Part A Simulation and Statistical Programming HT16 Problem Sheet 1 – due Week 2 Friday 10am 24-29 St Giles

1. Consider the integral

$$\theta = \int_0^\pi x \cos x dx.$$

- (a) Evaluate θ .
- (b) Give a Monte Carlo estimator $\hat{\theta}_n$ for numerically approximating θ , using uniform random variables on $[0, \pi]$.
- (c) Calculate the bias and the variance of this estimator.
- (d) Using Chebyshev's inequality, determine how large n needs to be to ensure that the absolute error between $\hat{\theta}_n$ and θ is less than 10^{-3} , with probability exceeding 0.99.
- (e) Same question using the Central Limit Theorem.
- 2. Consider the family of distributions with probability density function (pdf)

$$f_{\mu,\lambda}(x) = \lambda \exp\left(-2\lambda |x-\mu|\right), \quad x \in \mathbb{R},$$

where $\lambda > 0$ and $\mu \in \mathbb{R}$ are parameters.

- (a) Given $U \sim U[0, 1]$, use the inversion method to simulate from $f_{\mu,\lambda}$.
- (b) Let X have pdf $f_{\mu,\lambda}$. Show that a + bX has pdf $f_{\mu',\lambda'}$ for $b \neq 0$. Find the parameters μ', λ' .
- (c) Let $Y, Z \sim \text{Exp}(r)$. Show that Y Z has pdf $f_{\mu',\lambda'}$. Find the parameters μ', λ' . Hence, use the transformation method to simulate from $f_{\mu,\lambda}$ for any $\lambda > 0$ and $\mu \in \mathbb{R}$, given $U_1, U_2 \sim U[0, 1]$ independent.
- 3. (a) Let $Y \sim \text{Exp}(\lambda)$ and fix a > 0. Let $X = Y | Y \ge a$. That is, the random variable X is equal to Y conditioned on $Y \ge a$. Calculate $F_X(x)$ and $F_X^{-1}(u)$. Give an algorithm simulating X from $U \sim U[0, 1]$.
 - (b) Let a and b be given, with a < b. Show that we can simulate $X = Y | a \le Y \le b$ from $U \sim U[0, 1]$ using

$$X = F_Y^{-1}(F_Y(a)(1-U) + F_Y(b)U),$$

i.e., show that if X is given by the formula above, then $Pr(X \le x) = Pr(Y \le x | a \le Y \le b)$. Apply the formula to simulate an exponential rv conditioned to be greater than a.

- (c) Here is a very simple rejection algorithm simulating X = Y|Y > a for $Y \sim \text{Exp}(\lambda)$:
 - 1 Let $Y \sim \text{Exp}(\lambda)$. Simulate Y = y.
 - 2 If Y > a then stop and return X = y, and otherwise, start again at 1.

Calculate the expected number of trials to the first acceptance. Why is the inversion method to be preferred over this rejection algorithm for $a \gg 1/\lambda$?

Part A Simulation and Statistical Programming HT16 Problem Sheet 2 – due Week 4 Friday 10am 24-29 St Giles

- 1. Suppose X is a discrete random variable taking values $X \in \{1, 2, ..., m\}$ with probability mass function (pmf) $p(i) = \Pr(X = i)$. Let q(i) = 1/m be the pmf of the uniform distribution on $\{1, 2, ..., m\}$. Give a rejection algorithm simulating $X \sim p$ using proposals Y distributed according to q. Calculate the expected number of simulations $Y \sim q$ per returned value of X if p = (0.5, 0.25, 0.125, 0.125).
- 2. Let $Y \sim q$ with probability density function (pdf) $q(x) \propto \exp(-|x|)$ for $x \in \mathbb{R}$. Let $X \sim N(0,1)$ be a standard normal random variable, with pdf $p(x) \propto \exp(-x^2/2)$.
 - (a) Find M to bound p(x)/q(x) for all real x.
 - (b) Give a rejection algorithm simulating X using q as the proposal pdf.
 - (c) Can we simulate $Y \sim q$ by rejection using p as the proposal pdf?
- 3. Consider a discrete random variable $X \in \{1, 2, \ldots\}$ with probability mass function

$$p(x;s) = \frac{1}{\zeta(s)} \frac{1}{x^s},$$
 for $x = 1, 2, 3,$

where s > 1.

