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1 Introduction

In this paper we describe a Markov Chain Monte Carlo method for sampling multiple se-

quence alignments within the Thorne, Kishino, and Felsenstein (1991) model (TKF-model)

on a binary tree. We use a Gibbs sampler where in each step an ancestral sequence and its

alignments with the three neighbours is simulated conditional on the three neighbouring

sequences. While developing the method described in this paper the article by Holmes

and Bruno (2001) appeared. In that paper a Gibbs sampler is given that is computation-

ally simpler than the one described in this paper. In each step Holmes and Bruno (2001)

either update the alignment between two sequences given the two sequences or update the

ancestral sequence given its alignments with the three neighbours and at the same time

allowing the insertion of new letters in the ancestral sequence that are not aligned to any

of the letters in the three neighbours (see Appendix A below). We compare our method

with that of Holmes and Bruno (2001) in terms of mixing properties and the eÆciency of

the two approaches.

1.1 TKF-model

In the TKF-model (Thorne, Kishino, and Felsenstein, 1991) each letter in a sequence

develops independently of the other letters according to a birth and death process with

birth rate � and death rate � > �. When a new letter is born it is inserted to the right

of the letter giving birth. The new letter is chosen according to a distribution �. At the

very left end of the sequence is a birth process with rate � (immigration) so that the

sequence will not eventually die out. While a letter is alive it is subject to a Markovian

substitution process with stationary probabilities given by � and with the transition

probability of a change form w1 to w2 within a time span � given by f(w2jw1; �). The

stationary distribution of a sequence S of length L is given by

P (S) = (1� 
)
L
LY
i=1

�(S[i]); 
 =
�

�
; (1)

where S[i] is the ith element in the sequence.

If a sequence S1 evolves into S2 during a time span � we can summarise the evolution

in terms of the alignment of some of the letters in S1 with some of the letters in S2
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(survival of these letters), in terms of deletions (deaths) of some of the letters, in terms

of insertions (births), and �nally in terms of substitutions for the aligned letters. The

TKF-model for this summary information can be reformulated as a hidden Markov model

(Durbin, Eddy, Krogh, and Mitchison 1998). The three basic states for the underlying

Markov chain can symbolically be given as

�
#

#

�
;

�
#

�

�
; or

�
�

#

�
; (2)

corresponding to survival, insertion and deletion, respectively. Thus # denotes the pres-

ence of a symbol (nucleotide or amino acid) and � denotes the absence of a symbol. Apart

from the three states above there is also an end state in order to model the random lengths

of the sequences. To give the transition probabilities in the Markov chain we de�ne

� =
1� exp((�� �)�)

1� 
 exp((�� �)�)
; 
 =

�

�
;

b(#;#) = 
�; b(#;�) = 1� b(#;#);

b(�;#) = 1�
�

1� exp(���)
; b(�;�) = 1� b(�;#);

s(#) = exp(���); s(�) = 1� s(#);

(3)

where b(�;#) is the probability of having a birth, b(�;�) is the probability of not having

a birth, and s(#) is the probability of survival. The transition probabilities are then,

�
#
#

� �
#
�

� �
�
#

�
End

�
#
#

�
b(#;�)
s(#) b(#;�)
s(�) b(#;#) b(#;�)(1� 
)

�
#
�

�
b(�;�)
s(#) b(�;�)
s(�) b(�;#) b(�;�)(1� 
)

�
�
#

�
b(#;�)
s(#) b(#;�)
s(�) b(#;#) b(#;�)(1� 
)

(4)

A state emits letters in those position where we have the symbol #. Thus, in the state�
#
�

�
a letter is emitted in sequence S1 and the distribution of the letter is �(�), in the

state
�
�
#

�
a letter is emitted in sequence S2 also from the distribution �(�), and in the
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Figure 1: A tree with four observed sequences.

state
�
#
#

�
a letter is emitted in both sequences and the distribution of the letters

�
w1

w2

�
is

�(w1)f(w2jw1; �).

The immigration part of the model is incorporated by saying that the Markov chain

starts in the state
�
#
#

�
and this initial state does not emit any letters (also called the

immortal state).

In Hein, Jensen and Pedersen (2002) a detailed description is given of how to formulate

the TKF-model on a binary tree as a hidden Markov model. We will use this below for

the special case of a 3-star tree.

