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Abstract of structures. Maximum weighted matching methods (Cary

Motivation: Many computerized methods for RNA second@nd Stormo, 1995; Tabask& al, 1998) share these char-
ary structure prediction have been developed. Few of thedéteristics. _

methods, however, employ an evolutionary model, thusThe method introduced here uses prior knowledge about
relevant information is often left out from the structureRNA structure in making a maximum a posteriori (MAP)
determination. This paper introduces a method whicigStimation of the secondary structure. This is performed on
incorporates evolutionary history into RNA secondaryan alignment of sequences assumed to have identical second-
structure prediction. The method reported here is based GHY Structures, i.e. the alignment is assumed to be a structural
stochastic context-free grammars (SCFGs) to give a prigilignment. The method takes the phylogenetic tree of the se-
probability distribution of structures quences into account, including branch lengths, using a
Results:The phylogenetic tree relating the sequences can tBodel of mutation processes in RNA. Furthermore, the tree
found by maximum likelihood (ML) estimation from thec@n be estimated by a maximum likelihood (ML) method.
model introduced here. The tree is shown to reveal informa- The idea for this work originates in work by Goldnedsal

tion about the structure, due to mutation patterns. Th&l996), who developed a method for predicting protein sec-
inclusion of a prior distribution of RNA structures ensuregPndary structure using hidden Markov models (HMMs) and
good structure predictions even for a small number of relateffcluding  phylogenetic information. This method uses
sequences. Prediction is carried out using maximum &0* 20 rate matrices for amino acid replacements. Three
posteriori estimation (MAP) estimation in a BayesianMatrices are employed: one fwshelices, one fop-sheets

Very We” Compared to current automa‘[ed methods fl’0m Sequences Of knOWI’l structure. An HMM W|th three

Contact: bk@imf.au.dk states, corresponding to the structure types, models the
structures along sequences. This HMM is then used in
conjunction with the rate matrices to find the ML estimate of
the tree relating sequences in an alignment and to predict
Computerized methods have been used for RNA secondaheir secondary structures. The method described here is an
structure prediction for a number of years (e.g. Nuss#ov extension of this model to RNA secondary structure.
al., 1978; Zuker and Stiegler, 1981). During the last 10 years,Secondary structures in RNA are not local, like in proteins,
further methods have been developed (e.g. Zuker, 1988us it is necessary to use a more complex model than an
Eddy and Durbin, 1994; Sakakibatal, 1994; Cary and HMM for modelling these. SCFGs, which are used here, can
Stormo, 1995; Tabasket al, 1998). Some methods use describe some long-range interactions, including most of the
single sequences, which take advantage of prior informatimnes in RNA secondary structure. SCFGs are unable to
on RNA structures, usually through energy functions, e.gnodel crossing interactions, thus pseudoknots cannot be pre-
Zuker (1989). No knowledge concerning related sequenceicted by this method.
is used, so these methods are not ideal when estimating struc-
tures of sequences with known homologs. Algorithms

Covariance methods (Eddy and Durbin, 1994) and profile
stochastic context-free grammars (SCFGs) (Sakakibafi@e input for this analysis is an alignment of RNA se-
et al, 1994), on the other hand, do use information frongquences, while the output is a single common structure for
more than one sequence, but do not explicitly take phylogeriye sequences. The model consists of two distinct parts: the
into account, and do not use a prior probability distributioSCFG and the evolutionary model.

Introduction
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RNA secondary structure prediction

a)S —~ LS - LLLLLLLS — LLLLLLLL The probabilities of the production rules determine the
 ssLsssss — ssdFdsssss prior distribution of secondary structures, in that each struc-
dddFddd ture has a certain probability given by the SCFG. The SCFG
- s 58558 production probabilities are estimated from a training set of
—  ssdddLSdddsssss folded RNAs.
—  ssdddLLLLdddsssss Most literature on SCFGs assumes the grammar to be in
—  ssdddssssdddsssss Chomsky normal form for the algorithms to be used
(Chomsky, 1959; Baker, 1979; Lari and Young, 1990). The
algorithms are easily adapted to other forms, which has been
b) done here. The number of computations needed for solving
S S S problems with these algorithms is proportional to the cube of
d-d the sequence length.
d-d -
d-d Probabilities of columns
SS SS888S _ . .
First, we look at the columns of the alignment one at a time.
Denote the number of sequences in the alignmem, by
c) F' = dFd—ddFdd— ddLSdd which gives the height of the columns. The probability of a
— ddLLdd — ddLsdd — dddFdsdd column of non-pairing bases is assumed to be independent

of the other columns, given the tree relating the sequences.