- (a) The normalising constant $\zeta(s)$ is hard to calculate. However, when s = 2 we do have $\zeta(2) = \pi^2/6$. Give an algorithm to simulate $Y \sim p(y; 2)$ by inversion.
- (b) Implement your inversion algorithm as an R function. Your function should take as input an integer n > 0 and return as output n iid realisations of $Y \sim p(y; 2)$. Say briefly how you checked your code.
- (c) Give a rejection algorithm simulating X with pmf p(x; s) for s > 2, using the rejection algorithm and draws from $Y \sim q$ where the proposal is q(y) = p(y; 2). You will need to derive the upper bound $M' \geq \tilde{p}(x; s)/\tilde{q}(x)$ for all x.
- (d) Compute the expected number of simulations of $Y \sim q$ for each simulated X in the previous part question, giving your answer in terms of $\zeta(s)$.
- (e) Implement your algorithm as an R function. Your function should take as input s and return as output $X \sim p(x; s)$ and the number of trials N it took to simulate X.
- 4. Suppose $X \sim N(0, \sigma^2)$ is a Gaussian random variable with mean 0 and variance σ^2 . We want to estimate $\mu_{\phi} = \mathbb{E}(\phi(X))$ for some function $\phi : \mathbb{R} \to \mathbb{R}$ such that $\phi(X)$ has finite mean and variance. Suppose we have iid samples $Y_1, ..., Y_n$ with $Y_i \sim N(0, 1), i = 1, 2, ..., n$. We consider the following two estimators for μ_{ϕ} :

$$\widehat{\theta}_{1,n} = \frac{1}{n} \sum_{i=1}^{n} \phi(\sigma Y_i)$$

and

$$\widehat{\theta}_{2,n} = \frac{1}{n\sigma} \sum_{i=1}^{n} \exp\left[-Y_i^2 \left(\frac{1}{2\sigma^2} - \frac{1}{2}\right)\right] \phi(Y_i).$$

- (a) Show that $\hat{\theta}_{1,n}$ and $\hat{\theta}_{2,n}$ are unbiased and give the expression of their variances.
- (b) What range of values must σ be in for $\hat{\theta}_{2,n}$ to have finite variance? Can you give a weaker condition if it is known that $\int_{-\infty}^{\infty} \phi^2(x) dx < \infty$?
- (c) Why might we prefer $\hat{\theta}_{2,n}$ to $\hat{\theta}_{1,n}$, for some values of σ^2 and functions ϕ ? (Hint: consider estimating $\mathbb{P}(X > 1)$ with $\sigma \ll 1$).

Part A Simulation and Statistical Programming HT16

Problem Sheet 3 – due Week 6 Friday 10am

Please hand in the solutions at 24-29 St Giles, and email the R code for questions 3 and 4, in a single well-commented R-script, to

- thibaut.lienart@univ.ox.ac.uk (Monday 2pm class) or
- andreas.anastasiou@jesus.ox.ac.uk (Monday 4pm class).
 - 1. We are interested in performing inference about the parameters of an internet traffic model.
 - (a) The arrival rate Λ for packets at an internet switch has a log-normal distribution LogNormal(μ, σ) with parameters μ and σ . The LogNormal(μ, σ) probability density is

$$p_{\Lambda}(\lambda;\mu,\sigma) = \frac{1}{\lambda\sqrt{2\pi\sigma^2}} \exp\left(-(\log(\lambda) - \mu)^2/2\sigma^2\right),$$

Show that if $V \sim N(\mu, \sigma^2)$ and we set $W = \exp(V)$ then $W \sim \text{LogNormal}(\mu, \sigma)$.

(b) Given an arrival rate $\Lambda = \lambda$, the number N of packets which actually arrive has a Poisson distribution, $N \sim \text{Poisson}(\lambda)$. Suppose we observe N = n. Show that the likelihood $L(\mu, \sigma; n)$ for μ and σ is

$$L(\mu, \sigma; n) \propto \mathbb{E}(\Lambda^n \exp(-\Lambda) | \mu, \sigma).$$

- (c) Give an algorithm simulating $\Lambda \sim \text{LogNormal}(\mu, \sigma)$ using $Y \sim N(0, 1)$ as a base distribution, and explain how you could use simulated Λ -values to estimate $L(\mu, \sigma; n)$ by simulating values for Λ .
- (d) Suppose now we have m iid samples

$$\Lambda^{(j)} \sim \text{LogNormal}(\mu, \sigma), j = 1, 2, ..., m$$

for one pair of (μ, σ) -values. Give an importance sampling estimator for $L(\mu', \sigma'; n)$ at new parameter values $(\mu', \sigma') \neq (\mu, \sigma)$, in terms of the $\Lambda^{(j)}$'s.