1.2 Notation and Gibbs idea

We have � observed sequences S1; : : : ; S� one for each leaf of a binary tree with � interior

nodes. The unobserved sequences at the inner nodes are denoted T�+1; : : : ; T�+� . The root

of the tree is taken as the interior node numbered �+�. Any interior node �+1 � i < �+�

has an ancestor a(i) among the interior nodes i+ 1; : : : ; � + � and two descendants d1(i)

and d2(i) among the interior nodes � + 1; : : : ; � + i � 1 and the leaves. For the root the

ancestor a(�+ �) is replaced by a descendant. For a leaf j the ancestor a(j) is among the

interior nodes. An example of a tree with 4 observed sequences is given in Figure 1 and

an example with 7 observed sequences is given in Figure 2.

The branch from the node a(j) to the node j is numbered j so that the set of branches

is j = 1; : : : ; � + � � 1. Branch number j has a length �j and an alignment A(a(j); j)

consisting of a sequence with terms as in (2).
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The TKF-model gives the joint probability of all the sequences (T�+1; : : : ; T�+�), (S1; : : : ; S�),

and all the alignments A(a(j); j). In this paper we consider simulation of T�+1; : : : ; T�+�

and the alignmentsA(a(j); j) conditionally on the value of the observed sequences (S1; : : : ; S�).

Each step in the simulation consists in simulating a 3-star tree conditionally on the se-

quences at the three leaves. Thus for each r = �+1; : : : ; �+� we consider the 3-star with

interior node r and leaves a(r); d1(r); d2(r) and simulate a new value of the sequence Tr

and the alignments A(r; a(r)), A(r; d1(r)), and A(r; d2(r)), from the conditional distribu-

tion given the sequences at the three leaves. This conditional distribution is given in (13)

below. For the tree in Figure 1 we simulate the 3-star tree with node 5 being the interior

node and next the 3-star tree with node 6 being the interior node.

To get initial values of the interior sequences T�+1; : : : ; T�+� we use an algorithm for

simulating a 2-star tree equivalent to the one described below for a 3-star tree. In par-

ticular we have a formula equivalent to (13) for the sequential simulation of an interior

sequence. For r = � +1; : : : ; �+ � we simulate Tr given the sequences at d1(r) and d2(r).

2 3-star tree

2.1 States and transition probabilities

We consider a 3-star tree where we let T be the sequence at the interior node and let

S1; S2; S3 be the sequences at the three leaves. The evolutionary time distances along

the branches are �1; �2; �3. In this section we describe the TKF-model for the 3-star tree

as a hidden Markov chain. Each state is an alignment column with 4 entries, the �rst

corresponding to the interior node, which we number by 0, and entries 1 to 3 corresponding

to the 3 leaves. Each entry is either # or �, and a state emits a letter in those sequences

where we have # in the state.

Apart from the end state there are two classes of states given by0
BBBBBB@

#

x1

x2

x3

1
CCCCCCA

and

0
BBBBBB@

�

x1

x2

x3

1
CCCCCCA
; (5)

where xi 2 f#;�g, i = 1; 2; 3. The �rst set of states correspond to having a letter in the
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Figure 2: A tree with seven observed sequences.

ancestral sequence T and recording the possible survival (xi = #) or nonsurvival (xi = �)

in leaf i. The second set of states correspond to births (insertions) at the three leaves

and we require that xj = # for at least one j. From a state in the �rst set we can go

to any state in the two sets. From a state x in the second set we can go to any state in

the �rst set, but only to states y in the second set for which xj = � implies that yj = �,

j = 1; 2; 3. The set of 15 states in (5) are denoted by �.

To state the transition probabilities we de�ne �(j), b(#;#; j), b(#;�; j), b(�;#; j),

b(�;�; j), s(#; j), and s(�; j) as in (3) with � replaced by �j, j = 1; 2; 3. The transition
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probability p(x; y) of going from the state x to the state y is then

y0 = # y0 = � y = End

x0 = # B(#;#)

�Q3

j=1 s(yj; j)
�

B(#;�) B(#;#)(1� 
)

x0 = � B(�;#)

�Q3

j=1 s(yj; j)
�

B(�;�) B(�;#)(1� 
)

(6)

with

B(#;#) =
3Y

j=1

b(xj;�; j); B(#;�) =
3Y

j=1

b(xj; yj; j);

B(�;#) =
Y

fj:xj=#g

b(#;�; j); B(�;�) =
Y

fj:xj=#g

b(#; yj; j):

The initial state has # on all the four entries and do not emit any letters.