Fig. 1.Production of RNA structures by the gramma).The rules tLIkbe W.Isg’ the grot:al?lllty Ofttr\]NO pallrlng Colum_ns I.S aSSt;]Jmte d
being used, starting fro® (b) The corresponding structure) The 0 b€ Independent of any other columns, again given the tree.

production of a stem with a bulge. Lgtp = (pa, Pu» P, pc) be the distribution of bases in loop
regions of RNA sequences. Furthermore Xat Y, let ryy

denote the rate of mutation from bag® basey, while ryx
is the negative of the rate by which bXseautates to other

bases. The rate matrix can be written as:

The grammar
Fan Tac Tac Tau

A grammar consists of a set of variables, some terminal and R ECA :CC rrCG rrcu
some non-terminal. Specifically, a starting non-terminal rGA rGC rGG rGU
calledSis contained in a grammar. The non-terminals are vaA Tue Tue Tuu
rewritten according to a set of production rules, which (fofrhe rates are assumed to satisfy:

an SCFG) specifies a single non-terminal and a string of vari-

ables, that it should be changed to. Successive production Pxrxy = pyryx for X#Y

rules are applied until only a string of terminals are lef{yhich means that the overall flow from bas® Y equals the

(Chomsky, 1959; Lari and Young, 1990). flow from baseY to X, i.e. reversibility of mutations. Thgx
The basis of the model is a simple SCFG with the followgyg|yes are calculated as

ing production rules:

fxex = — D f

S LS| L XX ;( XY

F - dRd|LS . , ,

L s dlld This is known as a general reversible model (Tavare, 1986).

Given a tree, including branch lengths, the column probabil-
Here,ssymbolizes a base in a single string dmndymbolize ities are calculated using post-order traversal as described by
bases that pair up in a stem. The non-ternfiyaloduces Felsenstein (1981).
loops and- produces stems, whiledecides whether a spe- For base pairs, the probability of the two columns, given that
cific loop position should be a single base or the start of a nethey form a pair, is calculated using a similar rate matrix, except
stem. An illustration is given in Figue Stems can have any that base pairs are used instead of single bases. We thus have a
length, whereas loops have lengths of at least two positiordistribution of the 16 base pairs and ax186 rate matrix, i.e.
due to the fact thdt produced.Sinstead of just Here, a general reversible model for base pairs. The reason for includ-
positions should be understood in the broad interpretatiang all 16 base pairs is to make it possible to model rare non-
that the start of a new stem is also a position. This means tis&andard base pairs. Parameterized rate matrices for base pairs
the two-position loops can either be two bases, one base amere described by Muse (1994) and Schoéniger and von Hae-
a new stem (a bulge), or two new stems (a bifurcation). seler (1994). This way of looking at base pairs means that any
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base pair change, like AU to GC, is regarded as a single mugaebability each time agis produced. Likewise, probabilities
tion. Even very closely related sequences show these ‘doublet rules producing base pairs, like— dFd, are multiplied to
mutations. Pairs of the rRNAs described below, with sequentige probability of the two columns, given that they form a pair.
identity of 98% or more, were analysed (again as describddhis makes the grammar equivalent to a grammar that generates
below). This showed that the base pair mutations between thesiumns in alignments instead of just secondary structure,
consisted of 22% ‘double’ mutations, justifying using a full 16meaning that for a two-sequence alignment, the production rule
x 16 matrix for the mutation model. This makes it possible th — s covers the following rules:
exploit the differences in base distribution and mutation patterns
between loops and stems to obtain good structure predictions. L — [X] for X,Y € {A,U, G, C}

If a gap is present in one of the sequences, it is handled by Y ’ T
treating it as an unknown base, according to the overall base

distribution in the model. ) X . ) ) i
with | y | denoting a column with the baXen the first se-

Probability of an alignment quence and the ba¥ein the second sequence. Thus,rfor
Now the entire alignment is taken into consideration. Thaligned sequences a rule like- s covers #rules, while a

columns are numberdgdy, Cy, ..., G, wherel denotes the rulelikeF — dFdcovers 4"rules (some being unlikely, with
total length of the alignment. The input dafg, are then rare base pairings).

