Part A Simulation and Statistical Programming HT16 Problem Sheet 1 - due Week 2 Friday 10am 24-29 St Giles

1. Consider the integral

$$
\theta=\int_{0}^{\pi} x \cos x d x
$$

(a) Evaluate θ.
(b) Give a Monte Carlo estimator $\widehat{\theta}_{n}$ for numerically approximating θ, using uniform random variables on $[0, \pi]$.
(c) Calculate the bias and the variance of this estimator.
(d) Using Chebyshev's inequality, determine how large n needs to be to ensure that the absolute error between $\widehat{\theta}_{n}$ and θ is less than 10^{-3}, with probability exceeding 0.99 .
(e) Same question using the Central Limit Theorem.
2. Consider the family of distributions with probability density function (pdf)

$$
f_{\mu, \lambda}(x)=\lambda \exp (-2 \lambda|x-\mu|), \quad x \in \mathbb{R},
$$

where $\lambda>0$ and $\mu \in \mathbb{R}$ are parameters.
(a) Given $U \sim \mathrm{U}[0,1]$, use the inversion method to simulate from $f_{\mu, \lambda}$.
(b) Let X have pdf $f_{\mu, \lambda}$. Show that $a+b X$ has pdf $f_{\mu^{\prime}, \lambda^{\prime}}$ for $b \neq 0$. Find the parameters $\mu^{\prime}, \lambda^{\prime}$.
(c) Let $Y, Z \sim \operatorname{Exp}(r)$. Show that $Y-Z$ has pdf $f_{\mu^{\prime}, \lambda^{\prime}}$. Find the parameters $\mu^{\prime}, \lambda^{\prime}$. Hence, use the transformation method to simulate from $f_{\mu, \lambda}$ for any $\lambda>0$ and $\mu \in \mathbb{R}$, given $U_{1}, U_{2} \sim \mathrm{U}[0,1]$ independent.
3. (a) Let $Y \sim \operatorname{Exp}(\lambda)$ and fix $a>0$. Let $X=Y \mid Y \geq a$. That is, the random variable X is equal to Y conditioned on $Y \geq a$. Calculate $F_{X}(x)$ and $F_{X}^{-1}(u)$. Give an algorithm simulating X from $U \sim \mathrm{U}[0,1]$.
(b) Let a and b be given, with $a<b$. Show that we can simulate $X=Y \mid a \leq Y \leq b$ from $U \sim \mathrm{U}[0,1]$ using

$$
X=F_{Y}^{-1}\left(F_{Y}(a)(1-U)+F_{Y}(b) U\right),
$$

i.e., show that if X is given by the formula above, then $\operatorname{Pr}(X \leq x)=\operatorname{Pr}(Y \leq x \mid a \leq Y \leq b)$. Apply the formula to simulate an exponential rv conditioned to be greater than a.
(c) Here is a very simple rejection algorithm simulating $X=Y \mid Y>a$ for $Y \sim \operatorname{Exp}(\lambda)$:

1 Let $Y \sim \operatorname{Exp}(\lambda)$. Simulate $Y=y$.
2 If $Y>a$ then stop and return $X=y$, and otherwise, start again at 1 .
Calculate the expected number of trials to the first acceptance. Why is the inversion method to be preferred over this rejection algorithm for $a \gg 1 / \lambda$?

Part A Simulation and Statistical Programming HT16 Problem Sheet 2 - due Week 4 Friday 10am 24-29 St Giles

