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Many decisions are tree-structured
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Decisi

Many decisions are tree-structured

Are you developing a rash that does not
fade when you press a giass tumbler or finger
against it?

no

Are you suffering from a stiff neck,
headache and d9 you find the light
nurts your eyes gnd/or you feeling
very sleepy and fonfused

Emergenc
("Dial 999

no

Is there sneeging, a runny
nose, a mild temperature,
a sore throat, and general
aches and pafns?

Emergency
("Dial 999") yes no

Are you feellng flushed
hot and swepty? Do

have a high temperature
(over 38 C or 100.4 F), a
headache, gs well as a
runny nose hnd general
aches and phins?

Self-care

ves no

Self-care Self-care
(basic)



Many decisions are tree-structured

@ Employee salary

Degree

High Sehool  college

Work Experience Work Experience Work Experience

$X, $X;  $X3 $X4 $Xs $X6



Terminology

Parent of a node c is the immediate predecessor node.

Children of a node ¢ are the immediate successors of ¢, equivalently
nodes which have c as a parent.

@ Branch are the edges/arrows connecting the nodes.
@ Root node is the top node of the tree; the only node without parents.
@ Leaf nodes are nodes which do not have children.

@ Stumps are trees with just the root node and two leaf nodes.

@ A K—ary tree is a tree where each node (except for leaf nodes) has K
children. Usually working with binary trees (K = 2).

@ Depth of a tree is the maximal length of a path from the root node to a
leaf node.



Terminology
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A tree partitions the feature space

@ A Decision Tree is a hierarchically organized structure, with each node
splitting the data space into pieces based on value of a feature.
e Equivalent to a partition of R, into K disjoint feature regions {R;,...,R;},

where each R; C IR
@ On each feature region R ;, the same decision/prediction is made for all

T € R;.
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Examples

Partitions and regression trees
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(a) General partition that cannot

(b) Partition of a two-dimensional
be obtained from recursive binary

feature space by recursive binary

splitting. splitting, as used in CART, applied
to some fake data.
X; <t
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(c) Tree corresponding to the partition  (d) A perspective plot of the prediction
in the top right panel. surface.



Learning a tree model

Three things to learn:
@ The structure of the tree.
@ The threshold values (6;).

@ The values for the leaves
(A, B,...).




Classification Tree

Classification Tree:
@ Given the dataset D = (z1,11), ..., (zn, yn) Where
v, e Ry, €Y ={1,...,m}.
@ minimize the misclassification error in each leaf
@ the estimated probability of each class k in region R ; is simply:

Bir = YoMy = k) -I(x; € Ry)
" >z € Ryj)

@ This is the frequency in which label k occurs in the leaf R;. (These
estimates can be regularized.)



Example: A tree model for deciding where to eat

Decide whether to wait for a table at a restaurant, based on the following
attributes (Example from Russell and Norvig, AIMA)

@ Alternate: is there an alternative restaurant nearby?

@ Bar: is there a comfortable bar area to wait in?

Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

Patrons: number of people in the restaurant (None, Some, Full)
Price: price range ($, $3$, $$$)

Raining: is it raining outside?

Reservation: have we made a reservation?

Type: kind of restaurant (French, Italian, Thai, Burger)

Wait Estimate: estimated waiting time (0-10, 10-30, 30-60, >60)



Example: A tree model for deciding where to eat

Choosing a restaurant
(Example from Russell & Norvig, AIMA)

Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
Xy T| F | F T |Some| $3% F T | French| 0-10 T
X, T| F | F T | Full $ F F | Thai |30-60 F
X3 F| T | F F |Some| § F F | Burger| 0-10 T
X, T| F | T| T | Full $ F F | Thai |10-30 T
X; T| F | T| F | Full | 388 F T | French| >60 F
Xs F| T | F T |Some| $$ T T | Italian| 0-10 T
X7 F| T F F | None| § T F | Burger| 0-10 F
X3 F| F | F T |Some| $$ T T | Thai | 0-10 T
Xy F T T F Full $ T F | Burger| >60 F
X0 T| T T T Full | $$$ F T | Italian | 10-30 F
Xn F| F | F F | None| §$ F F | Thai | 0-10 F
X T| T | T T | Full $ F F | Burger| 30-60 T

Classification of examples is positive (T) or negative (F)



A possible decision tree

| Reservation? || Fri'Sat? |
Yes

Yes

No Yes

Is this the best decision tree?



Decision tree training/learning

For simplicity assume both features and outcome are binary (take YES/NO
values).