given as the ordered set of columids: (C4,C2, ...,G). By

M, denote the model including the mutational model and thehe full model

SCFG. Assuming that the tree is known and the model give
the probability of the alignment can be found. This is don
by summing over all possible secondary structwes,

'the phylogenetic tree relating the sequences is not given,
it must be estimated from the model. For a given ffee,
P(D|T, M) can be calculated as above. The ML estimate of the

P(DIT, M) tree, given the model, can then be obtained by:
= > P(D,0lT,M)
- TML = argmax P(D[T, M)
= > P(Dlo, T, M)P(o]T, M) T
_ N which can be found by using numerical optimization: given a
z P(Dp. T.M)P(oIM) tree topology, the branch lengths can be obtained by maximiz-

; s pology can, for example, be done by an exhaustive search, a
mod_el. These are the prior probabilities from the 9raMMYranch and bound method or a heuristic method (Swatord
previously described.

The termsP(D[o, T, M), i.e. the alignment probabilities, al., 1996). The choice will be highly dependent upon the

. umber of sequences in the alignment, considering the fast rate
given the secondary structure and the tree, are products of egrovvth in the number of trees with respect to the number of

ael,equences. The maximum likelihood estimate of the tree is used

columns which do not pair are independent: in the MAP estimation of the structure. It would be better to

P(Dlo, TM) integrate over all trees during the structure determination, but the
= P(C,- - - Cjo, T,M) above described approach is simpler.
= n P(Cdo, T, M) n P(C.Cylo, T, M) The alignment of sequences is the data to be used in the
s p secondary structure estimation. To perform a MAP estima-

. tion, we need to maximiza|D, T, M), which means to find
Cthe most likely secondary structure, given what we know.

the product oved is c.)ver.left columns of pairs, Wh'le tles Using Bayes theorem, while conditioning drandM, we
are the corresponding right columns of the pairs. obtain:

The sum can be calculated using a dynamical programming
approach (Baker, 1979), by extending the view of the grammar P(¢|D, T, M)

described above to include productions of columns as follows. ~ P(Dlo, T, M)P(0|T, M)
When arsis used in a production rule, it corresponds to a col- P(DI|T, M)

umn in the alignment of sequences. Such a column has a prob-  P(Djo, T, M)P(c|M)
ability, given the tree, which is multiplied to the production a P(D|T, M)
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P(a|M) is the prior distribution of structures given by the The LSU rRNAs are from a database by De Rijlal
SCFG.P(DJT, M) is independent of the structure, and thug1998), which contains 709 sequences. A reduction was per-
constant over all structures. The MAP estimate of the strufermed as above, resulting in 305 remaining sequences. This

ture is then given by: database contains a number of non-standard base pairs.
The training was carried out with a weighting of the se-
o™ = argmax P(Dlo, TM-, M)P(c|M) guences to represent the two RNA families equally.

o

Frequencies

which is found using the CYK algorithm (Durbst al, The single base frequencies were estimated from counts of

1998) on the exte_nded grammar, producing a'.'gf‘me”ts: the bases in the single base positions of the sequences. Over-
From the posterior secondary structure prediction, varioys ;

, tRNAs show more GC than CG base pairs, meaning that
IN GC/CG base pairs the G tend to be nearer thedbof the
RNA than the C. This might have to do with functional con-
straints on evolution. As this model aims to be general,
Implementation unique characteristics of the training sequences should not be
) ) modelled. Therefore, to obtain equal frequenciesYoand
The model was estimated in a number of steps: YX base pairs, each occurrence of ¥¥ibase pair also
1. A suitable database of sequences with knownounted as #Xbase pair (the rarely occurring pairs of ident-

mate), the certainty of the prediction in each position an

the most probable overall secondary structure (MAP esta
probabilities of the pairing of specific bases.

structures was made. ical bases were counted twice).
2. Single base and base pair frequencies wereThe obtained frequencies are shown in Tabhlevhich
estimated. shows that the overall base frequencies are approximately
3. Mutation rates were estimated. equal. In stems, there are a significant majority of GC/CG
4. The grammar parameters were estimated. base pairs, which probably has to do with the high binding

energy associated with this pair.

