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Linear models for classification

Sometimes using regression in a classification setting leads to acceptable
results. But the model is usually misspecified, and leads to bad performance
(left) compared to methods that are explicitly designed for categorical labels
(right).

Figure 4.2 from Hastie, Tibshirani and Friedman, Section 4.2

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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Recall: Loss function

Suppose we made a prediction Ŷ = f(X) ∈ Y based on observation of
X.
How good is the prediction? We can use a loss function
L : Y × Y 7→ R+ to formalize the quality of the prediction.
Typical loss functions:

Squared loss for regression

L(Y, f(X)) = (f(X)− Y )2 .

Absolute loss for regression

L(Y, f(X)) = |f(X)− Y | .

Misclassification loss (or 0-1 loss) for classification

L(Y, f(X)) =
{

0 f(X) = Y
1 f(X) 6= Y

.

Many other choices are possible, e.g., weighted misclassification loss.
In classification, if estimated probabilities p̂(k) for each class k ∈ Y are
returned, log-likelihood loss (or log loss) L(Y, p̂) = − log p̂(Y ) is often
used.
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The Bayes Classifier

What is the optimal classifier if the joint distribution (X,Y ) were known?
The density g of X can be written as a mixture of K components
(corresponding to each of the classes):

g(x) =
K∑

k=1
πkgk(x),

where, for k = 1, . . . ,K,
P(Y = k) = πk are the class probabilities,
gk(x) is the conditional density of X, given Y = k.

The Bayes classifier fBayes : x 7→ {1, . . . ,K} is the one with minimum
risk:

R(f) =E [L(Y, f(X))] = EX

[
EY |X [L(Y, f(X))|X]

]
=
∫
X
E [L(Y, f(X))|X = x] g(x)dx

The minimum risk attained by the Bayes classifier is called Bayes risk.
Minimizing E[L(Y, f(X))|X = x] separately for each x suffices.



Classification Bayes Classifier

The Bayes Classifier

Consider the 0-1 loss.
The risk simplifies to:

E
[
L(Y, f(X))

∣∣X = x
]

=
K∑

k=1
L(k, f(x))P(Y = k|X = x)

=1− P(Y = f(x)|X = x)

The risk is minimized by choosing the class with the greatest probability
given the observation:

fBayes(x) = arg max
k=1,...,K

P(Y = k|X = x)

= arg max
k=1,...,K

πkgk(x)∑K
j=1 πjgj(x)

= arg max
k=1,...,K

πkgk(x).

The functions x 7→ πkgk(x) are called discriminant functions. The
discriminant function with maximum value determines the predicted class
of x.
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The Bayes Classifier: Example
A simple two Gaussians example: Suppose X ∼ N (µY , 1), where µ1 = −1
and µ2 = 1 and assume equal class probabilities π1 = π2 = 1/2.

g1(x) = 1√
2π

exp
(
− (x+ 1)2

2

)
and g2(x) = 1√

2π
exp

(
− (x− 1)2

2

)
.
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Optimal classification is fBayes(x) = arg max
k=1,...,K

πkgk(x) =
{

1 if x < 0,
2 if x ≥ 0.
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The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?
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Looking at density in a log-scale, optimal classification is to select class 2 if
and only if x ∈ [0.34, 2.16].
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Plug-in Classification

The Bayes Classifier:

fBayes(x) = arg max
k=1,...,K

πkgk(x).

We know neither the conditional densities gk nor the class probabilities
πk!
The plug-in classifier chooses the class

f(x) = arg max
k=1,...,K

π̂kĝk(x),

where we plugged in
estimates π̂k of πk and k = 1, . . . ,K and
estimates ĝk(x) of conditional densities,

Linear Discriminant Analysis is an example of plug-in classification.
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Linear Discriminant Analysis

LDA is the most well-known and simplest example of plug-in
classification.
Assume multivariate normal conditional density gk(x) for each class k:

X|Y = k ∼N (µk,Σ),

gk(x) =(2π)−p/2|Σ|−1/2 exp
(
−1

2(x− µk)>Σ−1(x− µk)
)
,

each class can have a different mean µk,
all classes share the same covariance Σ.

For an observation x, the k-th log-discriminant function is

log πkgk(x) = c+ log πk −
1
2(x− µk)>Σ−1(x− µk)

The quantity (x− µk)>Σ−1(x− µk) is the squared Mahalanobis
distance between x and µk.
If Σ = Ip and πk = 1

K , LDA simply chooses the class k with the nearest
(in the Euclidean sense) class mean.



