
Statistical Machine Learning
Hilary Term 2019

Pier Francesco Palamara
Department of Statistics

University of Oxford

Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML19.html

February 22, 2019

http://www.stats.ox.ac.uk/~palamara/SML19.html

Decision trees

Many decisions are tree-structured
1 0 8 CHAPTER 8 . TREE-BASED CLASSIFIERS

Figure 8 .1 : Page taken from the NHS Direct self-help guide (left) and corresponding decision tree
(right)

and the entropy
i(p) = −

∑

l

pl lo gpl,

where p = (p1, . . . , pL) denotes the empirical distribution of the class labels in the partition.4 Figure
8 .3 displays the Gini coefficient and the entropy for the two-class case. If the partition consists of only
one class (frequency p1 either 0or 1), the impurity is 0. Are both classes equally present (frequency
p1 = 0.5), then both impurity measures are maximal.

When splitting a node with empirical distribution p into two nodes with empirical distributions pl

(left node) and pr (right node) the decrease in impurity is

i(p)− (πli(pl) + πri(pr)) ,

where πl is the proportion of observations that is allocated to the left node and πr = 1− πl is the
proportion of observations allocated to the right node.

We now can use the decrease in impurity to “grow” the tree. Starting with one partition (i.e.
the root node), we repeatedly split all terminal nodes such that each time th decrease in impurity is
maximal. We can repeat this until no more decrease is possible. Figure 8 .4 shows the decision tree
for the Pima Indians data set. The Pima Indians data set was collected by the US National Institute of

4 It might occur that pl = 0, in this case we define 0 lo g0 := 0.

Decision trees

Many decisions are tree-structured

1 0 8 CHAPTER 8 . TREE-BASED CLASSIFIERS

Figure 8 .1 : Page taken from the NHS Direct self-help guide (left) and corresponding decision tree
(right)

and the entropy
i(p) = −

∑

l

pl lo gpl,

where p = (p1, . . . , pL) denotes the empirical distribution of the class labels in the partition.4 Figure
8 .3 displays the Gini coefficient and the entropy for the two-class case. If the partition consists of only
one class (frequency p1 either 0or 1), the impurity is 0. Are both classes equally present (frequency
p1 = 0.5), then both impurity measures are maximal.

When splitting a node with empirical distribution p into two nodes with empirical distributions pl

(left node) and pr (right node) the decrease in impurity is

i(p)− (πli(pl) + πri(pr)) ,

where πl is the proportion of observations that is allocated to the left node and πr = 1− πl is the
proportion of observations allocated to the right node.

We now can use the decrease in impurity to “grow” the tree. Starting with one partition (i.e.
the root node), we repeatedly split all terminal nodes such that each time th decrease in impurity is
maximal. We can repeat this until no more decrease is possible. Figure 8 .4 shows the decision tree
for the Pima Indians data set. The Pima Indians data set was collected by the US National Institute of

4 It might occur that pl = 0, in this case we define 0 lo g0 := 0.

Examples

Many decisions are tree-structured
Employee salary

Degree

High School College Graduate

Work Experience Work Experience Work Experience

< 5yr > 5yr

$𝑿𝟏 $𝑿𝟐

< 5yr > 5yr

$𝑿𝟑 $𝑿𝟒

< 5yr > 5yr

$𝑿𝟓 $𝑿𝟔

Examples

Terminology

Parent of a node c is the immediate predecessor node.
Children of a node c are the immediate successors of c, equivalently
nodes which have c as a parent.
Branch are the edges/arrows connecting the nodes.
Root node is the top node of the tree; the only node without parents.
Leaf nodes are nodes which do not have children.
Stumps are trees with just the root node and two leaf nodes.
A K≠ary tree is a tree where each node (except for leaf nodes) has K
children. Usually working with binary trees (K = 2).
Depth of a tree is the maximal length of a path from the root node to a
leaf node.

Examples

Terminology

Examples

A tree partitions the feature space

A Decision Tree is a hierarchically organized structure, with each node
splitting the data space into pieces based on value of a feature.

Equivalent to a partition of Rd into K disjoint feature regions {Rj , . . . , Rj},
where each Rj µ IRp

On each feature region Rj , the same decision/prediction is made for all
x œ Rj .

A

B

C D

E

✓1 ✓4

✓2

✓3

x1

x2

x1 > ✓1

x2 > ✓3

x1 6 ✓4

x2 6 ✓2

A B C D E

Examples

Partitions and regression trees

Examples

Learning a tree model

Three things to learn:
1 The structure of the tree.
2 The threshold values (◊i).
3 The values for the leaves

(A, B, . . .).

x1 > ✓1

x2 > ✓3

x1 6 ✓4

x2 6 ✓2

A B C D E

Algorithm

Classification Tree

Classification Tree:
Given the dataset D = (x1, y1), . . . , (xn, yn) where
xi œ IR, yi œ Y = {1, . . . , m}.
minimize the misclassification error in each leaf
the estimated probability of each class k in region Rj is simply:

—jk =
q

i II(yi = k) · II(xi œ Rj)q
i II(xi œ Rj)

This is the frequency in which label k occurs in the leaf Rj . (These
estimates can be regularized.)

