
4 Testing Hypotheses

The next lectures will look at tests, some in an actuarial setting, and in the last
subsection we will also consider tests applied to graduation.

4.1 Tests in the regression setting

1) A package will produce a test of whether or not a regression coefficient is
0. It uses properties of mle’s. Let the coefficient of interest be b say. Then
the null hypothesis is HO : b = 0 and the alternative is HA : b �= 0. At the
5% significance level, HO will be accepted if the p-value p > 0.05, and rejected
otherwise.

2) In an AL parametric model if α is the shape parameter then we can test
HO : logα = 0 against the alternative HA : logα �= 0. Again mle properties are
used and a p-value is produced as above. In the case of the Weibull if we accept
logα = 0 then we have the simpler exponential distribution (with α = 1).

3) We have already mentioned that, to test Weibull v. exponential with null
hypothesis HO : exponential is an acceptable fit, we can use

2 log ̂Lweib − 2 log ̂Lexp ∼ χ
2(1), asymptotically.

4.2 Non-parametric testing of survival between groups

We will just consider the case where the data splits into two groups. There is a
relatively easy extension to k(>2) groups.

We need to set up some notation.

Notation:

{
di1 = # events at ti in group 1,

ni1 =# in risk set at ti from group 1,

similarly di2, ni2.

Event times are (0 <)t1 < t2 < · · · < tm.{
di = # events at ti

ni = # in risk set at ti
di = di1 + di2, ni = ni1 + ni2

All the tests are based on the following concepts:

Observed # events in group 1 at time ti,= di1

Expected # events in group 1 at time ti,= ni1
di

ni

under the null hypothesis

below

HO : there is no difference between the hazard rates of the two groups

Usually the alternative hypothesis for all tests is 2-sided and simply states

that there is a difference in the hazard rates.

Finally using a hypergeometric distribution under the assumption that ni1, di, ni

are each fixed, the computed variance of the number of events at time ti in group

1, is
ni1ni2(ni − di)di

n2

i
(ni − 1)

.
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The test statistics used take the form

Z =

m∑

1

W (ti)
(
di1 − ni1

di

ni

)

√√√√
m∑
1

W (ti)2
ni1ni2(ni−di)di

n
2

i
(ni−1)

where W (ti) are weights, and Z has an approximate standard normal distribu-

tion when HO is true. Clearly Z2
∼ χ2(1), also under these conditions. Note

that approximate normality works because the hazards at different times are
asymptotically independent.

The tests

(1)W (ti) = 1, ∀i. This is the log rank test, and is the test in most common
use. A criticism is that it can give too much weight to the later event times
when numbers in the risk sets may be relatively small. The log rank test is
aimed at detecting a consistent difference between hazards in the two groups
and is best placed to consider this alternative when the proportional hazard
assumption applies.

(2) Peto’s test uses a weight dependent on a modified estimated survival
function, estimated for the whole study. The modified estimator is

S̃(t) =
∏
ti≤t

ni +1− di

ni + 1

and the suggested weight is then

W (ti) = ˜S(ti−1)
ni

ni +1

This has the advantage of giving more weight to the early events and less to the
later ones where the population remaining is smaller.

(3) W (ti) = ni has also been suggested (Gehan, Breslow). This again down-
grades the effct of the later times.

(4) Fleming and Harrington suggested a range of tests using

W (ti) =
(
Ŝ(ti−1)

)p (
1− ̂S(ti−1)

)q

where Ŝ is the Kaplan-Meier survival function, estimated for all the data. Then
p = q = 0 gives the logrank test and p = 1, q = 0 gives a test very close to Peto’s
test and is called the Fleming-Harrington test. If we were to set p = 0, q > 0
this would emphasise the later event times if needed for some reason.

Worries with these are:
a) undue unfluence of censoring if pattern of censoring is very different in

one group
b) over-emphasis of tail if small numbers remain (logrank test).
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All of the above can be extended to more than 2 groups. They test for a
consistent (same sign) difference between hazards.