1. Suppose X is a discrete random variable taking values $X \in\{1,2, \ldots, m\}$ with probability mass function (pmf) $p(i)=\operatorname{Pr}(X=i)$. Let $q(i)=1 / m$ be the pmf of the uniform distribution on $\{1,2, \ldots, m\}$. Give a rejection algorithm simulating $X \sim p$ using proposals Y distributed according to q. Calculate the expected number of simulations $Y \sim q$ per returned value of X if $p=(0.5,0.25,0.125,0.125)$.
2. Let $Y \sim q$ with probability density function (pdf) $q(x) \propto \exp (-|x|)$ for $x \in \mathbb{R}$. Let $X \sim \mathrm{~N}(0,1)$ be a standard normal random variable, with pdf $p(x) \propto \exp \left(-x^{2} / 2\right)$.
(a) Find M to bound $p(x) / q(x)$ for all real x.
(b) Give a rejection algorithm simulating X using q as the proposal pdf.
(c) Can we simulate $Y \sim q$ by rejection using p as the proposal pdf?
3. Consider a discrete random variable $X \in\{1,2, \ldots\}$ with probability mass function

$$
p(x ; s)=\frac{1}{\zeta(s)} \frac{1}{x^{s}}, \quad \text { for } x=1,2,3, \ldots
$$

where $s>1$.
(a) The normalising constant $\zeta(s)$ is hard to calculate. However, when $s=2$ we do have $\zeta(2)=\pi^{2} / 6$. Give an algorithm to simulate $Y \sim p(y ; 2)$ by inversion.
(b) Implement your inversion algorithm as an R function. Your function should take as input an integer $n>0$ and return as output n iid realisations of $Y \sim p(y ; 2)$. Say briefly how you checked your code.
(c) Give a rejection algorithm simulating X with $\operatorname{pmf} p(x ; s)$ for $s>2$, using the rejection algorithm and draws from $Y \sim q$ where the proposal is $q(y)=p(y ; 2)$. You will need to derive the upper bound $M^{\prime} \geq \tilde{p}(x ; s) / \tilde{q}(x)$ for all x.
(d) Compute the expected number of simulations of $Y \sim q$ for each simulated X in the previous part question, giving your answer in terms of $\zeta(s)$.
(e) Implement your algorithm as an R function. Your function should take as input s and return as output $X \sim p(x ; s)$ and the number of trials N it took to simulate X.
4. Suppose $X \sim N\left(0, \sigma^{2}\right)$ is a Gaussian random variable with mean 0 and variance σ^{2}. We want to estimate $\mu_{\phi}=\mathbb{E}(\phi(X))$ for some function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that $\phi(X)$ has finite mean and variance. Suppose we have iid samples Y_{1}, \ldots, Y_{n} with $Y_{i} \sim N(0,1), i=1,2, \ldots, n$. We consider the following two estimators for μ_{ϕ} :

$$
\widehat{\theta}_{1, n}=\frac{1}{n} \sum_{i=1}^{n} \phi\left(\sigma Y_{i}\right)
$$

and

$$
\widehat{\theta}_{2, n}=\frac{1}{n \sigma} \sum_{i=1}^{n} \exp \left[-Y_{i}^{2}\left(\frac{1}{2 \sigma^{2}}-\frac{1}{2}\right)\right] \phi\left(Y_{i}\right) .
$$

(a) Show that $\widehat{\theta}_{1, n}$ and $\widehat{\theta}_{2, n}$ are unbiased and give the expression of their variances.
(b) What range of values must σ be in for $\widehat{\theta}_{2, n}$ to have finite variance? Can you give a weaker condition if it is known that $\int_{-\infty}^{\infty} \phi^{2}(x) d x<\infty$?
(c) Why might we prefer $\widehat{\theta}_{2, n}$ to $\widehat{\theta}_{1, n}$, for some values of σ^{2} and functions ϕ ? (Hint: consider estimating $\mathbb{P}(X>1)$ with $\sigma \ll 1)$.

Part A Simulation and Statistical Programming HT16
 Problem Sheet 3 - due Week 6 Friday 10am

Please hand in the solutions at 24-29 St Giles, and email the R code for questions 3 and 4 , in a single well-commented R-script, to

- thibaut.lienart@univ.ox.ac.uk (Monday 2pm class) or
- andreas.anastasiou@jesus.ox.ac.uk (Monday 4pm class).