A state x of the form (5) emits a letter in those sequences j for which xj = #. Let

the emitted letters be w = (wj : j = 0; 1; 2; 3; 4), where wj is the empty set if xj = �.

Then the probability of w given the state x is

p0e(wjx) =

8<
: �(w0)

Q
fj:xj=#g f(wjjw0; �j) x0 = #Q

fj:xj=#g �(wj) x0 = �
(7)

We will also be using the marginal probability of (w1; w2; w3) given the state x obtained

by summing over w0 in the previous expression

pe((w1; w2; w3)jx) =

8<
:
P

w0
�(w0)

Q
fj:xj=#g f(wjjw0; �j) x0 = #Q

fj:xj=#g �(wj) x0 = �
(8)

2.2 Simulating a 3-star tree

We denote the length of the sequence Sj by Lj, j = 1; 2; 3. A subsequence starting in a

and ending in b is denoted Sj[a : b]. If a > b we interpret Sj[a : b] as the empty set. For

column vectors u and v with integer entries we let S[u : v] denote the three subsequences

Sj[uj : vj], j = 1; 2; 3. For a state x we de�ne a vector l(x) and a number t(x) by

l(x)j = 1(xj = #); j = 1; 2; 3; and t(x) = 1(x0 = #):

Finally, we let I denote the state having # at all four entries and let E be the end state.
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The multiple alignment for a 3-star tree is given through the states x0; x1; : : : ; xN ,

where x0 = I is the initial state that do not emit any letters, xi 2 �, i = 1; : : : ; N , and

xN+1 is the end state. Here N is random. Let

Li = l(x1) + � � �+ l(xi); ti = t(x1) + � � �+ t(xi):

Thus Li is the part of the sequences in S explained by the �rst i states of the alignment.

We can write the joint probability of the sequences and the alignment as

P (N = n; x1; : : : ; xn; T; S)

= p(xn; E)
nY
i=1

p(xi�1; xi)p0e(T [t
i�1 + 1 : ti]; S[Li�1 + 1 : Li]jxi); (9)

where n and x1; : : : ; xn are such that

Ln = l(x1) + � � �+ l(xn) = L;

with L being the vector of lengths of the sequences. Note, that if we sum this expression

over the possible letters of the ancestral sequence T the term p0e is replaced by the term

pe(S[L
i�1 + 1 : Li]jxi):

To obtain the marginal probability of a part of the alignment we introduce the function

F (Kjx0), where K is a column vector of integers and x0 is any state among (5), given by

F (Kjx0) (10)

=
1X
n=0

X
x1;:::;xn2�:K+Ln=L

p(xn; E)
nY
i=1

p(xi�1; xi)pe(S[K + Li�1 + 1 : K + Li]jxi);

where the inner sum is zero if there is no x1; : : : ; xn with K + Ln = L. In particular,

F (Kjx) = 0 if there exists j with Kj > Lj. This function gives the marginal probability

of the sequences S[K +1 : L] given that the initial state is x0. In particular the marginal

probability of the sequences at the three leaves is

P (S) = F (0jI): (11)

From (9) and (10) we �nd the following marginal probability

P (x1; : : : ; xk; T [1 : tk]; S)

=

(
kY

i=1

p(xi�1; xi)p0e(T [t
i�1 + 1 : ti]; S[Li�1 + 1 : Li]jxi)

)
F (Lkjxk);
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and using (11) we get

P (x1; : : : ; xk; T [1 : tk]jS) (12)

=

(
kY

i=1

p(xi�1; xi)p0e(T [t
i�1 + 1 : ti]; S[Li�1 + 1 : Li]jxi)

)
F (Lkjxk)

F (0jI)
:

Dividing (12) by the same expression with k replaced by k � 1 we obtain

P (xk; T [tk�1 + 1 : tk]jS; x1; : : : ; xk�1; T [1 : tk�1]) (13)

= p(xk�1; xk)p0e(T [t
k�1 + 1 : tk]; S[Lk�1 + 1 : Lk]jxk)

F (Lkjxk)

F (Lk�1jxk�1)
:

From (13) we can sequentially simulate (x1; T [1 : t1]); (x2; T [t1 + 1 : t2]); : : : if F (Kjx) is

known for any x and any K � L.

