3

Ky Vy

Match quality:  m; = OK'
Attention mask: (ay,...,a,) = softmax(m;, ...,m,)

n

Output: Z a.Vv.

=1
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Attention

Key-value memory store

K, 4

K, Va
Query Q

K; V3

K, V,

Match quality:  m; = OK'
Attention mask: (ay,...,a,) = softmax(m,,...,m)

n

Output: Z a.Vv.

i=1
Attention(Q, K, V) = softmax (QKT/\/c_i> %

8;5;‘8;&) ‘ ' DeepMind SB2b/SM4 - Deep Learning ywteh



Attention

PRP VBZ NNS INDET NN

A “cross-attention”

A “self-attention”

I DU D

“self-attention”

She sells seashells by the seashore
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Attention
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https://papers.nips.cc/paper/7181-attention-is-all-you-need
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Language Modelling

SYSTEM PROMPT  |n a shocking finding, scientist discovered a herd of unicorns living in a

(HUMAN-WRITTEN] remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect
English.

MODEL COMPLETION The scientist named the population, after their distinctive horn,
(MACHINE-WRITTEN, Qvid’s Unicorn. These four-horned, silver-white unicorns were
s previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this
odd phenomenon 1is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of
La Paz, and several companions, were exploring the Andes
Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be
a natural fountain, surrounded by two peaks of rock and silver
Snow.

https://blog.openai.com/better-language-models/
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Image Caption Generation

black, orange and white cat laying on some paper on a desk.

cat with mussed up fur sitting discontentedly on a messy desk.

a cat lazily sits in the middle of a cluttered desk.

a cat sitting on top of a pile of papers on a desk.

a dark multicolored cat laying on a table cluttered with various items.

|
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Show Attend and Tell

14x14 Feature Map A
bird

flying
over

S

a
body
of
water
L. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation

http://kelvinxu.github.io/projects/capgen.html
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Show Attend and Tell

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

» B EECN .
 PERREEFRRR

bird flying over body water

Figure 3 Examples of attendmg to the correct object (white indicates the attended reglons underlines indicated the corresponding word)

A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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More Resources

= Tutorials and courses:

= http://www.cs.ucl.ac.uk/current _students/syllabus/compgi/
compgi2? advanced deep learning and reinforcement learning/

= https://www.coursera.org/learn/machine-learning

= http://videolectures.net/deeplearning?2015 salakhutdinov_deep learning/

= https://www.youtube.com/watch?v=F1ka6a1359I

= Summer schools: MLSS, DLSS, RLSS

= Conferences: NIPS, ICML, UAI, AISTATS
= Journals: JMLR

= ArXiv
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