Algorithm 1 DecisionTreeTrain (data, features)

. guess <+ the most frequent label in data

if all [abels in data are the same then
return LEAF (guess)

else

NO + the subset of data on which f = NO
Y ES + the subset of data on which f = Y ES
left < DecisionTreeTrain (NO, features — {f})
right < DecisionTreeTrain (YES, features — {f})
return NODE(f,left, right)

end if

TRV NO O N 2

—_




First decision: at the root of the tree

Which attribute to split?

000000 000000
000000 000000
None Some Full French Ttalian Thai Burger
0000 00 (] o 00 00
o000 (] o 00 o0

Patrons? is a better choice—gives information about the classification

Idea: use information gain to choose
which attribute to split



Information gain

@ Basic idea: Gaining information reduces uncertainty
@ Given a random variable X with K different values, (a1, ...,ax), we can
use different measures of “purity” of a node:
o Entropy (measured in bits, max= 1):

ZP k) X logy P(X = a)
o Misclassification error (max= 0.5): if ¢ is the most common class label
1-P(X =¢)
@ GINI Index (max= 0.5):
K
> P(X =a)(1 - P(X = a))
k=1

e E.g. compare splits [(300, 100), (100, 300)] and [(200, 400), (200, 0)], taking
average of scores for nodes produced (but note different max values). which
node will each measure prefer, and would you agree?

@ CA4.5 Tree algorithm: Classification uses entropy to measure uncertainty.
@ CART (class. and regression tree) algorithm: Classification uses Gini.



Different measures of uncertainty
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Algorithm

Which attribute to split?

000000
000000
None Some: Full French Ttalian Thai Burger
000 00 (] o 00 00
o0 (XX 1] o o oo o0

Patrons? is a better choice—gives information about the classification

Patron vs. Type?
By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie,

smaller uncertainty (0.45 bit)

By choosing Type, we end up with uncertainty of | bit.

Thus, we choose Patron over Type.



Uncertainty if we go with “Patron”

For “None” branch

0 0 2 2\
0+2 8042 " 0+2 ®012) "

T
For “Some” branch
4 4 4
— log + log > =0 None Some Full
(4+0 440 4+0 440 0000 00
For “Full” branch o0 o000

2 2 4 4

- 1 1 ~ 0.9
<2+4 %5124 °g2+4>

For choosing “Patrons”

weighted average of each branch: this quantity is called conditional entropy

p 4 6
S04 04 % 0.9 = 045



Algorithm

Conditional entropy for Type

For “French” branch 000000
000000
1 1 1 n 1 ) 1 1 &
- O; O = ype?
T+1 8141 "141 %141

T French Italian Thai Burger
For “Italian” branch 6 oo Y
(-] e o0 o0

1 1 1 + 1 ) 1 1
- 0] 0 =
T+1 %141 141 %141
For “Thai” and “Burger” branches

2 o2 22\
242 %942 942 ®oyo) T

For choosing “Type”

weighted average of each branch:

2 1-1-2 1-|-4 1-|-4 1=1
— % — % — % —*x1=
12 12 12 12



Algorithm

Do we split on “Non” or “Some”?

No, we do not

None Full
0000 00
o0 o000

The decision is deterministic, as seen from the training data



Algorithm

next split? 333822
Patrons?
We will look only at the 6 instances with Nono_— 5o Fu
Patrons == Full 0000 Soee
}:L\'amplc Attributes Laigoy
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X, T| F | F T |Some| $$$ F T | French| 0-10 T
X, T|F | F| T |Ful| $ F | F | Thai |30-60 F
X3 F| T | F| F |Some| $ F F | Burger| 0-10 T
X, T|F | T| T |Full| $§ F | F | Thai |10-30 T
X T| F | T| F | Full | $8 | F | T |French| >60 B
Xs F| T | F T |Some| $$ T T | Italian | 0-10 T
X7 F| T | F F | None| $ T F | Burger| 0-10 F
Xs F| F | F T |Some| $$ T T | Thai | 0-10 T
Xq F| T | T | F | Ful $ T F | Burger| >60 (=
X0 T| T | T| T | Full | $8$ F T | Italian | 10-30 F
Xn F| F F F | None| § F F | Thai | 0-10 F
X2 T| T | T| T |Full| $§ Is F | Burger| 30-60 T
Classification of examples is positive (T) or negative (F)



Greedily, we build

| Reservation? || Fri'Sat? |

Nol/\Yes




An Algorithm for Classification Trees

Assume binary classification for simplicity (y; € {0, 1}), and numerical features
(see Section 9.2.4 in ESL for categorical).
@ Startwith Ry = X = RP.
@ For each feature j = 1,...,p, for each value v € R that we can split on:
@ Split data set:

I<:{i::c<j><v} I>:{i:1:l(.j)2v}

i
@ Estimate parameters:
Ziel< Yi

<]

Ziel> Yi

B< = T

B> =
© Compute the quality of split, e.g., using entropy (note: we take 0log 0 = 0)

‘[<| |I>| B(ﬂ>)

78 +7
T+ L) T I

where
B(q) = —[glog,(q) + (1 — q) log,(1 — q)]

@ Choose split, i.e., feature j and value v, with maximum quality.
@ Recurse on both children, with datasets (z;,v:)icr. and (z;, y;)icr- -



Comparing the features with conditional entropy

@ Given two random variables X and Y, conditional entropy is

HY|X] = ZP ) x H[Y|X = ay]

@ In the algorithm,
e X: the attribute to be split (e.g. patrons)
e Y the labels (e.g. wait or not)
e Estimated P(X = ax) is the weight in the quality calculation

@ Relation to information gain
Gain[Y, X] = H[Y] — H[Y|X]

e When H[Y] is fixed, we need only to compare conditional entropy.
e Minimizing conditional entropy is equivalent to maximizing information gain.

Patrons vs Type

Gain[Y, Patrons] = H[Y] — H[Y |Patrons] = 1 — 0.45 = 0.55
GainlY,Type] = H[Y] - H[Y|Type] =1-1 =0



What is the optimal Tree Depth?

@ We need to be careful to pick an appropriate tree depth.

@ If the tree is too deep, we can overfit.

@ If the tree is too shallow, we underfit

@ Max depth is a hyper-parameter that should be tuned by the data.

@ Alternative strategy is to create a very deep tree, and then to prune it.

09

0.85
08 |
075

;
07 |

Accuracy

0.65

06 On training data ——
On test data ----

0.55

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)



Control the size of the tree

We would prune to have a smaller one

No Yes No Yes

If we stop here, not all training sample would be classified correctly.
More importantly, how do we classify a new instance?

We label the leaves of this smaller tree with the majority
of training samples’ labels




Example

Example

We stop after the root (first node)

000000
000000
None Some Full
0000 00
o0 T 0000

Wait: no Wait: yes Wait: no



Algorithm

Computational Considerations

Numerical Features
@ We could split on any feature, with any threshold
@ However, for a given feature, the only split points we need to consider are
the the n values in the training data for this feature.

@ If we sort each feature by these n values, we can quickly compute our
impurity metric of interest (cross entropy or others), skipping values
where labels are unchanged.

o This takes O(d nlogn) time (sorting n elements takes O(nlogn) steps).

Categorical Features
@ Assuming q distinct categories, there are 27! — 1 possible binary
partitions we can consider.

@ However, things simplify in the case of binary classification (or
regression, see Section 9.2.4 in ESL for details).



Summary of learning classification trees

Advantages
@ Easily interpretable by human (as long as the tree is not too big)
@ Computationally efficient
@ Handles both numerical and categorical data

@ It is parametric thus compact: unlike Nearest Neighborhood
Classification, we do not have to carry our training instances around

@ Building block for various ensemble methods (more on this later)

Disadvantages
@ Heuristic training techniques
@ Finding partition of space that minimizes empirical error is NP-hard.
@ We resort to greedy approaches with limited theoretical underpinning.

@ Unstable: small changes in input data lead to different trees. Mitigated by
ensable methods (e.g. random forests, coming up).



Regression Tree

Regression Tree:
@ Given the dataset D = (z1,11),. .., (zn, yn) Where
v, € Ry, €Y ={1,...,m}.
@ minimize the squared loss (may use others!) in each leaf
@ the parameterized function is:

Zﬁj (x € Rj)

@ Using squared loss, optimal parameters are:

B = i ¥i Iz € Ry)
! it Wz € Ry)

i.e. the sample mean.



An Algorithm for Regression Trees

Assume numerical features (see Section 9.2.4 in ESL for categorical).
@ Start with R; = X = RP.
@ For each feature j = 1, ..., p, for each value v € R that we can split on:
@ Split data set:

I<:{i:x<'7> <wv} I>={i:x§j)2v}

i

@ Estimate parameters:

Zi61< Yi

[1<]

Zi61> Yi

B< = ]

B> =

© AQuality of split: highest quality is achieved for minimum squared loss,

which is defined as
D =B+ (i —B)

iclc iels

© Choose split, i.e., feature j and value v, with maximum quality.
© Recurse on both children, with datasets (z;,y:)icr. and (z;,y;)icr. -



Example of Regression Trees

K Feature Space
H I
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Regression Tree
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Example of Regression Trees

y Feature Space
0, 0 o
°
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Example of Regression Trees
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