Unusually we may be interested in "crossing" of hazards (possibly also sur-
vival functions). There may be some interaction going on between group and
survival time and so a non-PH effect of group. Then different tests have to be
applied. For instance it is clear that we could use the standard χ2 test

∑ (O −E)2

E

5 Testing in an Actuarial Situation

5.1 Notation

First some notation: compare the notation in survival analysis in a general
setting and in the population setting used by actuaries.

Future lifetime of a newborn is a random variable T distributed on [0,�],
where � represents the maximum age (usually chosen to lie in the range 100-
120)

The future lifetime after age x is denoted by Tx.

FT (t) = Pr(T ≤ t)

ST (t) = F T (t) = 1−FT (t) = Pr(T > t)

Fx(t) = Pr(Tx ≤ t)

= Pr(T ≤ x+ t|T > x)

=
Pr(x < T ≤ x+ t)

ST (x)

=
FT (x+ t)− FT (x)

ST (x)

Then associated with this, the probability of death by t given alive at x is

tqx = Fx(t)

and the probability of being alive at t given alive at x is

tpx = 1−t qx = Sx(t).

We then have to consider two possible distinctions in models used. That is both
discrete and continuous models are in use. We recapitulate some of the earlier
lecture notes here.

Definition (rate of mortality)
In a discrete model the probability of death within one year of birthday

age x is called the rate of mortality and is qx =1 qx.

Definition (the force of mortality)
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In a continuous model the hazard rate

µ
x
= lim

h↓0

Pr(T ≤ x+ h|T > x)

h
(= hazard rate)

is called the force of mortality.

Note that µ
x+t

can be used for fixed age x and 0 ≤ t < � − x. Given Tx in

the continuous model, it has probability density function

fx(t) = µ
x+tSx(t) = µ

x+t (1−Fx(t)) .

The complete expectation of life after age x is

E(Tx) =

�−x∫

0

tfx(t)dt

=

�−x∫

0

Sx(t)dt

The random variable representing the curtate future lifetime is Kx = [Tx],
and so Tx rounded down to the nearest integer. The curtate expectation of life

is just E(Kx).
The interest lies in mortality and predictions of death if in life insurance

and survival if in pensions. Whichever setting there is a choice of discrete or

continuous model.

5.2 The binomial model

Ideally we observe n identically distributed, independent lives aged x for exactly

1 year. we record the number dx who die. Using the notation set up for the

discrete model, a life dies with probability qx within the year.

Hence D
x
, the random variable representing the numbers dying in the year

conditional on n alive at the beginning of the year, has distribution

Dx ∼ B(n, qx)

giving a maximum likelihood estimator

q̂x =
Dx

n
, with varq̂x =

qx (1− qx))

n

where using previous notation we have set lx = n.

The trouble is of course that with real data we may observe the ith life in

an interval (ai, bi) , 0 < ai < bi < 1. In this case

Pr(Dxi = 1) =bi−ai
qx+ai

23



Hence

EDx = E

(∑
Dxi

)
=

n∑
i=1

bi−ai
qx+ai

To evaluate we have to make an assumption about the rate of mortality over a
period of less than 1 year.

There are various possibilities of which common ones are (for 0 < t < 1)
(i) uniform on (0,1) if death occurs in (0,1), giving Fx(t) = tqx
(ii) Balducci: 1−tqx+t = (1 − t)q

x
, so that the probability of failing in the

remaining time 1 − t, having survived to x + t, is the product of the time left
and the probability of failure in (x, x+1)

(iii) there is a constant force of mortality over the year so that tqx = 1 −

e
−µ

x+1
2

t

, where µ
x+

1
2
= µ

x+t for 0 < t < 1.
If Balducci assumptions are used then it can be shown that a sensible esti-

mator is the actuarial estimator, with observed value

q̃x =
dx

Ec
x
+ 1

2
dx

The denominator, Ec

x
+ 1

2
dx, comprises the observed time at risk (also called

central exposed to risk) within the interval (x, x+1), added to 1/2 the number
of deaths (assumes deaths evenly spread over the interval). This is an estimator
for Ex which is the inital exposed to risk and is what is required for the binomial
model.
NB assumptions (i)-(iii) collapse to the same model, essentially (i), if µ

x+
1

2

is very small, since all become tqx ≈ tµ
x+

1

2

, 0 < t < 1.

