SC7 Bayes Methods

Fourth problem sheet (Sections 8.4-9 of lecture notes).

Section A questions

1. (RJ-MCMC) For $m \in \{1, 2\}$ and $x \in (0, 1)$ let

$$\pi_{X,M}(x,m) = \pi_{X|M}(x|m)\pi_M(m)$$

with $\pi_M(m=1) = 1/3$, $\pi_M(m=2) = 2/3$ and

$$\pi_{X|M}(x|m=1) = \mathbb{I}_{x=1/2}$$

$$\pi_{X|M}(x|m=2) = 2x.$$

In the joint $\pi_{X,M}(x,m)$, we have $(x,m) \in \Omega^*$ with $\Omega^* = \{(1/2,1)\} \cup ((0,1) \times \{2\})$.

The marginal distribution for X is

$$\pi_X(x) = \sum_{m=1}^{2} \pi_{X,M}(x,m).$$

Let $F_X(x) = \Pr(X \le x), \ x \in (0,1)$ be the CDF of $X \sim \pi_X(\cdot)$.

- (a) Show that $F_X(x) = \frac{2}{3}x^2 + \frac{1}{3}\mathbb{I}_{x \geq 1/2}$ and give a simple algorithm realising iid $X \sim F_X$.
- (b) Give a RJ-MCMC algorithm targeting $\pi(x, m)$ and say how you would use it to simulate $X \sim F_X$.

Hint: See code. This gave Figure 1 at the end of the PS.

- 2. (Dirichlet process) Let H be a continuous distribution on $\Omega = \mathbb{R}^p$, $p \geq 1$ and suppose $G \sim \Pi(\alpha, H)$ is a DP with $\alpha > 0$ a real parameter.
 - (a) Let $A \subseteq \Omega$. Calculate var(G(A)). Briefly interpret α and H as model "parameters".
 - (b) Suppose for i=1,2,3,..., $\theta_i \sim G$ are iid, with $G \sim \Pi(\alpha,H)$. Recall (lectures) that marginally $\theta_1 \sim H$ and $G|\theta_1 \sim \Pi(\alpha+1,(\alpha H+\delta_{\theta_1})/(\alpha+1))$. Show that for $n \geq 1$,

$$G|\theta_{1:n} \sim DP\left(\alpha + n, \frac{\alpha H + \sum_{i=1}^{n} \delta_{\theta_i}}{\alpha + n}\right).$$

(c) Let $\theta_1^*, ..., \theta_K^*$ denote the distinct values of θ with associated partition $S = (S_1, ..., S_K)$, $S_k = \{i : \theta_i = \theta_k^*, i \in [n]\}$ for k = 1, ..., K. Show that

$$E(K) = \sum_{i=1}^{n} \frac{\alpha}{\alpha + i - 1}$$

Section B questions

3. (Reversible jump MCMC) The skew-normal distribution¹ with density $Q(y; \mu, \sigma^2, \xi)$ is obtained from the normal by skewing it with a weight $\xi > 0$. The skewing is negative for $0 < \xi < 1$, positive for $\xi > 1$ and absent for $\xi = 1$, ie $N(y; \mu, \sigma^2) = Q(y; \mu, \sigma^2, 1)$.

The Shoshoni data $y = (y_1, ..., y_{20})$ give the values of 20 scalar width-to-length ratios of beaded rectangles used by the Shoshoni Indians. They are available here,

www.statsci.org/data/general/shoshoni.html.

You can see them and an example of the skew-normal in ProblemSheet4.R. Consider using Bayesian inference and RJ MCMC to carry out model selection and model averaging over skewed and normal models for the Shoshoni data.

- (a) Suppose the prior probability for normal (model m=1) or skew-normal (model m=2) is 1/2. Write down the joint posterior distribution $\pi(\theta, m|y)$ for the model index m=1,2 and parameters $\theta=(\mu,\sigma,\xi)$ in as much detail as you can, though without eliciting priors for the parameters.
- (b) Give a reversible jump MCMC algorithm targeting $\pi(\theta, m|y)$. You can omit the fixed dimension updates.
- (c) Explain how to estimate the Bayes Factor comparing skew-normal and normal models from MCMC output $\theta^{(t)} = (\mu^{(t)}, \sigma^{(t)}, \xi^{(t)})$ and $m^{(t)}, t = 1, 2, ..., T$. How you would simulate data y' from the model averaged posterior predictive distribution p(y'|y)?
- (d) (Section C) The code in the R-file ProblemSheet4.R implements RJ-MCMC for these data. Use the code to estimate the Bayes factor mentioned above.
- 4. Let $\Xi_{[n]}$ be the set of partitions of $[n] = \{1, ..., n\}$. The CRP realises $S \in \Xi_{[n]}$ with probability

$$P_{\alpha,[n]}(S) = \frac{\Gamma(\alpha)\alpha^K}{\Gamma(\alpha+n)} \prod_{k=1}^K \Gamma(|S_k|).$$

Let $\mathcal{P}_{[n]}$ be the permutations of $\{1, ..., n\}$.

