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Neural Networks




Biological inspiration

@ Basic computational elements:
neurons.

@ Receives signals from other
neurons via dendrites.

@ Sends processed signals via
axons.

@ Axon-dendrite interactions at
synapses.

@ 10'° — 10" neurons.
@ 10" — 10'° synapses.




Single Neuron Classifier
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@ activation w "z + b (linear in inputs z)
@ activation/transfer function s gives the output/activity (potentially
nonlinear in x)
@ b often called bias (not to be confused with other biases we discussed!)

@ common nonlinear activation function s(a) = : logistic regression
@ learn w and b via gradient descent
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Single Neuron Classifier
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1 is the index of a training point.
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Overfitting
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Figures from D. MacKay, Information Theory, Inference and Learning Algorithms


http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

Neural Networks LGS Te))

Overfitting
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Figures from D. MacKay, Information Theory, Inference and Learning Algorithms


http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
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prevent overfitting by:
@ early stopping: just halt the gradient descent

@ regularization: Ly-regularization called weight decay in neural networks
literature.

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms


http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

Neural Networks

Multilayer Networks

@ Data vectors = € R?,
binary labels y € {0,1}.
e inputs z = [zy,...,2,]"
@ output
g=PY =1|X = x)
@ hidden unit activities
hi,...,hm
e Compute hidden unit
activities:

P
he=s <b2 + Zwﬁw)

j=1
o Compute output
probability:

J=s (bo + Zthg>
=1

Introduction
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Backpropagaton
Training a Neural Network

@ Obijective function: Ly-regularized log-loss

== wilogdi + (1 —y:)log(1 — §i) + g (Z(wé&f + Z(wz’f)
i=1

where . .
J; = S (bo + Zwlohil> hyi=s (bf + Zw?lxu)
1=1 j=1

@ Optimize parameters § = {b", w", b°, w’}, where b" € R™, w" € RP*™,
b° € R, w® € R™ with gradient descent.
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° Lg-regulanzatmn often called weight decay.
@ Multiple hidden layers: Backpropagation algorithm
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Multiple hidden layers

gi = hit!

hlf+1 =5 (WEJrlhlf)

o Wil = (wfk)jk: weight matrix at
the (¢ + 1)-th layer, weight w/, on
the edge between A; " and h;

@ s: entrywise (logistic) transfer
function

g =s(WEHs(Wh (- s(W'a,))))

s N
Tl = h?l Tip = h’ip

@ Many hidden layers can be used: they are usually thought of as forming a
hierarchy from low-level to high-level features.



Backpropagaton
Backpropagation

J=- Z yilog hE T 4 (1—y;) log(1—hET)
i=1

@ Gradients wrt h{; computed by
recursive applications of chain rule,
and propagated through the network

backwards.
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Neural Networks

Global solution and local minima

Neural network fit with a weight decay of 0.01
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R package implementing neural networks with a single hidden layer: nnet.




Dropout Training of Neural Networks

@ Neural network with single layer of hidden
units:

o Hidden unit activations:

P
hir = s (bZ + Z W]hkxij>

j=1

o Output probability:

fi=s (b" T Z W,Shik>
k=1

@ Large, overfitted networks often have
co-adapted hidden units.

predictions from other units.

@ Can prevent co-adaptation by randomly
dropping out units from network. Hinton et al (2012).


http://arxiv.org/abs/1207.0580

Neural Networks ~ [Bl{eJelelV]3

Dropout Training of Neural Networks

@ Model as an ensemble of networks (more on ensembles later):

@ Weight-sharing among all networks: each network uses a subset of the
parameters of the full network (corresponding to the retained units).

@ Training by stochastic gradient descent: at each iteration a network is
sampled from ensemble, and its subset of parameters are updated.

@ Biological inspiration: 10'* weights to be fitted in a lifetime of 10° seconds

o Poisson spikes as a regularization mechanism which prevents
co-adaptation: Geoff Hinton on Brains, Sex and Machine Learning



https://www.youtube.com/watch?v=DleXA5ADG78
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Dropout Training of Neural Networks

Classification of phonemes in speech.

Classification Error %

Figure from Hinton et
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Neural Networks — Variations

@ Other loss functions can be used, e.g. for regression:

n
Z lyi — il
i=1

For multiclass classification, use softmax outputs:

K

. exp(b? + w? hig

Yik = (k ZZ tk Z) ymyz - § ]]- —k IOgyzk
k=1

%8
D=1 €xp(b, + 32, wh hie)

30— sigmoid
— relu

@ Other activation functions can be used: ] soitplus

20 {— tanh
15
o rectified linear unit (ReLU): 10
s(z) = max(0, z) e

o softplus: s(z) = log(1 + exp(z))
o tanh: s(z) = tanh(z) 10
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Deep learning intuition
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Source: http://rinuboney.github.i0/2015/10/18/
theoretical-motivations—deep-learning.html


http://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html
http://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html

Deep learning demo

http://playground.tensorflow.org/


http://playground.tensorflow.org/
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Convolutions
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Click for animation.

Source: https://ujjwalkarn.me/2016/08/11/

intuitive-explanation-convnets/


https://ujwlkarn.files.wordpress.com/2016/08/giphy.gif?w=748
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Deep Convolutional Neural Networks

Inpuc layer (51) 4 feature maps.

| convolution layer | sub-sampling layer 1 convolution layer 1 sub-sampling layer | fully connecred I"ILPl

@ Inputis a 2D image, X € RP*9.

@ Convolution: detects simple object parts or features Weights W™ now
correspond to a filter to be learned - typically much smaller than the input thus
encouraging sparse connectivity.

@ Pooling and Sub-sampling: replace the output with a summary statistic of the
nearby outputs, e.g. max-pooling (allows invariance to small translations in the
input).

LeCun et al, Krizhevsky et al.


http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://www.cs.toronto.edu/~hinton/absps/imagenet.pdf

Neural Networks — Discussion

Nonlinear hidden units introduce modelling flexibility, hierarchical
representations.

In contrast to user-introduced nonlinearities, features are global, and can
be learned to maximize predictive performance.

Neural networks with a single hidden layer and sufficiently many hidden
units can model arbitrarily complex functions.

Highly flexible framework, with many variations to solve different learning
problems and introduce domain knowledge.

Optimization problem is not convex, and objective function can have
many local optima, plateaus and ridges.

On large scale problems, often use stochastic gradient descent, along
with a whole host of techniques for optimization, regularization, and
initialization.

Explosion of interest in the field recently and many new developments

not covered here, especially by Geoffrey Hinton, Yann LeCun, Yoshua

Bengio, Andrew Ng and others. See also

http://deeplearning.net/.


https://www.cs.toronto.edu/~hinton/
http://yann.lecun.com/
http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html
http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html
http://cs.stanford.edu/people/ang/
http://deeplearning.net/
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