Definitions, within year (x, x+1)
a) Ec

x
= observed total time (in years) at risk = central exposed to risk

b) E0

x
(= Ex) = initial exposed to risk = # in risk set at age x, with approx-

imation Ex ≈ E
c

x
+

1

2
dx, if required.

5.3 The Poisson model

Under the assumption of a constant hazard rate (force of mortality) µ
x+

1

2

over

the year (x,x + 1], with observed years at risk Ec

x
, then if D

x
represents the

numbers dying in the year the model uses

Pr(Dx = k) =

(
µ
x+

1

2

E
c
x

)k
e

−µ
x+1

2
E
c

x

k!
, k = 0,1,2, · · ·

which is an approximation to the 2-state model, and which in fact yields the

same likelihood.

The estimator for the constant force of mortality over the year is

µ̃
x+

1

2

=

Dx

Ec

x

, with estimate
dx

Ec

x

.
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Under the Poisson model we therefore have that

varµ̃
x+

1

2

=

µ
x+

1

2

Ec

x

(Ec

x
)2

=
µ
x+ 1

2

Ec

x

.

So the estimate will be

varµ̃
x+

1

2

≈

dx

(Ec

x
)2

.

If we compare with the 2-state stochastic model over year (x,x + 1),
assuming constant µ = µ

x+
1

2

, then the likelihood is

L =

n∏

1

µ
δi
e
−µti ,

where δi = 1 if life i dies and ti = bi − ai in previous terminology (see the
binomial model). Hence

L = µdxe−µE
c

x

and so

µ̂ =
Dx

Ec

x

.

The estimator is exactly the same as for the Poisson model except that both Dx

and Ec

x
are random variables. Using asymptotic likelihood theory we see that

the estimate for the variance is

varµ̂ ≈
µ2

d
x

≈

dx

(Ec

x
)2

.

5.4 Testing hypotheses for qx and µ
x+

1

2

We note the following normal approximations:

(i) Binomial model:

Dx ∼ B(Ex, qx) =⇒ Dx ∼ N(Exqx, Exqx (1− qx)

and

q̂x =
Dx

E
x

∼ N

(
qx,

qx (1− qx)

E
x

)
.

(ii) Poisson model or 2-state model:

Dx ∼N(Ec

x
µ
x+

1

2

, Ec

x
µ
x+

1

2

)

and

µ̂
x+

1

2

∼ N

(
µ
x+

1

2

,
µ
x+

1

2

Ec

x

)
.
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Tests are often done using comparisons with a published standard life

table. These can be from
a) national tables for England and Wales published every 10 years,
b) insurance company data collected by the Continuous Mortality Investi-

gation Bureau.
A superscript "s" denotes "from a standard table", such as q

s

x
and µ

s

x+
1

2

.

Test statistics are generally obtained from the following:

Binomial:

zx =
dx −Exq

s

x√
Exqsx (1− qs

x
)

(
≈ O −E√

V

)

Poisson/2-state:

zx =
dx −Ec

x
µs
x+

1

2√
Ec

x
µs
x+

1

2

(
≈

O −E√
V

)
.

Both of these are denoted as zx since under a null hypothesis that the stan-
dard table is adequate Zx ∼ N(0,1) approximately.

5.4.1 The tests

(A) χ2
test.

We take

X =

∑

all ages x

z2
x

This gives the sum of squares of standard normal random variables under the

null hypothesis and so is a sum of χ2(1). Therefore

X ∼ χ2(m) , if m = # years of study.

H0 : there is no difference between the standard table and the data,
HA : they are not the same.
It is normal to use 5% significance and so the test fails if X > χ2(m)0.95.

It tests large deviations from the standard table.
Disadvantages:
1. There may be a few large deviations offset by substantial agreement over

part of the table. The test will not pick this up.
2. There might be bias, that is, although not necessarily large, all the

deviations may be of the same sign.
3. There could be significant groups of consecutive deviations of the same

sign, even if not overall.
(B) Standardised deviations test.

