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Learning Parameterised Functions

1
0" = argmin - ;L(yia fo(x:)) + All0]
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Learning Parameterised Functions

1
0" = argmin - ;L(yz‘, fo(z:)) + All6]]

* Modern deep learning frameworks allow for construction and
learning of parameterised functions.

= Consists of basic building blocks composed into computation graphs.
= Highly expressive and flexible.

* Modular: reusable complex building blocks are themselves composed of
simpler building blocks.
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Learning Parameterised Functions

1
0" = argmin - ;L(yz‘, fo(z:)) + All6]]

* Modern deep learning frameworks allow for construction and
learning of parameterised functions.

= Consists of basic building blocks composed into computation graphs.
= Highly expressive and flexible.

* Modular: reusable complex building blocks are themselves composed of
simpler building blocks.

= Computation graph structure expresses prior knowledge.

* Learning using stochastic gradient descent (on multiple CPUs,
GPUs, clusters) is automated.
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Artificial Neural Networks

, u - Dendrite
ﬁ/a Terminal Bulb
TS |
- )(4&/
~ \Vs'j\‘

mult }>{add > 0 }> vy

—/

SB2b/SM4 - Deep Learning ywteh



Building Blocks

= Linear/fully-connected/dense = softmax
r— Wx+0 softmax(z1,...,Ty,)
" sigmoid ( exp (1) exp(zy) )
1 >oiexp(xs) "7 30, exp(wi)
o(z) =
1 4 exp(—x)
" Losses

= tanh

tanh(x) = exp(x) — exp(—x) CrossEntropy(t, y) Zt log y;

exp(x) + exp(—z)
Square(t, y) = ||t — yl|3

" relu Hinge(t,y) = max(0,1 — ¢ - y)

relu(z) = max(0, x)
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Building Blocks

= Convolution

= max pooling
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Convolutional Networks (Convnets)
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FEATURE LEARNING

* Both filter banks and layers are 4D tensors.
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Hierarchy of Parts
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Visual Processing in the Brain
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Sequence Models

= Natural language processes

PRP VBZ NNS INDET NN
She sells seashells by the seashore

= Genomics
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Machine Translation with seg2seq

= https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-
with-neural-networks
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GoogleNet Architecture
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Image Caption Generation

black, orange and white cat laying on some paper on a desk.

cat with mussed up fur sitting discontentedly on a messy desk.

a cat lazily sits in the middle of a cluttered desk.

a cat sitting on top of a pile of papers on a desk.

a dark multicolored cat laying on a table cluttered with various items.
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Show Attend and Tell

= http://kelvinxu.github.io/projects/capgen.html
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Show Attend and Tell

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard™ (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. b\dmplcs of dtlendlng to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

bird flying over body water

A stop sign is on a road with a
mountain in the background,

. e - ‘.f-

A little girl sitting on a bed with A group of Eeogle sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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Gradient Descent

n

0" = argmin ;Lm, fo(z:))] + AD(8]|6o)

= Patrick Rebeschini will introduce optimization for machine
learning later in the afternoon.

= lterative procedure:

1 n
gD = (o) _ o, (n S VLY, foo () + AVD(E H90>)

1=1

* Two questions:
= scalability to large data sets?

* how to compute derivatives?
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Stochastic Gradient Descent

= Estimate gradient of loss using “minibatches” of data:

1
A (B S VL, foo (22)) + AVD(@O”\I@O))

‘ t‘ 1€ By

* Reduce computation cost from O(n) to O(|Bq|).

= More data is always better, as long as you have the compute to handle it.

= Stochastic gradients are unbiased estimates = convergence theory.

= Stochasticity can help regularise and alleviate over-fitting
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Automatic Differentiation
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Automatic Differentiation

= Two major approaches: forward mode, and reverse mode AD.
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Automatic Differentiation

= Two major approaches: forward mode, and reverse mode AD.

inputs intermediate values outputs
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* Forward: O(#inputs*#nodes). Reverse: O(#outputs*#nodes).
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Infrastructure

= Infrastructure support critical to deep learning (and ML in general):

= software frameworks allow fast model building, automating away most
low-level operations.

= Culture of sharing code via open source releases.

 hardware allows fast training, and scalable productionisation.
= large datasets and difficult challenges pushing frontier forward.
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VAE in Keras/TensorFlow
Colab Demo

https://goo.gl/yWaM9P
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“Deep Learning est mort.
Vive Differentiable Programming!” - Yann LeCun

Yeah, Differentiable Programming is little more than a
rebranding of the modern collection Deep Learning
techniques, the same way Deep Learning was a rebranding
of the modern incarnations of neural nets with more than
two layers.

The important point is that people are now building a new
kind of software by assembling networks of parameterized
functional blocks and by training them from examples using
some form of gradient-based optimization....It’s really very
much like a regular program, except it’s parameterized,
automatically differentiated, and trainable/optimizable.
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More Resources

= Tutorials and courses:

= http://www.cs.ucl.ac.uk/current _students/syllabus/compgi/
compgi2? advanced deep learning and reinforcement learning/

= https://www.coursera.org/learn/machine-learning

= http://videolectures.net/deeplearning?2015 salakhutdinov_deep learning/

= https://www.youtube.com/watch?v=F1ka6a1359I

= Summer schools: MLSS, DLSS, RLSS

= Conferences: NIPS, ICML, UAI, AISTATS
= Journals: JMLR

= ArXiv
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