The database Table 1.Base frequencies, showing nearly equal overall distribution of

The database used for estimating this model should represg?,ﬁes, with a slight underrepresentation of Cs. Stems have high GC/CG
ase pair frequencies, while loops have low content of Cs and Gs. The

RNA secondary structures in general, because i_t is attemptlg\ﬁest row shows the distribution of bases between loops and stems
here to model RNA structures as a whole. For this reason, the

database should be composed of various types of RNAStem Loop Overall

tRNAs and large subunit ribosomal RNAs (LSU rRNAS) aujua  356% A 364% A 26.8%
were (;hosen. These are publically available and have \./vellgc{cG 53.4% c 15.1% c 21.4%
established structures. The database made here consists 0

RNA sequences along with their entire secondary structure§C/CV  98% G 21.2% G 26.7%
The tRNAs are from the database by Spratzl (1998).  Other 1.2% u 21.3% U 25.1%
Part one of this database contains 2146 aligned tRNA gene Total: 52.6% Total: 47.4%

sequences with corresponding RNA structures. This data-
base was reduced by removing sequences with unkno
bases and the like. Furthermore, interior loops, having o
unpaired base on each side, were changed into stems [égr estimating mutation rates, a number of sequences from
structures like ‘(.(.....).)" were changed to ‘(((.....)))"]. [Par-the above-described database were paired. All possible or-
enthesis notation is used for describing the structures in tidered pairs were made of sequences having at least 85%
article. Matching parentheses (or later, brackets) denote poilentical base sequences. The 85% limit makes it reasonable
tions that form a pair.] This pairs the non-standard pairs thed assume that only single mutations, in the sense of the
the structures imply, which are assumed to bond (this mutation mechanisms described above, have occurred be-
sometimes true, sometimes not). Allowing for non-standartiveen the sequences. The single base positions in these se-
base pairs gives the algorithm more robustness towards sgience pairs were examined and all differences between the
guencing and alignment errors. Before this operation, theequences counted. Thus, if a given position hadXase
database only contained AU, GC and GU base pairs. Tli@e sequence and ba&a the other, the countesgy andeyx
revised database had 1968 tRNA sequences with correspavere incremented. Columns, in the pairs, having a gap, were
ding secondary structures. not used. For a given paR, definetp as the time between

utation rates
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sequenced\p as the number of columns in the two-sequencenly a single base change are the most frequent, while muta-
alignment andPs as the probability of a base being in a singldions requiring two transversions are very rare. This is what
base position. Because of the single mutation assumption, wsleould be expected. Tableshows the mutation rates for
have forX # Y. single bases in stem regions. This table shows that the transi-
tion/transversion ratio is higher in stem regions than in loop
regions. This is because single transversions disrupt pairing,
while transitions may conserve pairing (e.g. both A and G
can pair with U).

E(cxy) = z PNp(Putorxy + Pytaryvy)
P

= E(Cyxy) = 2 z PsNptep xy
)

e foy ~ Cxy _ Cxy Table 3. Some of the entries for the stem rate matrix. Only rates between
XY ZDXP%'EPNP pXPs the six most frequent base pairs are included

where the sums overare over all pairK is a constantthat X\Y AU UA GC CG uG GU
is independent of andy, implying thatrxy [ cxy/(px Ps) for AU -1.16  0.18 0.50 0.12 0.02 0.27
a” base_Q( andY Wlth X£Y. To ensure equal Welghtlng Of. UA 0.18 ~1.16 0.12 0.50 0.27 0.02
mfo_rmatlon from (_jlfferent sequences, 'ghe count from pairs 0.33 008 082 043 0.02 003
having the same first sequence was divided by the number of
pairs having this first sequence. This should decrease tHe® 008 033 013 -08& 023 002
variance of the estimates and only affect the conkiagni- UG 0.08 1.00 0.10 126  -256 004
suring that we still havexy O cxy/(px Ps)- The rates were  Gu 1.00 0.08 1.26 0.10 0.04  -256

normalized so that the total rate of mutations in single base
positions was one, making the rate matrix uniquely deter-

mined. In the article by Goldmatal (1996), the rates were Table 4. Marginal rate matrix for stems. This matrix is similar to the above
found in a similar way, except that the conskawas divided matrix for loops, except that this one was estimated from stem regions.
out. This meant that they had to estimate amino acid frél_otice the high transition/transversion ratio relative to loops

guencies from the rate matrix. In this work, it is viewed as

essential to have the best possible estimates of base fréY A ¢ G -
guencies, thus the rate matrix is estimated using these. A -1.15 0.13 0.79 0.23
Pairs were counted using symmetry, both in position anat 0.09 -0.84 0.16 0.59
time. The counts were dealt with 'in a similar fashion as the; 0.45 0.13 ~0.70 0.11
single-base counters. The normalization was performed rela- 018 0.70 0.16 103

tive to the single base rates, which shows that the mutation
rate, considered on a single base level, for stem regions is
0.90 times the rate for single bases.