1. We are interested in performing inference about the parameters of an internet traffic model.
(a) The arrival rate Λ for packets at an internet switch has a log-normal distribution $\operatorname{LogNormal}(\mu, \sigma)$ with parameters μ and σ. The $\operatorname{LogNormal}(\mu, \sigma)$ probability density is

$$
p_{\Lambda}(\lambda ; \mu, \sigma)=\frac{1}{\lambda \sqrt{2 \pi \sigma^{2}}} \exp \left(-(\log (\lambda)-\mu)^{2} / 2 \sigma^{2}\right)
$$

Show that if $V \sim N\left(\mu, \sigma^{2}\right)$ and we set $W=\exp (V)$ then $W \sim \operatorname{LogNormal}(\mu, \sigma)$.
(b) Given an arrival rate $\Lambda=\lambda$, the number N of packets which actually arrive has a Poisson distribution, $N \sim$ Poisson (λ). Suppose we observe $N=n$. Show that the likelihood $L(\mu, \sigma ; n)$ for μ and σ is

$$
L(\mu, \sigma ; n) \propto \mathbb{E}\left(\Lambda^{n} \exp (-\Lambda) \mid \mu, \sigma\right)
$$

(c) Give an algorithm simulating $\Lambda \sim \operatorname{LogNormal}(\mu, \sigma)$ using $Y \sim N(0,1)$ as a base distribution, and explain how you could use simulated Λ-values to estimate $L(\mu, \sigma ; n)$ by simulating values for Λ.
(d) Suppose now we have m iid samples

$$
\Lambda^{(j)} \sim \log \operatorname{Normal}(\mu, \sigma), j=1,2, \ldots, m
$$

for one pair of (μ, σ)-values. Give an importance sampling estimator for $L\left(\mu^{\prime}, \sigma^{\prime} ; n\right)$ at new parameter values $\left(\mu^{\prime}, \sigma^{\prime}\right) \neq(\mu, \sigma)$, in terms of the $\Lambda^{(j)}$'s.
(e) For what range of $\mu^{\prime}, \sigma^{\prime}$ values can the $\Lambda^{(j)}$-realisation be safely 'recycled' in this way?
2. Let $X=\left(X_{0}, X_{1} \ldots\right)$ be a homogeneous Markov chain taking values in a discrete state space Ω, with transition matrix $P=\left(p_{i j}\right)_{i, j \in \Omega}$.
(a) Show that if the Markov chain is irreducible, and $p_{i i}>0$ for some $i \in \Omega$, then the chain is aperiodic.
(b) Consider the homogeneous Markov chain $\left(X_{0}, X_{1}, \ldots\right)$ with $X_{n} \in\{1, \ldots, m\}$ and transition matrix

$$
p_{i j}=\frac{1}{m} \min \left(1, \frac{p(j)}{p(i)}\right)
$$

for $i \neq j$ and

$$
p_{i i}=1-\frac{1}{m} \sum_{j \neq i} \min \left(1, \frac{p(j)}{p(i)}\right)
$$

where p is a probability mass function on $\{1, \ldots, m\}$ with $p(i)>0$ for all $i=1,2, \ldots, m$ and $X_{0}=1$.
(i) Show that the Markov chain is irreducible and aperiodic, and admits p as invariant distribution.
(ii) Propose an algorithm to simulate the Markov chain $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ using independent random variables $Y_{k} \sim \mathrm{U}\{1, \ldots, m\}$ and $U_{k} \sim \mathrm{U}[0,1]$ for $k=1,2, \ldots$
3. Here is an algorithm converting a non-negative number $x \in[0,1)$ to its binary expansion.