Algorithm

Example: A tree model for deciding where to eat

Decide whether to wait for a table at a restaurant, based on the following
attributes (Example from Russell and Norvig, AIMA)

Alternate: is there an alternative restaurant nearby?
Bar: is there a comfortable bar area to wait in?
Fri/Sat: is today Friday or Saturday?
Hungry: are we hungry?
Patrons: number of people in the restaurant (None, Some, Full)
Price: price range ($, $$, $$$)
Raining: is it raining outside?
Reservation: have we made a reservation?
Type: kind of restaurant (French, Italian, Thai, Burger)
Wait Estimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Algorithm

Example: A tree model for deciding where to eat

Choosing a restaurant
(Example from Russell & Norvig, AIMA)

Algorithm

A possible decision tree

Is this the best decision tree?

Algorithm

Decision tree training/learning

For simplicity assume both features and outcome are binary (take Y ES/NO
values).

Algorithm 1 DecisionTreeTrain (data, features)
1: guess Ω the most frequent label in data
2: if all labels in data are the same then
3: return LEAF (guess)
4: else
5: f Ω the “best” feature œ features

6: NO Ω the subset of data on which f = NO
7: Y ES Ω the subset of data on which f = Y ES
8: left Ω DecisionTreeTrain (NO, features ≠ {f})
9: right Ω DecisionTreeTrain (Y ES, features ≠ {f})

10: return NODE(f, left, right)
11: end if

Algorithm

First decision: at the root of the tree

Which attribute to split?

Idea: use information gain to choose
which attribute to split

Algorithm

Information gain
Basic idea: Gaining information reduces uncertainty
Given a random variable X with K different values, (a1, . . . , aK), we can
use different measures of “purity” of a node:

Entropy (measured in bits, max= 1):

H[X] = ≠
Kÿ

k=1

P (X = ak) ◊ log2 P (X = ak)

Misclassification error (max= 0.5): if c is the most common class label

1 ≠ P (X = c)
GINI Index (max= 0.5):

Kÿ

k=1

P (X = ak)(1 ≠ P (X = ak))

E.g. compare splits [(300, 100), (100, 300)] and [(200, 400), (200, 0)], taking
average of scores for nodes produced (but note different max values). which
node will each measure prefer, and would you agree?

C4.5 Tree algorithm: Classification uses entropy to measure uncertainty.
CART (class. and regression tree) algorithm: Classification uses Gini.

Algorithm

Different measures of uncertainty

Algorithm

Which attribute to split?

!
!
!
!
!
!
Patron vs. Type?!

By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie,
smaller uncertainty (0.45 bit)!

By choosing Type, we end up with uncertainty of 1 bit.!

Thus, we choose Patron over Type.!

Algorithm

Uncertainty if we go with “Patron”

For “None” branch!

!

For “Some” branch!

!

For “Full” branch!

!

For choosing “Patrons”!

weighted average of each branch: this quantity is called conditional entropy!

!

�
�

0

0 + 2
log

0

0 + 2
+

2

0 + 2
log

2

0 + 2

�
= 0

�
�

4

4 + 0
log

4

4 + 0
+

4

4 + 0
log

4

4 + 0

�
= 0

2

12
� 0 +

4

12
� 0 +

6

12
� 0.9 = 0.45

�
�

2

2 + 4
log

2

2 + 4
+

4

2 + 4
log

4

2 + 4

�
� 0.9

Algorithm

Conditional entropy for Type

For “French” branch!

!

For “Italian” branch!

!

For “Thai” and “Burger” branches!

!

For choosing “Type”!

weighted average of each branch:!

!

�
�

1

1 + 1
log

1

1 + 1
+

1

1 + 1
log

1

1 + 1

�
= 1

�
�

1

1 + 1
log

1

1 + 1
+

1

1 + 1
log

1

1 + 1

�
= 1

�
�

2

2 + 2
log

2

2 + 2
+

2

2 + 2
log

2

2 + 2

�
= 1

2

12
� 1 +

2

12
� 1 +

4

12
� 1 +

4

12
� 1 = 1

Algorithm

Do we split on “Non” or “Some”?

!

No, we do not!
The decision is deterministic, as seen from the training data

Algorithm

next split?
We will look only at the 6 instances with

Patrons == Full

Algorithm

Greedily, we build

Algorithm

An Algorithm for Classification Trees
Assume binary classification for simplicity (yi œ {0, 1}), and numerical features
(see Section 9.2.4 in ESL for categorical).