- (e) For what range of μ', σ' values can the $\Lambda^{(j)}$ -realisation be safely 'recycled' in this way?
- 2. Let $X = (X_0, X_1...)$ be a homogeneous Markov chain taking values in a discrete state space Ω , with transition matrix $P = (p_{ij})_{i,j\in\Omega}$.
 - (a) Show that if the Markov chain is irreducible, and $p_{ii} > 0$ for some $i \in \Omega$, then the chain is aperiodic.
 - (b) Consider the homogeneous Markov chain (X_0, X_1, \ldots) with $X_n \in \{1, \ldots, m\}$ and transition matrix

$$p_{ij} = \frac{1}{m} \min\left(1, \frac{p(j)}{p(i)}\right)$$

for $i \neq j$ and

$$p_{ii} = 1 - \frac{1}{m} \sum_{j \neq i} \min\left(1, \frac{p(j)}{p(i)}\right)$$

where p is a probability mass function on $\{1, \ldots, m\}$ with p(i) > 0 for all $i = 1, 2, \ldots, m$ and $X_0 = 1$.

- (i) Show that the Markov chain is irreducible and aperiodic, and admits p as invariant distribution.
- (ii) Propose an algorithm to simulate the Markov chain $(X_0, X_1, X_2, ...)$ using independent random variables $Y_k \sim U\{1, ..., m\}$ and $U_k \sim U[0, 1]$ for k = 1, 2, ...

3. Here is an algorithm converting a non-negative number $x \in [0, 1)$ to its binary expansion.

Let b be the binary representation of x. Compute the first I binary places as follows. Let i = 1 and y = 2x. If y is greater than or equal one set $b_i = 1$ otherwise set $b_i = 0$; let $x = y - b_i$. If x is now zero or i = I then stop (as either there are no more non-zero places, or we have reached the limit of our number of digits), otherwise increase i by one and repeat.

- (a) Write an R function implementing this algorithm. Your function should take as input a single non-negative number x between 0 and 1 and return the corresponding binary representation. Represent the binary number as a vector, so for example decimal 0.125 becomes c(0,0,1) in binary.
- (b) At what binary place do Rs numerical values for 0.3 and 0.1 + 0.1 + 0.1 differ?
- (c) Adapt your function to take two positive integers 0 as input, and return the binary expansion of <math>p/q exactly.
- 4. Consider a sequence of observations x_1, \ldots, x_n . Let m_i and s_i^2 denote the mean and sample variance of the first *i* observations $i \leq n$. How many operations (additions, subtractions, multiplications or divisions) are needed to calculate the sequence of means m_1, \ldots, m_n , if each mean is calculated separately?
 - (a) Derive an expression for m_{i+1} in terms of m_i and x_{i+1} and write an R function that calculates m_1, \ldots, m_n using this sequential formula. How many operations will this function use? [Hint: it is important for speed to initialise your output vector with the correct length at the start using numeric(), rather than appending one answer at a time.]
 - (b) Now consider the sequence of sample variances s_1^2, \ldots, s_n^2 . Find an expression for s_{i+1}^2 in terms of s_i^2, m_i, m_{i+1} and x_{i+1} . Write an R function to evaluate the sample variances using a sequential method.
 - (c) (Optional.) Write a function to calculate the sample means non-sequentially (using a loop or, for example, sapply()). How long does it take to run when $n = 10^3, 10^4, 10^5$?

Part A Simulation and Statistical Programming HT16

Problem Sheet 4 – due Week 7 Friday 10am

Please hand in the solutions at 24-29 St Giles, and email the R code, in a single well-commented R-script, to

- thibaut.lienart@univ.ox.ac.uk (Monday 2pm class) or
- andreas.anastasiou@jesus.ox.ac.uk (Monday 4pm class).
 - 1. (a) Give a Metropolis-Hastings algorithm with a stationary Gamma probability density function,

$$\pi(x) \propto x^{\alpha-1} \exp(-\beta x), \quad x > 0$$

with parameters $\alpha, \beta > 0$. Use the proposal distribution $Y \sim \text{Exp}(\beta)$.

- (b) Write an R function implementing your MCMC algorithm. Your function should take as input values for α and β and a number n of steps and return as output a realization $X_1, X_2, ..., X_n$ of a Markov chain targeting π . State briefly how you checked your code.
- 2. MCMC for Bayesian inference (first two parts were an exam Q in 2009)
 - (a) Let $X \sim \text{Binomial}(n, r)$ be a binomial random variable with n trials and success probability r. Let $\pi(x; n, r)$ be the pmf of X. Give a Metropolis-Hastings Markov chain Monte Carlo algorithm with stationary pmf $\pi(x; n, r)$.
 - (b) Suppose the success probability for X is random, with Pr(R = r) = p(r) given by

$$p(r) = \begin{cases} r & \text{for } r \in \{1/2, 1/4, 1/8, ...\}, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

An observed value X = x of the Binomial variable in part (a) is generated by simulating $R \sim p$ to get $R = r^*$ say, and then $X \sim \text{Binomial}(n, r^*)$ as before. Specify a Metropolis-Hastings Markov chain Monte Carlo algorithm simulating a Markov chain, $(R_t)_{t=0,1,2,\dots}$ with equilibrium probability mass function $R_t \stackrel{d}{\to} p(r|x)$ where

$$p(r|x) \propto \pi(x; n, r)p(r)$$

is called the posterior distribution for r given data x.