This tries to address point 1 above. Noting that each zx is an observation

from a standard normal distribution under H0, the real line is divided into

intervals, say 6 with dividing points at −2,−1, 0, 1, 2. The number of zx in each
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interval is counted and compared with the expected number from a standard

normal distribution. The test statistic is then

X =

∑

intervals

(O −E)2

E
∼ χ2(5)

under the null hypothesis since this is Pearson’s statistic. The problem here
is that m is unlikely to be large enough to give approximate validity to the
chi-square distribution. So this test is rarely appropriate.

(C) Signs test.

Test statistic X is given by

X = #{zx > 0}

Under the null hypothesis X ∼ B(m, 1
2
), since the probability of a positive sign

should be 1/2. This should be administered as a two-tailed test. It is under-
powered since it ignores the size of the deviations but it will pick up small
deviations of consistent sign, positive or negative, and so it addresses point 2
above.

(D) Cumulative deviations test.

This again addresses point 2 and essentially looks very similar to the logrank
test between two survival curves. If instead of squaring dx − Exq

s

x
or dx −

Ec

x
µs
x+

1

2

, we simply sum then

∑
(dx −Exq

s

x
)

√∑
Exqsx (1− qs

x
)
∼ N(0,1), approximately

and ∑(
dx −Ec

x
µs
x+

1

2

)
√∑

Ec

x
µs
x+

1

2

∼ N(0, 1) approximately.

H0 : there is no bias
HA : there is a bias.

This test addresses point 2 again, which is that the chi-square test does not
test for consistent bias.

(E) There are tests to deal with consecutive bias/runs of same sign. These
are called the groups of signs test and the serial correlations test. Again a very
large number of years, m, are required to render these tests useful.

5.4.2 Graduation

Graduation is exactly what we would normally mean by "smoothing". Suppose
that a company has collected its own data, producing estimates for either qx
or µ

x+ 1

2

. The estimates may be rather irregular from year to year and this
could be an artefact of the population the company happens to have in a par-
ticular scheme. The underlying model should probably (but not necessarily) be

27



smoother than the raw estimates. If it is to be considered for future predictions,
then smoothing should be considered. This is called graduation.

Possible methods of graduation

(A) Parametric

Fit a formula to the data. Possible examples are

µ
x
= Bcx

µ
x
= A+Bcx

The first of these can be a good model for a population of middle.older age
groups. It is an exponential model (cx = e

x log c). The second has an extra
additive constant which is sometimes used to model accidental deaths, regardless
of age. We coud use more complicated formulae putting in polynomials in x.

(B) Reference to a standard table

Here q0
x
, µ0

x
represent the graduated estimates. We could have a linear de-

pendence
q0
x
= a+ bqs

x
, µ0

x
= a + bµs

x

or possibly a translation of years

q0
x
= qs

x+k, µ0
x
= µs

x+k

In general there will be some assigned functional dependence of the graduated
estimate on the standard table value.

In both of these we need to get the best fit by some means.
Methods for fitting:
(i) In any of the models (binomial, Poisson, 2-state) set (say) qx = a +

bqs
x

in the likelihood and use maximum likelihood estimators for the unknown
parameters a, b and similarly for µ

x
and other functional relationships with the

standard values.
(ii) Use weighted least squares and minimise

∑

all ages x

wx

(
q̂x − q

0

x

)2
or

∑

all ages x

wx

(
µ̂
x+

1

2

− µ
0

x+ 1

2

)2

as appropriate. For the weights suitable choices are either E
x
or Ec

x
respectively.

Alternatively we can use 1/var, where the variance is estimated for q̂x or µ̂
x+

1

2

,
respectively.

The test hypotheses we have already covered above can be used to test the
graduation fit to the data, replacing qs

x
, µs

x+
1

2

by the graduated estimates. Note

that in the χ2 test we must reduce the degrees of freedom of the χ2

distribution by the number of parameters estimated in the model for

the graduation. For example if q0
x
= a + bqs

x
, then we reduce the degrees of

freedom by 2 as the parameters a, b are estimated.
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Finally an alternative method of graduation is to smooth using a smooth-

ing programme from a package. For example in Matlab the methods available

could include kernel smoothing, orthogonal polynomials, cubic splines and so

on. These are beyond the scope of this course.
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