Let b be the binary representation of x. Compute the first I binary places as follows. Let $i=1$ and $y=2 x$. If y is greater than or equal one set $b_{i}=1$ otherwise set $b_{i}=0$; let $x=y-b_{i}$. If x is now zero or $i=I$ then stop (as either there are no more non-zero places, or we have reached the limit of our number of digits), otherwise increase i by one and repeat.
(a) Write an R function implementing this algorithm. Your function should take as input a single non-negative number x between 0 and 1 and return the corresponding binary representation. Represent the binary number as a vector, so for example decimal 0.125 becomes $c(0,0,1)$ in binary.
(b) At what binary place do Rs numerical values for 0.3 and $0.1+0.1+0.1$ differ?
(c) Adapt your function to take two positive integers $0<p<q$ as input, and return the binary expansion of p / q exactly.
4. Consider a sequence of observations x_{1}, \ldots, x_{n}. Let m_{i} and s_{i}^{2} denote the mean and sample variance of the first i observations $i \leq n$. How many operations (additions, subtractions, multiplications or divisions) are needed to calculate the sequence of means m_{1}, \ldots, m_{n}, if each mean is calculated separately?
(a) Derive an expression for m_{i+1} in terms of m_{i} and x_{i+1} and write an R function that calculates m_{1}, \ldots, m_{n} using this sequential formula. How many operations will this function use? [Hint: it is important for speed to initialise your output vector with the correct length at the start using numeric(), rather than appending one answer at a time.]
(b) Now consider the sequence of sample variances $s_{1}^{2}, \ldots, s_{n}^{2}$. Find an expression for s_{i+1}^{2} in terms of $s_{i}^{2}, m_{i}, m_{i+1}$ and x_{i+1}. Write an R function to evaluate the sample variances using a sequential method.
(c) (Optional.) Write a function to calculate the sample means non-sequentially (using a loop or, for example, sapply()). How long does it take to run when $n=10^{3}, 10^{4}, 10^{5}$?

Part A Simulation and Statistical Programming HT16 Problem Sheet 4 - due Week 7 Friday 10am

Please hand in the solutions at 24-29 St Giles, and email the R code, in a single well-commented R-script, to

- thibaut.lienart@univ.ox.ac.uk (Monday 2pm class) or
- andreas.anastasiou@jesus.ox.ac.uk (Monday 4pm class).

1. (a) Give a Metropolis-Hastings algorithm with a stationary Gamma probability density function,

$$
\pi(x) \propto x^{\alpha-1} \exp (-\beta x), \quad x>0
$$

with parameters $\alpha, \beta>0$. Use the proposal distribution $Y \sim \operatorname{Exp}(\beta)$.
(b) Write an R function implementing your MCMC algorithm. Your function should take as input values for α and β and a number n of steps and return as output a realization $X_{1}, X_{2}, \ldots, X_{n}$ of a Markov chain targeting π. State briefly how you checked your code.
2. MCMC for Bayesian inference (first two parts were an exam Q in 2009)
(a) Let $X \sim \operatorname{Binomial}(n, r)$ be a binomial random variable with n trials and success probability r. Let $\pi(x ; n, r)$ be the pmf of X. Give a Metropolis-Hastings Markov chain Monte Carlo algorithm with stationary pmf $\pi(x ; n, r)$.
(b) Suppose the success probability for X is random, with $\operatorname{Pr}(R=r)=p(r)$ given by

$$
p(r)= \begin{cases}r & \text { for } r \in\{1 / 2,1 / 4,1 / 8, \ldots\}, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

An observed value $X=x$ of the Binomial variable in part (a) is generated by simulating $R \sim p$ to get $R=r^{*}$ say, and then $X \sim \operatorname{Binomial}\left(n, r^{*}\right)$ as before. Specify a Metropolis-Hastings Markov chain Monte Carlo algorithm simulating a Markov chain, $\left(R_{t}\right)_{t=0,1,2, \ldots}$ with equilibrium probability mass function $R_{t} \xrightarrow{d} p(r \mid x)$ where

$$
p(r \mid x) \propto \pi(x ; n, r) p(r)
$$

is called the posterior distribution for r given data x.
(c) Write an R function implementing your MH MCMC algorithm with target distribution $p(r \mid x)$. Suppose $n=10$ and we observe $x=0$. Run your MCMC algorithm and estimate the mode of $p(r \mid x)$ over values of r.
3. Let X be an $n \times p$ matrix of fixed covariates with $n>p$, and suppose that X has full column rank p.
(a) Explain why the $p \times p$ matrix $X^{T} X$ is invertible.