In order to calculate F (Kjx) we make a recursion from (10). We do this by separating

the sum into the sum over x1 and the sum over the remaining variables. For Kj � Lj,

j = 1; 2; 3, and Kj < Lj for at least one j we get

F (Kjx) =
X
x2�

p(x; z)pe(S[K + 1 : K + l(z)]jx)F (K + l(z)jz); (14)

and for K = L we �nd

F (Ljx) = p(x; E) + p(x;D)F (LjD); D =

0
BBBBBB@

#

�

�

�

1
CCCCCCA
: (15)

The recursion (14) is solved in the following way. If F ( ~Kjx) has been found for all x and

all ~K with ~K � K and ~Kj > Kj for at least one j, we �rst �nd F (KjD) from

F (KjD)(1� p(D;D)) =
X

z2�;z 6=D

p(D; z)pe(S[K + 1 : K + l(z)]jx)F (K + l(z)jz);

and next �nd F (Kjx), x 6= D, from (14). The start of the recursion is given by

F (LjD) =
p(D; E)

1� p(D;D)
;

F (Ljx) = p(x; E) + p(x;D)F (LjD); x 6= D:

Note that when we have simulated the alignment x1; : : : ; xN for the 3-star with interior

node r and leaves a(r), d1(r), and d2(r) we can immediately read o� the alignments

A(r; a(r)), A(r; d1(r)), and A(r; d2(r)).
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3 Complexity and mixing

3.1 Mixing

We �rst consider the problem of simulating the ancestor and the three alignments of a

3-star tree. Details of the simulation experiments are given in Appendix B. For a 3-star

tree our algorithm is designed to simulate directly form the conditional distribution given

the three observed sequences. When simulating according to the method of Holmes and

Bruno (2001) (see Appendix A below for a description) we �nd that the mixing is not

fast. In Figure 3 is a plot of the �rst 200 autocorrelations on a logarithmic scale based on

100000 simulated values of the number of deletions that are not followed by an insertion

in branch 2 (one value correspond to one round of updating the three alignments and

updating the ancestral sequence). The upper part of the plot is for three sequences of

lengths around 75 and the lower plot is for three sequences of lengths around 150. We

see that apart from an initial phase there seems to be an exponential decrease of the

autocorrelations. We have estimated the slope using the correlations for lags 50 to 150.

Based on the �rst 50 values and the exponential decrease we have also estimated the sum

of the autocorrelations,
P

k rk. When calculating the variance of the average �x =
Pn

i=1 xi

based on n simulated values we have that nVar(�x) � 1+
P

k rk in the limit n!1. If for

example 1+
P

k rk = 100 the interpretation is that we need to simulate 100n observations

in order to have the same precision as compared with the situation of n independent

values when n is large.

In Table 1 we have given the result for the algorithm of Holmes and Bruno (2001) for

a 3-star tree as well as for the tree in Figure 1 with 4 observed sequences and for the tree

in Figure 2 with 7 observed sequences.

For the algorithm reported in this paper there is by construction no correlation for the

3-star tree and in the other cases there is very little correlation. For lag 1 the correlation

is of order 0.06 and for higher lags the correlations seems to be almost zero.

3.2 Complexity

Without any re�nements our algorithm has complexity L3, where L is a typical length of

a sequence, due to the calculation of F (Kjx) via the recursion (14). This can be reduced
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Figure 3: Log of autocorrelations for the number of deletions along branch 2.