- (c) Write an R function implementing your MH MCMC algorithm with target distribution p(r|x). Suppose n = 10 and we observe x = 0. Run your MCMC algorithm and estimate the mode of p(r|x) over values of r.
- 3. Let X be an $n \times p$ matrix of fixed covariates with n > p, and suppose that X has full column rank p.
 - (a) Explain why the $p \times p$ matrix $X^T X$ is invertible.

Consider the linear model given by

$$Y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i,$$

where $\varepsilon_i \sim N(0, \sigma^2)$.

- (b) Write down the distribution of Y_i , and use it to write out the log-likelihood for $\beta = (\beta_1, \ldots, \beta_p)$.
- (c) Show that the MLE is equivalent to minimising the sum of squares:

$$R(\beta) = \sum_{i=1}^{n} (Y_i - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2.$$

- (d) By differentiating and writing the problem as a system of linear equations, show that the MLE is $\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T Y.$
- 4. Consider the linear model $Y = X\beta + \epsilon$ where Y is a vector of n observations, X is an $n \times p$ matrix with each column containing a different explanatory variable and ϵ is a vector of n independent normal random errors with mean zero and unknown variance σ^2 . The maximum likelihood estimator for β is

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

The sample variance is

$$s^{2} = \frac{1}{n-p} \|X\hat{\beta} - Y\|^{2}$$

where p is the length of β . The standard error for β is

$$\operatorname{se}(\hat{\beta}_i) = s\sqrt{[(X^T X)^{-1}]_{ii}}$$

(a) The trees data give Girth, Height and Volume measurements for 31 trees. Fit the model

$$Y_i = \beta_1 + x_i^{height} \beta_2 + x_i^{girth} \beta_3 + \epsilon_i$$

using the R commands

> data(trees)
> summary(lm(Volume ~ Girth + Height, data=trees))

and briefly interpret the output.

- (b) Write a function of your own (using solve() or your solution to question 3, not lm()) to fit a linear model. Your function should take the length 31 vector trees\$Volume and the 31 × 3 matrix X = cbind(1, trees\$Girth, trees\$Height) as input and return estimates of β, the residual standard error s, and the standard errors of each β_i. Check your output against the corresponding results from the summary(lm()) output in (a).
- 5. Here is an algorithm to compute the QR factorisation of an $n \times p$ matrix A with $p \leq n$. That is, it returns an $n \times p$ orthogonal matrix Q and a $p \times p$ upper triangular matrix R sich that A = QR.

Let |v| denote the Euclidean norm of a vector v. Let $A_{[,a:b]}$ denote the matrix formed from the columns $a, a + 1, \ldots, b$ of A.

- 1. Create $n \times p$ matrix Q and $p \times p$ matrix R.
- 2. Set $Q_{[,1]} = A_{[,1]}/|A_{[,1]}|$ and $R_{11} = |A_{[,1]}|$.
- 3. If p = 1 then we are done; return Q and R.
- 4. Otherwise (i.e. if p > 1), set $R_{[1,2:p]} = Q_{[,1]}^T A_{[,2:p]}$ and $R_{[2:p,1]} = \mathbf{0}$.
- Set A' = A_[,2:p] − Q_[,1]R_[1,2:p].
 [Notice that Q_[,1]R_[1,2:p] is an outer product of an n component column vector and a (p − 1) component row vector, so A' is a new n × (p − 1) matrix. Either make use of the outer() command or, if you use [be careful to use the drop argument when forming these sub-matrices.]
- 6. Compute the QR factorisation of A' (so A' = Q'R' say).
- 7. Set $Q_{[,2:p]} = Q'$ and $R_{[2:p,2:p]} = R'$ and return Q and R.

- (a) Implement this algorithm as a recursive function in R. Your function should take as input an $n \times p$ matrix A and return two matrices Q and R as a list. State briefly how you checked your function was correct.
- (b) Using your QR function, and the R command backsolve(), give a least squares solution to the over-determined system

 $X\beta = Y$

where X and Y take their values from the **trees** data in question 4.