The mutation rates for single bases are shown in Pable

Variations between mutation rates are observed. Itis ObVioq’ﬁe production probabi"ties of the grammar reflect the way
that transitions (A-G and T-C mutations in DNA) are mor&econdary structures behave: loop lengths, stem lengths, bi-
frequent than transversions (the rest), which agrees with ggrcations, etc. For estimating these probabilities, secondary
tablished knowledge (e.g. Gojobetial, 1982). structures from the database were used. This estimation can
be done using the inside—outside algorithm (an expectation
maximization procedure) on this training set of secondary
structures (Baker, 1979; Lari and Young, 1990). In the case
of the simple grammar described here, the number of times
each rule is used is uniquely determined by the training set,

Grammar parameters

Table 2. The entriestxy, for the loop rate matrix. Transitions are more
frequent than transversions

XY A c © v meaning that only one iteration had to be performed. Further-
A —0.75 0.16 032 026 more, the counting was performed in a simple way, which

c 0.40 -1.57 0.24 0.93 made it possible to analyse the long LSU rRNA sequences.
G 0.55 0.17 -0.96 0.24 The production probabilities obtained were the following:

u 0.35 0.51 0.19 -1.05

S - LS(86.9%)| L (13.1%)
F — dFd (78.8%)| LS (21.2%)
L — s(89.5%)| dFd (10.5%)

Mutation rates for the most frequent base pairs are shown
in Table3. This table shows that the pair mutations requirindg’robabilities are written in parentheses.
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Seq 3 accuracy when sequences are added, especially going from one
to two sequences. This exemplifies the large potential of
methods using several sequences and their phylogeny, in mak-
ing RNA secondary structure predictions. The pseudoknot
stems, denoted by brackets in Figéjrare invariant throughout
these four sequences, which makes them hard to predict when
using mutational patterns.

Se

Seq 2

0.1 units

et Table 5. Structural alignment, no phylogeny

Seq 4

Structural alignment

_ ) ) No. of sequences 1 2 3 4
Fig. 2. The phylogenetic tree relating the four analysed sequences; - —— A1.2% 65.2% 73.9% 79.2%

as calculated using the ML estimation described above. The length

units correspond to the rate matrices of the model. Max result S57.7%  821%  79.6%  79.2%
Average 48.3% 73.6% 77.8% 79.2%
CLUSTAL W alignment
Results No. of sequences 1 2 3 4
The test sequences Min result 41.2%  549%  60.1% = 73.8%
T h hodd pad b ; o Max result 57.7%  69.1%  76.9%  73.8%
m ri r r representativ r-
To test the method described here, four representative acteAVerage 183%  644%  685%  73.8%
ial RNase P RNA sequences were chosen from the database _
by Brown (1998) and analysed: Structural alignment, no phylogeny
. . No. of sequences 1 2 3 4
Sequence 1 Klebsiella pneumoniae _
Sequence 2 Serratia marcescens Min result 41.2% - 59.9%  67.7%  76.2%
Sequence 3 Pseudomonas fluorescens Max result 57.1%  766%  766%  76.2%
Sequence 4 Thiobacillus ferrooxidans Average 483%  68.9%  722%  76.2%

The structures and alignment of the sequences are known. The
sequences have lengths ranging from 344383 bases, whilele 6. What happens when a limit of certainty is imposed on the results.
their structural alignment has a total of 385 columns. The pairach row shows how many positions have a certainty above a given limit
wise sequence identities range from 65-92%. The relationshffg§! "ow many of these are correctly predicted. There is a high correlation