Classification Linear Discriminant Analysis

Linear Discriminant Analysis

Expanding the term (x− µk)>Σ−1(x− µk),

log πkgk(x) = c+ log πk −
1
2
(
µ>k Σ−1µk − 2µ>k Σ−1x+ x>Σ−1x

)
= c′ + log πk −

1
2µ
>
k Σ−1µk + µ>k Σ−1x

Setting ak = log(πk)− 1
2µ
>
k Σ−1µk and bk = Σ−1µk, we obtain

log πkgk(x) = c′ + ak + b>k x

i.e. a linear discriminant function in x.
Consider choosing class k over k′:

ak + b>k x > ak′ + b>k′x ⇔ a? + b>? x > 0

where a? = ak − ak′ and b? = bk − bk′ .
The Bayes classifier thus partitions X into regions with the same class
predictions via separating hyperplanes.
The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.
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Parameter Estimation

How to estimate the parameters of the LDA model?
We can achieve this by maximum likelihood (EM algorithm is not needed
here since the class variables yi are observed!).
Let nk = #{j : yj = k} be the number of observations in class k.

`(π, (µk)K
k=1,Σ) = log p

(
(xi, yi)n

i=1 |π, (µk)K
k=1,Σ

)
=

n∑
i=1

log πyigyi (xi)

=c+
K∑

k=1

∑
j:yj =k

log πk −
1
2
(
log |Σ|+ (xj − µk)>Σ−1(xj − µk)

)
ML estimates:

π̂k = nk

n
µ̂k = 1

nk

∑
j:yj=k

xj

Σ̂ = 1
n

K∑
k=1

∑
j:yj=k

(xj − µ̂k)(xj − µ̂k)>

Note: the ML estimate of Σ is biased. For an unbiased estimate we need
to divide by n−K.
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Iris Dataset

library(MASS)
data(iris)
##save class labels
ct <- unclass(iris$Species)
##pairwise plot
pairs(iris[,1:4],col=ct)
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Classification Linear Discriminant Analysis

Iris Dataset
Just focus on two predictor variables.

iris.data <- iris[,3:4]
plot(iris.data,col=ct,pch=20,cex=1.5,cex.lab=1.4)
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Classification Linear Discriminant Analysis

Iris Dataset

Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(0,8,0.02)
y <- seq(0,3,0.02)
m <- length(x)
n <- length(y)
z <- as.matrix(expand.grid(x,y),0)
colnames(z) = colnames(iris.data)

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z)$class
contour(x,y,matrix(iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



Classification Linear Discriminant Analysis

Iris Dataset
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Classification LDA and Dimensionality Reduction

Summary: Linear Discriminant Analysis

LDA: a plug-in classifier assuming multivariate normal conditional density
gk(x) = gk(x|µk,Σ) for each class k sharing the same covariance Σ:

X|Y = k ∼N (µk,Σ),

gk(x|µk,Σ) =(2π)−p/2|Σ|−1/2 exp
(
−1

2(x− µk)>Σ−1(x− µk)
)
.

LDA minimizes the squared Mahalanobis distance between x and µ̂k,
offset by a term depending on the estimated class proportion π̂k:

fLDA(x) = argmax
k∈{1,...,K}

log π̂kgk(x|µ̂k, Σ̂)

= argmax
k∈{1,...,K}

(
log π̂k −

1
2 µ̂
>
k Σ̂−1µ̂k

)
+
(

Σ̂−1µ̂k

)>
x︸ ︷︷ ︸

terms depending on k linear in x

= argmin
k∈{1,...,K}

1
2(x− µ̂k)>Σ̂−1(x− µ̂k)︸ ︷︷ ︸

squared Mahalanobis distance

− log π̂k.



Classification LDA and Dimensionality Reduction

Computations for LDA

LDA minimizes the squared Mahalanobis distance between x and µ̂k,
offset by a term depending on the estimated class proportion π̂k:

fLDA(x) = argmin
k∈{1,...,K}

1
2(x− µ̂k)>Σ̂−1(x− µ̂k)︸ ︷︷ ︸

squared Mahalanobis distance

− log π̂k.

Thus, LDA classification can be implemented as the following two steps:
(1) Sphere the data with respect to the common covariance estimate

Σ̂ = 1
n

∑K

k=1

∑
j:yj =k

(xj − µ̂k)(xj − µ̂k)>:

x• ← D−
1
2U>x, where Σ̂ = UDU>.

(2) Classify to the closest class mean µ̂•k in the transformed space, modulo the
effect of the estimated class proportions π̂k.



Classification LDA and Dimensionality Reduction

Fisher’s Reduced-Rank Linear Discriminant Analysis

In LDA, data vectors are classified based on Mahalanobis distance to
class means.
There is K class means and they lie on a (K − 1)-dimensional affine
subspace of ambient space Rp: Decision function is unaffected by the
directions orthogonal to this subspace.
Projecting data vectors onto the subspace can be viewed as a
dimensionality reduction technique that preserves discriminative
information about the labels {yi}n

i=1: going from Rp to RK−1 and
potentially K − 1� p.
Just like in PCA, we can visualise the structure in the data by choosing an
appropriate basis for the subspace and projecting data onto it -
immediate visualisation fully describing LDA for K = 3.
For K > 3, Fisher proposed to look for the change of basis that finds
directions that best separate the classes - the largest possible spread
of the centroids after sphering.