(a) For $\sigma \in \mathcal{P}_n$ let $P_{\alpha,\sigma}(S)$ be the distribution over partitions we get if the customers arrive in the order $\sigma = (\sigma_1, \ldots, \sigma_n)$ and let $S(\sigma)$ be the partition obtained by permuting the customer labels in S according to σ . For example if $S = (\{1, 2\}, \{3\})$ and $\sigma = (3, 2, 1)$ then $S(\sigma) = (\{1\}, \{2, 3\})$ because the new partition is $\{\{\sigma_1, \sigma_2\}, \{\sigma_3\}\} = \{\{3, 2\}, \{1\}\}$ and recall the convention $\min(S_k) < \min(S_{k'}) \Leftrightarrow k < k'$.

Show that $P_{\alpha,[n]}(S) = P_{\alpha,[n]}(S(\sigma)) = P_{\alpha,\sigma}(S)$ for all $S \in \Xi_{[n]}$, so CRP outcomes don't depend on customer arrival order.

¹Fernandez & Steel "Bayesian Modeling of Skewness and Fat Tails", JASA, 1998

(b) Let $S \sim P_{\alpha,[n]}$ and $S^{-i} = (S_1^{-i}, ..., S_{K^{-i}}^{-i})$ be the partition we get if we realise S and then remove some $i \in \{1, ..., n\}$. Here $K^{-i} = K - 1$ if we create an empty cluster when we remove i and otherwise $K^{-i} = K$. For example if $S = (\{1, 2\}, \{3\})$ then K = 2 and $S^{-3} = (\{1, 2\})$ so $K^{-3} = 1$.

Let $P_{\alpha,[n]\setminus\{i\}}(S')$ be the probability to realise $S' \in \Xi_{[n]\setminus\{i\}}$ if i is removed from the list of customers before S' is simulated from the CRP. Show that $S^{-i} \sim P_{\alpha,[n]\setminus\{i\}}(S^{-i})$.

5. Consider the following prior for the cluster labels $z = (z_1, ..., z_n)$ of data $y = (y_1, ..., y_n)$ in a mixture model with a fixed number M of components. Let $w = (w_1, ..., w_M)$ be a vector of probabilities $\sum_m w_m = 1$ giving the mixture-component weights.

$$w \sim \text{Dirichlet}(\alpha_1, ..., \alpha_M), \quad \text{with } \alpha > 0 \text{ and } \alpha_m = \alpha/M, m = 1, ..., M$$

 $z_i \sim \text{Cat}(w), \quad \text{iid for } i = 1, ..., n.$

In this model $z_i \in \{1, ..., M\}$ is the label of the cluster to which y_i belongs, and the notation $z_i \sim \operatorname{Cat}(w), i = 1, ..., n$ means that for $m \in \{1, ..., M\}$ we have $z_i = m$ with probability w_m . Suppose the list $z_1, ..., z_n$ of cluster labels contains $K \leq M$ unique distinct values $m_1, ..., m_K$. For k = 1, ..., K let $S_k = \{i : z_i = m_k, i = 1, ..., n\}$ give the label-grouping determined by z and let $S = (S_1, ..., S_K)$.

The partition is determined by z, so that S = S(z) with $S \in \Xi_{[n]}$. There are many z's giving the same S. For example, if n = 4 and M = 5 then z = (1, 1, 3, 3), z = (3, 3, 1, 1) and z = (4, 4, 2, 2) determine the same clustering $S = (\{1, 2\}, \{3, 4\})$.

(a) (Section C, but result needed below) Let $n_k = |S_k|$ for k = 1, ..., K. Let $P_{\alpha,[n]}^M(S)$ be the probability to realise S. Calculate

$$P_{\alpha,[n]}^{M}(S) = \sum_{z:S(z)=S} P_{\alpha,[n]}^{M}(z),$$

where $P_{\alpha,[n]}^M(z)$ is the probability the process realises $z=(z_1,...,z_n)$, and show

$$P_{\alpha,[n]}^{M}(S) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/M)^{K}} \frac{M!}{(M-K)!} \frac{\prod_{k=1}^{K} \Gamma(\alpha/M + n_{k})}{\Gamma(\alpha+n)}.$$