1 Start with R1 = X = Rp.
2 For each feature j = 1, . . . , p, for each value v œ R that we can split on:

1 Split data set:

I< = {i : x(j)
i < v} I> = {i : x(j)

i Ø v}
2 Estimate parameters:

—< =
q

iœI<
yi

|I<| —> =
q

iœI>
yi

|I>|

3 Compute the quality of split, e.g., using entropy (note: we take 0 log 0 = 0)

|I<|
|I<| + |I>|B(—<) + |I>|

|I<| + |I>|B(—>)

where
B (q) = ≠ [q log2(q) + (1 ≠ q) log2(1 ≠ q)]

3 Choose split, i.e., feature j and value v, with maximum quality.
4 Recurse on both children, with datasets (xi, yi)iœI< and (xi, yi)iœI> .

Algorithm

Comparing the features with conditional entropy

Given two random variables X and Y , conditional entropy is

H[Y |X] =
ÿ

k

P (X = ak) ◊ H[Y |X = ak]

In the algorithm,
X: the attribute to be split (e.g. patrons)
Y : the labels (e.g. wait or not)
Estimated P (X = ak) is the weight in the quality calculation

Relation to information gain

Gain[Y, X] = H[Y] ≠ H[Y |X]
When H[Y] is fixed, we need only to compare conditional entropy.
Minimizing conditional entropy is equivalent to maximizing information gain.

Patrons vs Type

Gain[Y, Patrons] = H[Y] ≠ H[Y |Patrons] = 1 ≠ 0.45 = 0.55
Gain[Y, Type] = H[Y] ≠ H[Y |Type] = 1 ≠ 1 = 0

Algorithm

What is the optimal Tree Depth?

We need to be careful to pick an appropriate tree depth.
If the tree is too deep, we can overfit.
If the tree is too shallow, we underfit
Max depth is a hyper-parameter that should be tuned by the data.
Alternative strategy is to create a very deep tree, and then to prune it.

Algorithm

Control the size of the tree

We would prune to have a smaller one

If we stop here, not all training sample would be classified correctly.

More importantly, how do we classify a new instance?

We label the leaves of this smaller tree with the majority
of training samples’ labels

Algorithm

Example

Example

We stop after the root (first node)!

!

!

!

!

!

!

!

Wait: yes Wait: noWait: no

Algorithm

Computational Considerations

Numerical Features
We could split on any feature, with any threshold
However, for a given feature, the only split points we need to consider are
the the n values in the training data for this feature.
If we sort each feature by these n values, we can quickly compute our
impurity metric of interest (cross entropy or others), skipping values
where labels are unchanged.

This takes O(d n log n) time (sorting n elements takes O(n log n) steps).

Categorical Features
Assuming q distinct categories, there are 2q≠1 ≠ 1 possible binary
partitions we can consider.
However, things simplify in the case of binary classification (or
regression, see Section 9.2.4 in ESL for details).

Algorithm

Summary of learning classification trees

Advantages
Easily interpretable by human (as long as the tree is not too big)
Computationally efficient
Handles both numerical and categorical data
It is parametric thus compact: unlike Nearest Neighborhood
Classification, we do not have to carry our training instances around
Building block for various ensemble methods (more on this later)

Disadvantages
Heuristic training techniques
Finding partition of space that minimizes empirical error is NP-hard.
We resort to greedy approaches with limited theoretical underpinning.
Unstable: small changes in input data lead to different trees. Mitigated by
ensable methods (e.g. random forests, coming up).

Algorithm

Regression Tree

Regression Tree:
Given the dataset D = (x1, y1), . . . , (xn, yn) where
xi œ IR, yi œ Y = {1, . . . , m}.
minimize the squared loss (may use others!) in each leaf
the parameterized function is:

f̂(x) =
Kÿ

j=1
—j · II(x œ Rj)

Using squared loss, optimal parameters are:

—̂j =
qn

i=1 yi · II(xi œ Rj)qn
i=1 II(xi œ Rj)

i.e. the sample mean.

Algorithm

An Algorithm for Regression Trees
Assume numerical features (see Section 9.2.4 in ESL for categorical).

1 Start with R1 = X = Rp.
2 For each feature j = 1, . . . , p, for each value v œ R that we can split on:

1 Split data set:

I< = {i : x(j)
i < v} I> = {i : x(j)

i Ø v}

2 Estimate parameters:

—< =
q

iœI<
yi

|I<| —> =
q

iœI>
yi

|I>|

3 Quality of split: highest quality is achieved for minimum squared loss,
which is defined as

ÿ

iœI<

(yi ≠ —<)2 +
ÿ

iœI>

(yi ≠ —>)2

3 Choose split, i.e., feature j and value v, with maximum quality.
4 Recurse on both children, with datasets (xi, yi)iœI< and (xi, yi)iœI> .

Algorithm

Example of Regression Trees

Algorithm

Example of Regression Trees

Algorithm

Example of Regression Trees

	Decision trees
	Examples
	Algorithm