Classification LDA and Dimensionality Reduction

LDA projections

Figure by R. Gutierrez-Osuna



Classification LDA and Dimensionality Reduction

Discriminant Coordinates: 2-classes

Centroids are µ̂k = 1
nk

∑
i:yi=k xi.

Centroids projected on a vector v are given by mk = v>µ̂k.
Variance of projected data on v given by s2

k =
∑

i:yi=k(v>xi −mk)2.
Goal: find v such that the distance between centroids is maximized, while
projected clusters are “tight”:

(m1 −m2)2

s2
1 + s2

2

Figure from Hastie, Tibshirani and Friedman, Section 4.3.3

http://www-stat.stanford.edu/~tibs/ElemStatLearn/


Classification LDA and Dimensionality Reduction

Discriminant Coordinates: 2-classes

Centroids are µ̂k = 1
nk

∑
i:yi=k xi.

Centroids projected on a vector v are given by mk = v>µ̂k.
Variance of projected data on v given by s2

k =
∑

i:yi=k(v>xi −mk)2.
Goal: find v such that the distance between centroids is maximized, while
projected clusters are “tight”:

(m1 −m2)2

s2
1 + s2

2
= v>Bv

v>Σ̂v

where

B = (µ̂2 − µ̂1)(µ̂2 − µ̂1)> (between-class covariance)

Σ̂ = 1
n

∑n
i=1(xi − µ̂yi)(xi − µ̂yi)> (within-class covariance)

(verify above calculations).



Classification LDA and Dimensionality Reduction

Discriminant Coordinates

More generally:
v>Bv

v>Σ̂v
where

B = 1
n

∑K
k=1 nk(µ̂k − x̄)(µ̂k − x̄)> (between-class covariance)

Σ̂ = 1
n

∑n
i=1(xi − µ̂yi

)(xi − µ̂yi
)> (within-class covariance)

and B has rank at most K − 1.

Figure from Hastie, Tibshirani and Friedman, Section 4.3.3

http://www-stat.stanford.edu/~tibs/ElemStatLearn/


Classification LDA and Dimensionality Reduction

Discriminant Coordinates

To solve for the optimal v, we first reparameterize it as u = Σ̂ 1
2 v.

v>Bv

v>Σ̂v
= u>(Σ̂− 1

2 )>BΣ̂− 1
2u

u>u
= u>B•u

u>u

where B• = (Σ̂− 1
2 )>BΣ̂− 1

2 .
We have solved something similar before. The maximization over u is
achieved by the first eigenvector u1 of B•.
We also look at the remaining eigenvectors ul associated to the non-zero
eigenvalues and define the discriminant coordinates as vl = Σ̂− 1

2ul.
The vl’s span exactly the affine subspace spanned by (Σ̂−1µ̂k)K

k=1 (these
vectors are given as the “linear discriminants” in the R-function lda).



Classification LDA and Dimensionality Reduction

Crabs Dataset

library(MASS)
data(crabs)

## create class labels (species+sex)
crabs$spsex=factor(paste(crabs$sp,crabs$sex,sep=""))
ct <- unclass(crabs$spsex)

## LDA on crabs in log-domain
cb.lda <- lda(log(crabs[,4:8]),ct)



Classification LDA and Dimensionality Reduction

Crabs Dataset

> cb.lda
Call:
lda(log(crabs[, 4:8]), ct)

Prior probabilities of groups:
1 2 3 4

0.25 0.25 0.25 0.25

Group means:
FL RW CL CW BD

1 2.564985 2.475174 3.312685 3.462327 2.441351
2 2.672724 2.443774 3.437968 3.578077 2.560806
3 2.852455 2.683831 3.529370 3.649555 2.733273
4 2.787885 2.489921 3.490431 3.589426 2.701580

Coefficients of linear discriminants:
LD1 LD2 LD3

FL -31.217207 -2.851488 25.719750
RW -9.485303 -24.652581 -6.067361
CL -9.822169 38.578804 -31.679288
CW 65.950295 -21.375951 30.600428
BD -17.998493 6.002432 -14.541487

Proportion of trace:
LD1 LD2 LD3

0.6891 0.3018 0.0091



Classification LDA and Dimensionality Reduction

Crabs Dataset

cb.ldp <- predict(cb.lda)
pairs(cb.ldp$x,pch=ct,col=ct)
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Classification LDA and Dimensionality Reduction