Length 3-star, 75 3-star, 150 4-seq, 75 4-seq, 150 7-seq, 75

Slope on log scale -0.0101 -0.0064 -0.0061 -0.0061 -0.0055

1 + 2
P

k rk 82 127 130 140(112) 176

Table 1: Correlations for the Holmes and Bruno (2001) algorithm.

since F (Kjx) will be practically zero outside a band around a `typical alignment'. For the

runs reported in this paper we have simply taken a �xed band around a line in the three

dimensional space. Similarly, the algorithm of Holmes and Bruno (2001) has complexity

L2 and this can be reduced by using a band only. For the runs with sequences of length

approximately 75 we have used a band of width 20 and for the runs with sequences of

length approximately 150 we have used a band of width 30. A rough calculation gives the

following complexity measures

Holmes and Bruno : k2 � 3� L� w + k3 � L

Ours : k3 � 15� L� w � w
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where w is the width of the band used, k2 is the number of branches, and k3 is the

number of interior nodes. The numbers 3 and 15 are the number of states for aligning two

sequences and for aligning a 3-star tree, respectively. These complexity measures seem to

be in good agreement with the actual CPU times reported in Table 2.

3-star,75 3-star,150 4-seq,75 4-seq,150 7-seq,75

w = 20 w = 30 w = 20 w = 30 w = 20

H & B 4.99 15.04 9.94 27.77 18.77

Ours 158.5 775.4 330.3 1524.0 830.2

Ratio 32 52 33 55 44

(1 + 2
P

k rk)=Ratio 2.6 2.5 3.9 2.6 4.0

Table 2: CPU running times for 100 rounds of updating of the alignment. The bottom

row gives the eÆciency of the algorithm in this paper as compared to the algorithm in

Holmes and Bruno (2001).

From the bottom row of Table 2 we see that in all the runs our algorithm is more

eÆcient for estimating mean values. Furthermore, if we can design a version of the

algorithm that uses a �xed band irrespectively of the lengths of the sequences then the

eÆciency of our algorithm as compared to that of Holmes and Bruno (2001) will increase

with the lengths of the sequences.

4 Maximum likelihood estimation

4.1 Full likelihood for sequences and the alignments

For two sequences S1 and S2 with an alignment A = fz1; : : : ; zng, where zi is one of the

states from (2), the probability of the sequence S2 and the alignment A given the sequence

S1 is

P (S2; AjS1)

= ~p(zn; E ; �)
nY
i=1

~p(zi�1; zi; �)~pce(S2(L
i�1
2 + 1 : Li

2)jS1(L
i�1
1 + 1 : Li

1); z
i; �): (16)
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Here L1 and L2 are the lengths of the sequences, ~p(�; �; �) is the transition probability from

(4), and ~pce is a conditional emission probability

~pce(w2jw1; z; �) =

8>>><
>>>:

f(w2jw1; �) z =
�
#
#

�
1 z =

�
#
�

�
�(w2) z =

�
�
#

�
;

(17)

We can next state the full likelihood Lf (�) for the multiple alignment on the tree,

that is, the joint probability of S1; : : : ; S�, T�+1; : : : ; T�+� , and all the pairwise alignments

A(a(j); j), as a function of the parameters � de�ning the model. Using the notation

S�+j = T�+j we �nd

Lf(�) = P (T�+�)

�+��1Y
j=1

P (Sj; A(a(j); j)jTa(j); �j); (18)

where P (T�+1) is calculated as in (1).

The marginal likelihood Lm(�) based on the observed sequences Sr, r = 1; : : : ; �, is

obtained by summing Lf(�) over the ancestral sequences and their alignments. The ratio

Lm(�2)=Lm(�1) can be calculated as a mean value

Lm(�2)

Lm(�1)
= E�1

�
Lf (�2)

Lf (�1)
jSr; r = 1; : : : ; �

�
: (19)

Thus we can use the Gibbs sampler from Section 3 to generate samples from the con-

ditional distribution given Sr, r = 1; : : : ; �, and thereby approximate (19). However,

unless �2 is close to �1 the ratio Lf(�2)=Lf (�1) will have a very large variance growing

exponentially in the length of the sequences. Instead we use the EM-algorithm described

next.