Consider the linear model given by

$$
Y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{p} x_{i p}+\varepsilon_{i}
$$

where $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$.
(b) Write down the distribution of Y_{i}, and use it to write out the log-likelihood for $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$.
(c) Show that the MLE is equivalent to minimising the sum of squares:

$$
R(\beta)=\sum_{i=1}^{n}\left(Y_{i}-\beta_{1} x_{i 1}-\cdots-\beta_{p} x_{i p}\right)^{2}
$$

(d) By differentiating and writing the problem as a system of linear equations, show that the MLE is $\hat{\boldsymbol{\beta}}=\left(X^{T} X\right)^{-1} X^{T} Y$.
4. Consider the linear model $Y=X \beta+\epsilon$ where Y is a vector of n observations, X is an $n \times p$ matrix with each column containing a different explanatory variable and ϵ is a vector of n independent normal random errors with mean zero and unknown variance σ^{2}. The maximum likelihood estimator for β is

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y .
$$

The sample variance is

$$
s^{2}=\frac{1}{n-p}\|X \hat{\beta}-Y\|^{2}
$$

where p is the length of β. The standard error for β is

$$
\operatorname{se}\left(\hat{\beta}_{i}\right)=s \sqrt{\left[\left(X^{T} X\right)^{-1}\right]_{i i}}
$$

(a) The trees data give Girth, Height and Volume measurements for 31 trees. Fit the model

$$
Y_{i}=\beta_{1}+x_{i}^{\text {height }} \beta_{2}+x_{i}^{\text {girth }} \beta_{3}+\epsilon_{i}
$$

using the R commands
> data(trees)
> summary(lm(Volume ~ Girth + Height, data=trees))
and briefly interpret the output.
(b) Write a function of your own (using solve() or your solution to question 3 , not $\operatorname{lm}()$) to fit a linear model. Your function should take the length 31 vector trees $\$$ Volume and the 31×3 matrix $\mathrm{X}=\mathrm{cbind}(1$, trees $\$$ Girth, trees $\$$ Height) as input and return estimates of β, the residual standard error s, and the standard errors of each β_{i}. Check your output against the corresponding results from the summary (lm()) output in (a).
5. Here is an algorithm to compute the QR factorisation of an $n \times p$ matrix A with $p \leq n$. That is, it returns an $n \times p$ orthogonal matrix Q and a $p \times p$ upper triangular matrix R sich that $A=Q R$.
Let $|v|$ denote the Euclidean norm of a vector v. Let $A_{[, a: b]}$ denote the matrix formed from the columns $a, a+1, \ldots, b$ of A.

1. Create $n \times p$ matrix Q and $p \times p$ matrix R.
2. Set $Q_{[, 1]}=A_{[, 1]} /\left|A_{[, 1]}\right|$ and $R_{11}=\left|A_{[, 1]}\right|$.
3. If $p=1$ then we are done; return Q and R.
4. Otherwise (i.e. if $p>1$), set $R_{[1,2: p]}=Q_{[, 1]}^{T} A_{[, 2: p]}$ and $R_{[2: p, 1]}=\mathbf{0}$.
5. Set $A^{\prime}=A_{[, 2: p]}-Q_{[, 1]} R_{[1,2: p]}$. [Notice that $Q_{[, 1]} R_{[1,2: p]}$ is an outer product of an n component column vector and a ($p-1$) component row vector, so A^{\prime} is a new $n \times(p-1)$ matrix. Either make use of the outer() command or, if you use [be careful to use the drop argument when forming these sub-matrices.]
6. Compute the QR factorisation of A^{\prime} (so $A^{\prime}=Q^{\prime} R^{\prime}$ say).
7. Set $Q_{[, 2: p]}=Q^{\prime}$ and $R_{[2: p, 2: p]}=R^{\prime}$ and return Q and R.
(a) Implement this algorithm as a recursive function in R . Your function should take as input an $n \times p$ matrix A and return two matrices Q and R as a list. State briefly how you checked your function was correct.
(b) Using your QR function, and the R command backsolve(), give a least squares solution to the over-determined system

$$
X \beta=Y
$$

where X and Y take their values from the trees data in question 4.