. . . etween the accuracy of prediction and the certainty that the model predicts
between the sequences are shown in Fyunile the align-
ment is shown in Figur@ The pseudoknot denoted by square jmjt No. of positions ~ Correct positions ~ Accuracy
brackets from positions 68—76 and 368-361 could be writter;

i ) I . ) 1459 1156 79.2%
using parentheses in these positions and square brackets in posi- .
tion 18-12 and 370-364. This is a stem of seven positions®” 1314 1146 87.2%
while the other pseudoknot has four pairs. This means that &% 1150 1064 92.5%
structure prediction of this type will have at least 22 positionso% 1068 1014 94.9%
wrongly predicted in each sequence. 90% 932 890 05.5%
95% 825 799 96.8%

Using related sequences

A number of predictions were made from the four RNase P In many situations, the structural alignment is not available.
RNA sequences by the method described above. The accurdterefore, it is necessary to assess the results using an alignment
of a prediction is here defined as the total number of non-gatgorithm. For this, the same analyses as above were made, but
positions in each sequence having the correct assignment, ech subset of the four sequences was aligned using CLUSTAL
vided by the total number of non-gap positions. A base pair W (Thompsoret al, 1994). The results of this are shown in the
only considered correct if both base positions are correct. Theiddle of Tables with the column of one sequence identical to
alignments used were the structural alignments from the dathe earlier analysis. This gave lower accuracies than using struc-
base by Brown (1998). Firstly, all sequences were analysed doeal alignments, which is not surprising. The rise in accuracy,
by one, then all six pairs of sequences were used, then all fauinen using more sequences, now arises both from better align-
triples, and finally all the sequences were used. The results in thents and more data. Good results are still obtained using four
top of Tables show very significant improvement of prediction sequences.
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Neglecting phylogeny prove overall accuracy, but shows that badly predicted areas

) . can be pointed out. Other methods, perhaps experimental,
If the phylogeny of the sequences is not taken into accou%1 n then be used for these areas.

some information is lost and poorer prediction results. Suc
results are shown at the bottom of Tahkle his table was . .
made like the top of Tablg but using long branch lengths Comparison with other methods

to simulate independent sequences. For two and three se-

quences, the phylogenetic information improves the resul 91ve @n impression of the performance of this method rela-
e to other methods, some comparisons have been made.

by [6%. This sh that the t inf tion abo ;
thye stracturlg SRSXYJS“S Zre :o;]epea(r:gdn Yr? )'/:siglrs"%rma ° he folding program, MFOLD Version 3.0 (Web server URL:
’ http://Amww.ibc.wustl.eduzuker/rna/forml.cgi), by Zuker

(1989) and Walteet al (1994), using energy minimization
was used for folding the four sequences one by one. Standard
The algorithm allows for a calculation of the probability thajparameters were used, resulting in predictions ranging from
each position is correctly predicted. This is done using th&b to 68%, with an average of 51% (see Tapl&his is com-
inside and outside variables. It can give the user of thgarable to the above-described method applied to single se-
method an impression of how certain the predictions are, agdences, but does not suggest that this method is always as
suming that the model is correct. This can be considered gsod as Zuker’s for single sequences. The energy minimiz-
an equivalent to the partition function for energy calculationation method has more parameters than the above-described
(McCaskill, 1990). model, in the case of one sequence, where evolution does not
Taking the analysis of the structural alignment of all foucome into consideration. This gives Zuker’s method a poten-
sequences with a phylogenetic tree as an example, resui# for better results. Varying the parameters for the method
from choosing only to believe regions of high certainty arenight improve results; furthermore, results will be different
shown in Tables. This shows that discarding, for example,for different families of RNA.
positions having a certainty of <70% means that 309 posi- The method of maximum weighted matching was used on
tions are discarded, of which only 92 were correctly prethe four sequences, with the structural alignment. The scor-
dicted. This results in an accuracy of prediction for the rang schemes used here are the ones described by Tabaska
maining positions of 92.5%. This, of course, does not imal. (1998). Both helix-plot and mutual information were in-