Crabs Dataset

cb.ldp12 <- cb.ldp$x[,1:2]
eqscplot(cb.ldp12,pch=ct,col=ct)
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Classification LDA and Dimensionality Reduction

Crabs Dataset

## display the decision boundaries
## take a lattice of points in LD-space
x <- seq(-6,7,0.02)
y <- seq(-6,7,0.02)
z <- as.matrix(expand.grid(x,y))
m <- length(x)
n <- length(y)

## perform LDA on first two discriminant directions
cb.lda_new <- lda(cb.ldp12,ct)
## predict onto the grid
cb.ldpp <- predict(cb.lda_new,z)$class

## classes are 1,2,3 and 4 so set contours
## at 1.5,2.5 and 3.5
contour(x,y,matrix(cb.ldpp,m,n),

levels=c(1.5,2.5,3.5),
add=TRUE,d=FALSE,lty=2)



Classification LDA and Dimensionality Reduction

Crabs Dataset
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Classification LDA and Dimensionality Reduction

LDA vs PCA projections
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LDA vs PCA projections
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Fisherfaces

Eigenfaces vs. Fisherfaces, Belhumeur et al. 1997

http://ieeexplore.ieee.org/document/598228/

http://ieeexplore.ieee.org/document/598228/


Classification Quadratic Discriminant Analysis

Conditional densities with different covariances

Given training data with K classes, assume a parametric form for conditional
density gk(x), where for each class

X|Y = k ∼ N (µk,Σk),

i.e., instead of assuming that every class has a different mean µk with the
same covariance matrix Σ (LDA), we now allow each class to have its own
covariance matrix.
Considering log πkgk(x) as before,

log πkgk(x) = const + log(πk)− 1
2
(
log |Σk|+ (x− µk)T Σ−1

k (x− µk)
)

= const + log(πk)− 1
2
(
log |Σk|+ µT

k Σ−1
k µk

)
+µT

k Σ−1
k x− 1

2x
T Σ−1

k x

= ak + bT
k x+ xT ckx.

A quadratic discriminant function instead of linear.



Classification Quadratic Discriminant Analysis

Quadratic decision boundaries

Again, by considering that we choose class k over k′,

ak + bT
k x+ xT ckx− (ak′ + bT

k′x+ xT ck′x)
= a? + bT

? x+ xT c?x > 0

we see that the decision boundaries of the Bayes Classifier are quadratic
surfaces.

The plug-in Bayes Classifer under these assumptions is known as the
Quadratic Discriminant Analysis (QDA) Classifier.



Classification Quadratic Discriminant Analysis

QDA

LDA classifier:

fLDA(x) = arg min
k∈{1,...,K}

{
(x− µ̂k)T Σ̂−1(x− µ̂k)− 2 log(π̂k)

}
QDA classifier:

fQDA(x) = arg min
k∈{1,...,K}

{
(x− µ̂k)T Σ̂k

−1(x− µ̂k)− 2 log(π̂k) + log(|Σ̂k|)
}

for each point x ∈ X where the plug-in estimate µ̂k is as before and Σ̂k is (in
contrast to LDA) estimated for each class k = 1, . . . ,K separately:

Σ̂k = 1
nk

∑
j:yj=k

(xj − µ̂k)(xj − µ̂k)T .



Classification Quadratic Discriminant Analysis

Computing and plotting the QDA boundaries.

##fit QDA
iris.qda <- qda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y),0)
m <- length(x)
n <- length(y)

iris.qdp <- predict(iris.qda,z)$class
contour(x,y,matrix(iris.qdp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



Classification Quadratic Discriminant Analysis

Iris example: QDA boundaries
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Classification Quadratic Discriminant Analysis

Iris example: QDA boundaries
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Classification Quadratic Discriminant Analysis

LDA or QDA?

Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.
If the covariances of different classes are very distinct, QDA will probably
have an advantage over LDA.
Parametric models are only ever approximations to the real world,
allowing more flexible decision boundaries (QDA) may seem like a
good idea. However, there is a price to pay in terms of increased
variance and potential overfitting.



Classification Quadratic Discriminant Analysis

Regularized Discriminant Analysis

In the case where data is scarce , to fit
LDA, need to estimate K × p+ p× p parameters
QDA, need to estimate K × p+K × p× p parameters.

Using LDA allows us to better estimate the covariance matrix Σ. Though QDA
allows more flexible decision boundaries, the estimates of the K covariance
matrices Σk are more variable.
RDA combines the strengths of both classifiers by regularizing each
covariance matrix Σk in QDA to the single one Σ in LDA

Σk(α) = αΣk + (1− α)Σ for some α ∈ [0, 1].

This introduces a new parameter α and allows for a continuum of models
between LDA and QDA to be used. Can be selected by Cross-Validation for
example.
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