4.2 Simulated EM-algorithm

To reduce the number of parameters we �rst estimate the stationary probabilities � from

the empirical frequencies in the observed sequences S1; : : : ; S�. Also we estimate 
 = �=�

from the average length of the observed sequences

�̂(a) =

�X
j=1

LjX
i=1

1(Sj[i] = a)=

�X
j=1

Lj;


̂ =
�L

1 + �L
; �L =

1

�

�X
i=1

Li: (20)
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When � and 
 has been �xed the full likelihood (18) can, apart form a data dependent

term, be written as

Lf (�) =

�+�Y
j=1;j 6=�+1

�
b(#;#; j)N(#;#;j)b(#;�; j)N(#;�;j)

�b(�;#; j)N(�;#;j)b(�;�; j)N(�;�;j)s(#; j)N(#;j)s(�; j)N(�;j)

�
Y
w1;w2

f(w2jw1; j)
K(w1;w2;j)

)
; (21)

where

� = (�;  ; �j : j = 1; : : : ; � + � � 1)

with  the parameters in the substitution matrix. Here N(#;#; j) counts the number of

times we have the term b(#;#; j) in the transition probabilities (see (4) in the alignment

A(a(j); j). All the other counts N(�) are de�ned similarly, and K(w1; w2; j) is the number

of substitutions of w1 by w2 along the branch j. To use the EM-algorithm we must

simulate the mean values of all the count statistics in the conditional distribution given

the observed sequences and under the parameter value �1, say. A new value �2 is then

found by maximising (21) with the counts replaced by their mean values.

We have used an iterative procedure to maximize (21). We �rst �nd, with � = (�;  ),

�̂(�); j = 1; : : : ; � + � � 1;

for a �xed value of �, and next �nd a new value of � by maximising

Lf (~�; �̂ (�) : j = 1; : : : ; � + � � 1)

with respect to ~�. The reason for this procedure is that �nding �̂(�) is a one dimensional

search problems since Lf factorizes for a �xed value of �.

We have tried the above method on a 3-star tree. For a 3-star tree we can compare

with the estimates obtained by maximising the likelihood function directly. We have

considered a situation with  �xed and thus we maximize with respect to (�; �1; �2; �3).

In Table 3 is the result from 30 steps of the simulated EM-algorithm, where in each step

we simulate the ancestral and its alignments 1000 times. Included is also the average �lf

of the full log likelihood function, where lf = log(Lf ) with Lf given in (18), as well as the

marginal log likelihood lm based on the three observed sequences. From Table 3 we see

that the marginal likelihood is very 
at in a large region of the parameter space.
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� �1 �2 �3 �lf lm

Start 0.100 0.80 0.80 0.80 19.41 -1.95

Iteration 5 0.085 1.15 0.87 1.21 -2.65 -0.43

Iteration 10 0.079 1.27 0.83 1.39 -6.58 -0.25

Iteration 15 0.078 1.32 0.76 1.48 -4.44 -0.17

Iteration 20 0.077 1.35 0.68 1.53 -1.82 -0.12

Iteration 25 0.077 1.38 0.63 1.57 -0.87 -0.09

Iteration 30 0.078 1.39 0.61 1.59 0.00 -0.08

MLE 0.106 1.55 0.28 1.62 0.00

Table 3: EM-algorithm for a 3-star tree.

For the tree in Figure 1 we have made 30 steps in the simulated EM-algorithm. The

results can be seen in Table 4

� �1 �2 �3 �4 �5 �lf

Start 0.100 0.80 0.80 0.80 0.80 0.80 -1.68

Iteration 5 0.101 0.94 0.79 0.71 0.72 0.75 4.83

Iteration 10 0.102 1.01 0.76 0.68 0.69 0.71 7.40

Iteration 15 0.107 1.09 0.72 0.70 0.67 0.67 3.58

Iteration 20 0.110 1.11 0.66 0.69 0.66 0.67 3.14

Iteration 25 0.113 1.14 0.64 0.70 0.66 0.67 1.34

Iteration 30 0.115 1.15 0.62 0.69 0.65 0.66 0.00

Table 4: EM-algorithm for the tree in Figure 1.

5 Discussion

We have shown that it is feasible to simulate multiple alignments within the TKF-model

using a Gibbs sampler where in each step a 3-star tree is updated. The Gibbs sampler

seems to be mixing very rapidly. Contrary to this the algorithm suggested in Holmes and

Bruno (2001) seems to have long mixing times. For the runs reported here the algorithm

of Holmes and Bruno (2001) is less eÆcient than the algorithm suggested in this paper.
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Via the EM-algorithm we can obtain maximum likelihood estimates of the parameters of

the model.