1 100
GAAGCUGACC AGACAGUCGC CGCUUCGUCG UCGUCCUCCU UCGGGGGGAG ACGGGCGGAG GGGAGGAAAG UCCGGGCUCC AUAGGGCAAG GUGCCAGGUA
GGAGUUGACC AGACAGUCGC CGCUUCAUUG CCGUCCUC-U UCG-GGGGAG ACAGAUGGAG GGGAGGAAAG UCCGGGCUCC AUAGGGCAGG GUGCCAGGUA
AGAGUCGAUU GGACAGUCGC UGCCCUCUAU -=--=-=--== G AAA------- -AUUAGGGGG GGGAGGAAAG UCCGGGCUCC AUAGGGCGAA GUGCCAGGUA
GGAGUGGGCC AGGCGACCGC CGCGGA---=- ====----- G CAA=-=-=on —om-e- UCCG GGGAGGAAAG UCCGGGCUCC AUAGGGCAAG GCGCCGGUUA
CCOCCCCCCC CCOOeeE. ¢ G £ et oM 1)) ) ee . IE0 CLEC00CCCC - .. CEEC.{ ¢ (CCCeCC(e
CCCCCCCCCC OO+ COOereee CCaaeecce oMM NN e (e DN o (CCeCeeece. .

Weight of results

T Wb W

101 200
ACGCCUGGGG GGUGUCACGA CCCACGACCA GUGCAACAGA GAGCAAACCG CCGA-UGGCC CGCGCAAGCG GGAUCA-GGU AAGGGUGAAA GGGUGCGGUA
ACGCCUGGGA GGC-GCAA-G CCUACGACUA GUGCAACAGA GAGCAAACCG CCGA-UGGCC CGCGCAAGCG GGAUCA-GGU AAGGGUGAAA GGGUGCGGUA
AUGCCUGGGG GGC-GUGA-G CCUACGGAAA GUGCCACAGA AAAUA-ACCG CCUAAGCAC- ---UUCG--- -G-UGCCGGU AAGGGUGAAA AGGUGCGGUA
ACGGCCGGGG GGC-GUGA-G CCUACGGAAA GUGCCACAGA AAAUAUACCG CCAA-GCGC- ---GUAA--- -G-CGC-GGU AAGGGUGAAA AGGUGCGGUA
SN WG YOI (e CCC CC L CCOCC CCG )Y DN ). - CCCCCC
SN0 WG D B ) R e oo CCCCC CCGaad)) N INMD) G (e

T ou oW N

201 300
AGAGCGCACC GCGCGGCUGG UAACAGUCCG CGGCACGGUA AACUCCACCC GGAGCAAGGC CAAAUAGGGG UUCAUAAGGU ACGGCCCGUA CUGAACCCGG
AGAGCGCACC GCGCGGCUGG UAACAGUUCG UGGCACGGUA AACUCCACCC GGAGCAAGGC CAAAUAGGGG UUCACAUGGU ACGGCCCGUA CUGAACCCGG
AGAGCGCACC GCACGACUGG CAACAGUUCG UGGCUAGGUA AACCCCACUU GGAGCAAGAC CAAAUAGGGU UCCA--AGGC GUGGCCCGCG CUGGAACCGG
AGAGCGCACC GCAUUUCCGG UAACGG-AAA UGGCAGGGAA AACCCCGCCU GGAGCAAGAC CAAAUAGGCG UGCGA-UACC GUGGCCCGCG GUGCACGCGG
R 2D I CCCUCCPITED D D IS D2 Jb b INNNA DIDDT NN CCC (OG- CCC (37T NN ..
cee)) L CCCCCCte 2 DY) M I NN G CCC CCCCa oo CC CCCam) DD ..

T D W N

301 385
GUAGGCUGCU UGAGCCAGUG AGCGAUUGCU GGCCUAGAUG AAUGACUGUC CACGACAGAA CCCGGCUUAU CGGUCAGUUU CACCU
GUAGGCUGCU UGAGCCAGUG AGCGAUUGCU GGCCUAGAGG AAUGACUGUC CACGACAGAA CCCGGCUUAU CGGUCAACUC CCUC-
GUAGGUUGCU AAAGAUGUCC AGUGAUGGCC AUCGUAGACG AAUGACUGUU CAAGACAGAA CCCGGCUUAU AGAUCGACUC UCCAC
GUAGGUUGCU GGAGCCUGUG CGUAAGUGCA GGCCUAGAGG AAUGGUCGUC CACGACAGAA CCCGGCUUAU CGGCCCACUC CAAUU
FED DD ) FENENN (WGP N DN e, 11111113 HNNIN)) ) ...
) L G ) e D DD B B IVNINN ...