- (b) Show that, for each $S \in \Xi_{[n]}$, $\lim_{M \to \infty} P_{\alpha,[n]}^M(S) = P_{\alpha,[n]}(S)$, with $P_{\alpha,[n]}$ from Question (4). Note: $x\Gamma(x) = \Gamma(x+1)$ and $x\Gamma(x) \to 1$ as $x \searrow 0$.
- 6. A realisation, $G_M \sim \Pi_M(\alpha, H)$, of the multinomial DP is simulated as follows:

$$w \sim \text{Dirichlet}(\alpha_1, ..., \alpha_M), \quad \text{with } \alpha > 0 \text{ and } \alpha_m = \alpha/M, \ m = 1, ..., M,$$
 $\tilde{\theta}_m \sim H, \quad \text{iid for } m = 1, ..., M,$

and $G_M = \sum_{m=1}^M w_m \delta_{\tilde{\theta}_m}$. Here, for m = 1, ..., M, $\tilde{\theta}_m \in \mathbb{R}^p$ is a parameter vector of dimension p and H is a base distribution with probability density h on \mathbb{R}^p .

(a) For i = 1, ..., n, let $\theta_i = \tilde{\theta}_{z_i}$ with

$$z_i \sim \operatorname{Cat}(w)$$
, iid for $i = 1, ..., n$.

Show that $\Pr\{\theta_i \in A | w, \tilde{\theta}\} = G_M(A)$ for $A \subseteq \mathbb{R}^p$ and i = 1, ..., n.

- (b) Let $\theta_1^*, ..., \theta_K^*$ denote the distinct values of θ with associated partition $S = (S_1, ..., S_K)$, $S_k = \{i : \theta_i = \theta_k^*, i \in [n]\}$ for k = 1, ..., K. Give the joint distribution $\pi_M(\theta^*, S)$.
- (c) Consider the following process.

Step 1 Simulate $\psi_1 \sim H$

Step 2 Independently for i = 1, ..., n - 1, and sequentially, simulate

$$\psi_{i+1} \sim \frac{\alpha(1 - K_i/M)H + \sum_{k=1}^{K_i} (n_{i,k} + \alpha/M)\delta_{\psi_k^*}}{\alpha + i}.$$

where K_i is the number of distinct ψ -values $\psi_1^*, ..., \psi_{K_i}^*$ at the time of the i+1'st arrival and $n_{i,k}$ is the number of times ψ_k^* appears in the list $(\psi_1, ..., \psi_i)$. Show that $\psi = (\psi_1, ..., \psi_n)$ above has the same distribution as $\theta = (\theta_1, ..., \theta_n)$ in Question 6a. Hint: set it up as a variant of a CRP realising ψ^*, C with ψ^* the unique values in ψ and C the corresponding partition of ψ and repeat the calculation we did in lectures for $P_{\alpha,[n]}(S)$ to get $P(C) = P_{\alpha,[n]}^M(C)$.

(d) (Section C) Let $\phi_i \sim G$ iid for i = 1, ..., n with $G \sim \Pi(\alpha, H)$ and $\phi = (\phi_1, ..., \phi_n)$. Let $\phi = \theta(\phi^*, S)$ with θ the usual invertible mapping between the two representations. Let $\psi_i \sim G_M$ iid for i = 1, ..., n with $G_M \sim \Pi_M(\alpha, H)$ and $\psi = (\psi_1, ..., \psi_n)$. Let $\psi = \theta(\psi^*, C)$ be corresponding unique values and partition representation (ie as in the hint for Question 6c). Show that $\psi \to \phi$ in distribution as $M \to \infty$ at fixed n. Hint show that $\Pr\{(\psi^*, C) \in A^*\} \to \Pr\{(\phi^*, S) \in A^*\}$ for all sets A^* .

Section C questions

- 7. The observation model for data y is $y_i \sim f(\cdot|\theta_i)$, iid for i = 1, ..., n with parameter vector $\theta = (\theta_1, ..., \theta_n)$ determined from the multinomial Dirichlet process model via a realisation of θ^* and S as in Question 6.
 - (a) Write down the posterior $\pi_M(S, \theta^*|y)$ for $S, \theta^*|y$ in terms of the model elements.
 - (b) Why might we prefer a prior derived from a multinomial Dirichlet process over a prior derived from a Dirichlet process?

- (c) Show that the pairs $(\theta_i, y_i)_{i=1}^n$ are exchangeable (as pairs, *ie* preserving the association between θ_i and y_i). Give the S, θ^* -update of a Gibbs sampler targeting $\pi_M(S, \theta^*|, y)$.
- 8. Mining disasters were common in the period 1850 1950. Let L = 1850 and U = 1950 and for i = 1, 2, ..., n, let $y_i \in (L, U)$ be the date of the *i*'th event. Let $y = (y_1, ..., y_n)$.