The Gibbs sampler suggested in this paper is not restricted to the exact form of the

TKF-model. A more general hidden Markov model simply implies a di�erent state space

and di�erent transition probabilities for the 3-star tree in Section 2. In particular one

may wish to include the possibility of going to the immortal state instead of the end

state. This will introduce an extra parameter in the model so that 
 = �=� is no longer

determined by the lengths of the sequences.

The algorithm produces samples from the conditional distribution of alignments and

ancestral sequences given the observed sequences. One can therefore estimate the prob-

abilities of di�erent evolutionary events. The algorithm does not point to one particular

alignment although in a long run of the algorithm one can of course choose the alignment

with the highest value of the full likelihood function.

Appendix A: Holmes and Bruno algorithm

In Holmes and Bruno (2001) two di�erent updating steps are used. The �rst one is the

ordinary simulation of an alignment of two sequences S1 and S2. This means that a set

of states x1; : : : ; xN of the form (2) is simulated. Here the kth is simulated from the

distribution

P (xkjS; x1; : : : ; xk�1)

= ~p(xk�1; xk)~pe(S[L
k�1 + 1 : Lk]jxk)

~F (Lkjxk)
~F (Lk�1jxk�1)

;

where ~p(�; �) is the transition probability from (4), ~pe is the emission probability

~pe

��
w1

w2

�
jx

�
=

8>>><
>>>:

�(w1)f(w2jw1; �) x =
�
#
#

�
�(w1) x =

�
#
�

�
�(w2) x =

�
�
#

�
;

and ~F satis�es for k 6= L the recursion

~F (Kjx) =
X

z;K+l(z)�L

~F (K + l(z)jz)

�~p(x; z)~pe(S2[K2 + 1 : K2 + l2(z)]jS1[K1 + 1 : K1 + l1(z)]; z);
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where z is one of the states in (2) and ~pe(w2jw1; z) is given as in (17) with the �rst two

lines multiplied by �(w1). The recursion is started by ~F (Ljx) = ~p(x; E).

The second updating step in Holmes and Bruno (2001) can be explained as follows.

We consider a 3-star tree where we have an alignment along each of the three branches.

These three alignments are translated into an alignment �x1; : : : ; �x
�N with states �xi of the

form (5). We �rst remove all those �xi that equals D from (15). This gives us the reduced

set of states x1; : : : ; xN . Then we insert new states equal to D in between xi�1 and xi,

the length mi of the inserted states has distribution

P (mi = k) =

8<
:

p(xi�1;D)p(D;xi)
p(xi�1;xi)+p(xi�1;D)p(D;xi)

k = 0

p(xi�1;xi)(1�p(D;D))
p(xi�1;xi)+p(xi�1;D)p(D;xi)

p(D;D)k�1 k > 0:

Finally we update, for i = 1; : : : ; N , the ancestral letter at the interior node corresponding

to the state xi. This means that if xi0 = � there is no letter to update, and if xi0 = # we

choose a letter according to the distribution

p(w0) / �(w0)
Y

fj:xij=#g

f(Sj[L
i�1
j + 1]jwo; �j):

Appendix B: Details of simulation experiments

In the simulations we model sequences of nucleotides so that the possible letters are

A;G;C; T . The substitution process is described by the rate matrix

q(w1; w2) = �(w2) 
1tv(w1;w2)=c;

where 1tv is one if substituting w2 for w1 is a transversion and 1tv is zero otherwise. The

scaling constant c was taken to be �(G) + (�(C) + �(T )) so that there is a unit rate for

a change of the letter A.

We considered the tree in Figure 1 with 4 observed sequences. We generated sequences

from the TKF-model using the parameter settings

� = 0:1; � = 0:099;  = 0:2; � = (0:2; 0:3; 0:2; 0:3);

�1 = �2 = �3 = �4 = �5 = 0:8:

For the investigation of the mixing properties we generates sequences of lengths (75; 74; 79; 79)

and (156; 147; 145; 146), respectively. When simulating the ancestral sequences and their
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alignments we took 
 and � as given in (20) and used the true values of �,  , and took

the branch lengths to be � = 0:8. As initial value for the ancestral sequences we simply

took T5 = S1 and T6 = S4. When simulating from the tree in Figure 2 similar choices

were made.
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