T U s W N

Fig. 3. The alignment of the four RNase P RNA sequences. The predicted structure, using all four sequences, is denoted p €Tfhenstructur
the database is denoted s, with square brackets denoting parts of pseudoknots. The square brackets used here maécteaberigtiiootur

in the database. The curly brackets denote positions where the structure differs: the sequences that have a non-stahdaedpositions
have loop regions or bulges, the rest have pairs.
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Fig. 4. A comparison of results with and without phylogeny.
Diamonds ¢ ) denote the curve for predictions with phylogeny,
while boxes [0) denote the one without. Crosses)(denote results

using CLUSTAL W alignments and phylogeny estimation. The

* Loop and stem lengths are assumed to be
geometrically distributed.

e A good alignment is needed.

e The dynamical programming algorithms are
relatively slow. [They have a time complexity of
O(N3) with respect to the length of the alignment.]

The problem with pseudoknots is shared by many algo-
rithms (e.g. Zuker, 1989; Eddy and Durbin, 1994), although
some algorithms can predict pseudoknots (e.g. Tabaska
et al, 1998).

The problem relating to the length distributions has to do
with the nature of the specific SCFG used here, and can be
solved by making different non-terminals producing stems or
loops of various lengths. Special non-terminals describing
small bulges will probably improve results. This introduces
some extra computation time, but can definitely be carried out.

The problem of the alignment is not easily solved, because
making an alignment without knowing the structure is un-
likely to produce a structural alignment. It might be possible
to realign sequences once a structure prediction has been
made. This approach would probably be prone to local

dotted line at 94% represents the maximum possible predictiofnaxima in the likelihood function for alignments. One poss-

accuracy with regard to the pseudoknots.

ible way of avoiding this would be to use Gibbs sampling in
a Markov chain Monte Carlo method, sampling from align-
ments and summing over structures (Géksl, 1996).

corporated, giving a maximum of 60% accuracy. The cova- An alignment method which simultaneously folds and
riance method, COVE Version 2.4.4., by Eddy and Durbiligns a set of RNA sequences to find common structural
(1994), was also tried on the sequences, with lower accuragjements locally has been implemented by Goroekial
These methods were developed for larger numbers of 9§8997). The algorithm has a computational complexity of
quences, and should not be expected to give optimal resuB§\?), relative to the sequence length. The method has
using only four sequences. This shows the significance of thgoven useful for relatively short sequences, and an align-
method described here in situations where only a few setent produced by such a method would be a good starting

quences are known.

Table 7. Accuracy table, showing comparisons of single sequence

point for SCFG methods (Gorodkét al, 1997), including
the one described here.
Profile SCFGs and covariance models predict secondary

predictions using the method described in this paper and MFOLD Version structure at the same time as making alignments, but seem to

3.0, by Zuker (1989) and Waltet al (1994). Predictions of secondary
structures were made on single sequences, which is the only possibility
using MFOLD. The average results are comparable

Sequence SCFG method MFOLD

Seql 57.7% 67.1%

Seq 2 48.2% 54.0%

Seq 3 41.2% 35.6%

Seq 4 46.2% 50.3%

Average 48.3% 51.7%
Conclusion

The limitations of this method include:
¢ Inability to predict pseudoknots.

need a large number of sequences (Eddy and Durbin, 1994;
Sakakibarat al, 1994). Further work in making algorithms
for simultaneous RNA folding and alignment will probably
show up in the future because of the importance of solving
this problem.

Further improvements to the method introduced here in-
clude modelling base stacking, which is not very difficult. It
consists of conditioning the probability of two pairing col-
umns on the neighbouring columns. Thus, in estimating the
model, neighbour base pairs should be counted to indicate
the conditional distributions of base pairs. This information
could then be used in the calculations to give improved re-
sults.

Finally, it would be interesting to look into the evolution-
ary model proposed here. Statistical tests of its ability to de-
scribe RNA evolution would be enlightening. It would also

453



B.KnudsenandJ.Hein

be useful to reduce the number of parameters for the ra@erodkin,J., Heyer,L.J. and Stormo,G.D. (1997) Finding the most
matrices, especially the base pair rate matrix, e.g. as done bgignificant common sequence and structure motifs in a set of RNA

Muse (1994). sequenceucleic Acids Res25, 3724-3732.
It is the hope of the authors that this method can be mat#@.K. and Young,S.J. (1990) The estimation of stochastic context-
available to the public via the World Wide Web. free grammars using the inside-outside algoritGomput. Speech
Lang, 4, 35-56.
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