Model the event times y as the arrival times of a Poisson process of piecewise constant rate $\lambda(t)$ per year. For $m \geq 1$ let $\theta_0 = L$ and $\theta_m = U$ and for i = 1, ..., m-1 let $\theta_i \in (L, U)$ be the sorted change-point times at which $\lambda(t)$ jumps up or down. The number of change-points is m-1 so if m=1 then there are no change points and the rate $\lambda(t)$ is constant for $t \in (L, U)$. For i = 1, ..., m let $\lambda_i \geq 0$ give the disaster rate over the interval $(\theta_{i-1}, \theta_i]$. The rate function $\lambda(t) = \lambda(t; \theta, \lambda)$ for y is

$$\lambda(t) = \sum_{i=1}^{m} \lambda_i \mathbb{I}_{\theta_{i-1} < t \le \theta_i} \qquad L < t < U.$$

The data and a realisation of $\lambda(t)$ with m=4 are shown in Figure 2 below.

Let $\theta = (\theta_1, ..., \theta_{m-1})$ and $\lambda = (\lambda_1, ..., \lambda_m)$. Model the change-point times θ as arrivals in a Poisson process of unknown rate ρ per year. The number of intervals m is unknown. Prior densities $\pi_R(\rho)$, $\rho \in [0, \infty)$ and $\pi_{\Lambda}(\lambda|m) = \prod_{i=1}^m \pi_{\Lambda}(\lambda_i)$, $\lambda \in [0, \infty)^m$ are given.

- (a) i. Write down the prior $\pi(\theta, \lambda, m, \rho)$ in as much detail as you can. Specify its parameter space, $(\theta, \lambda, m, \rho) \in \Omega$ say.
 - ii. Write down the posterior $\pi(\lambda, \theta, m, \rho|y)$ in terms of the model elements.
- (b) In a reversible jump MCMC algorithm targeting $\pi(\lambda, \theta, m, \rho|y)$, birth and death updates are chosen with probabilities $p_{m,m+1}$ and $p_{m,m-1}$ respectively. A birth proposal $(\lambda, \theta, m, \rho) \to (\lambda', \theta', m', \rho)$ with m' = m+1 is generated as follows: choose an interval $i \sim U\{1, ..., m\}$ uniformly; simulate a split point $\theta^* \sim U(\theta_{i-1}, \theta_i)$; simulate two new values $\lambda_{i,1}, \lambda_{i,2} \sim \text{Exp}(1)$ independently. In the candidate state

$$\lambda' = (\lambda_1, ..., \lambda_{i-1}, \lambda_{i,1}, \lambda_{i,2}, \lambda_{i+1}, ..., \lambda_m)$$

$$\theta' = (\theta_1, ..., \theta_{i-1}, \theta^*, \theta_i, ..., \theta_{m-1}).$$

Give a matching death proposal $(\lambda', \theta', m', \rho) \to (\lambda, \theta, m, \rho)$ and the acceptance probability for the birth proposal. No simplification of expressions is required.

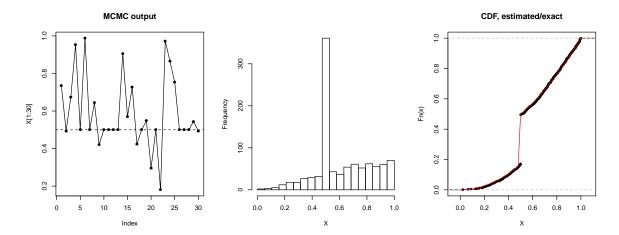


Figure 1: RJ-MCMC targeting $\pi(x,m)$: (Left) plot of x-values realised by the chain (sub-sampled every 10 steps); (Centre) histogram estimate of marginal pdf of x ($f_X(x) = \frac{4}{3}x + \frac{1}{3}\delta_{1/2}(x)$) showing the atom of probability at x = 1/2; (Right) Marginal CDF of x ($F_X(x) = \frac{2}{3}x^2 + \frac{1}{3}\mathbb{I}_{x \geq 1/2}$).

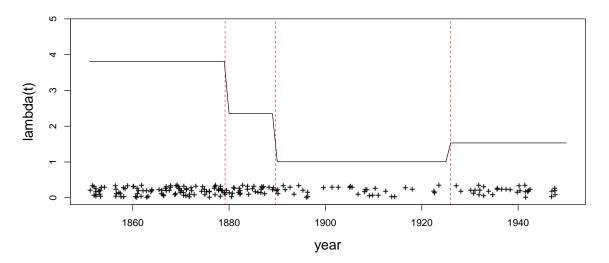


Figure 2: Coal mining disasters: event dates y (+ signs), change point times (θ vertical lines) and $\lambda(t)$ itself (piecewise constant function of year, t).

Statistics Department, University of Oxford Geoff Nicholls: nicholls@stats.ox.ac.uk