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Abstract
Motivation: Many computerized methods for RNA second-
ary structure prediction have been developed. Few of these
methods, however, employ an evolutionary model, thus
relevant information is often left out from the structure
determination. This paper introduces a method which
incorporates evolutionary history into RNA secondary
structure prediction. The method reported here is based on
stochastic context-free grammars (SCFGs) to give a prior
probability distribution of structures.
Results: The phylogenetic tree relating the sequences can be
found by maximum likelihood (ML) estimation from the
model introduced here. The tree is shown to reveal informa-
tion about the structure, due to mutation patterns. The
inclusion of a prior distribution of RNA structures ensures
good structure predictions even for a small number of related
sequences. Prediction is carried out using maximum a
posteriori estimation (MAP) estimation in a Bayesian
approach. For small sequence sets, the method performs
very well compared to current automated methods.
Contact: bk@imf.au.dk

Introduction

Computerized methods have been used for RNA secondary
structure prediction for a number of years (e.g. Nussinov et
al., 1978; Zuker and Stiegler, 1981). During the last 10 years,
further methods have been developed (e.g. Zuker, 1989;
Eddy and Durbin, 1994; Sakakibara et al., 1994; Cary and
Stormo, 1995; Tabaska et al., 1998). Some methods use
single sequences, which take advantage of prior information
on RNA structures, usually through energy functions, e.g.
Zuker (1989). No knowledge concerning related sequences
is used, so these methods are not ideal when estimating struc-
tures of sequences with known homologs.

Covariance methods (Eddy and Durbin, 1994) and profile
stochastic context-free grammars (SCFGs) (Sakakibara
et al., 1994), on the other hand, do use information from
more than one sequence, but do not explicitly take phylogeny
into account, and do not use a prior probability distribution

of structures. Maximum weighted matching methods (Cary
and Stormo, 1995; Tabaska et al., 1998) share these char-
acteristics.

The method introduced here uses prior knowledge about
RNA structure in making a maximum a posteriori (MAP)
estimation of the secondary structure. This is performed on
an alignment of sequences assumed to have identical second-
ary structures, i.e. the alignment is assumed to be a structural
alignment. The method takes the phylogenetic tree of the se-
quences into account, including branch lengths, using a
model of mutation processes in RNA. Furthermore, the tree
can be estimated by a maximum likelihood (ML) method.

The idea for this work originates in work by Goldman et al.
(1996), who developed a method for predicting protein sec-
ondary structure using hidden Markov models (HMMs) and
including phylogenetic information. This method uses
20 × 20 rate matrices for amino acid replacements. Three
matrices are employed: one for α-helices, one for β-sheets
and one for coils (the rest). These matrices are estimated
from sequences of known structure. An HMM with three
states, corresponding to the structure types, models the
structures along sequences. This HMM is then used in
conjunction with the rate matrices to find the ML estimate of
the tree relating sequences in an alignment and to predict
their secondary structures. The method described here is an
extension of this model to RNA secondary structure.

Secondary structures in RNA are not local, like in proteins,
thus it is necessary to use a more complex model than an
HMM for modelling these. SCFGs, which are used here, can
describe some long-range interactions, including most of the
ones in RNA secondary structure. SCFGs are unable to
model crossing interactions, thus pseudoknots cannot be pre-
dicted by this method.

Algorithms

The input for this analysis is an alignment of RNA se-
quences, while the output is a single common structure for
the sequences. The model consists of two distinct parts: the
SCFG and the evolutionary model.
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Fig. 1. Production of RNA structures by the grammar. (a) The rules
being used, starting from S. (b) The corresponding structure. (c) The
production of a stem with a bulge.

The grammar

A grammar consists of a set of variables, some terminal and
some non-terminal. Specifically, a starting non-terminal
called S is contained in a grammar. The non-terminals are
rewritten according to a set of production rules, which (for
an SCFG) specifies a single non-terminal and a string of vari-
ables, that it should be changed to. Successive production
rules are applied until only a string of terminals are left
(Chomsky, 1959; Lari and Young, 1990).

The basis of the model is a simple SCFG with the follow-
ing production rules:

S → LS | L
F → dFd | LS
L → s | dFd

Here, s symbolizes a base in a single string and ds symbolize
bases that pair up in a stem. The non-terminal S produces
loops and F produces stems, while L decides whether a spe-
cific loop position should be a single base or the start of a new
stem. An illustration is given in Figure 1. Stems can have any
length, whereas loops have lengths of at least two positions,
due to the fact that F produces LS instead of just S. Here,
positions should be understood in the broad interpretation
that the start of a new stem is also a position. This means that
the two-position loops can either be two bases, one base and
a new stem (a bulge), or two new stems (a bifurcation).

The probabilities of the production rules determine the
prior distribution of secondary structures, in that each struc-
ture has a certain probability given by the SCFG. The SCFG
production probabilities are estimated from a training set of
folded RNAs.

Most literature on SCFGs assumes the grammar to be in
Chomsky normal form for the algorithms to be used
(Chomsky, 1959; Baker, 1979; Lari and Young, 1990). The
algorithms are easily adapted to other forms, which has been
done here. The number of computations needed for solving
problems with these algorithms is proportional to the cube of
the sequence length.

Probabilities of columns

First, we look at the columns of the alignment one at a time.
Denote the number of sequences in the alignment by n,
which gives the height of the columns. The probability of a
column of non-pairing bases is assumed to be independent
of the other columns, given the tree relating the sequences.
Likewise, the probability of two pairing columns is assumed
to be independent of any other columns, again given the tree.

Let p = (pA, pU, pG, pC) be the distribution of bases in loop
regions of RNA sequences. Furthermore, for X ≠ Y, let rXY
denote the rate of mutation from base X to base Y, while rXX
is the negative of the rate by which base X mutates to other
bases. The rate matrix can be written as:

R ��
�

�

rAA rAC rAG rAU

rCA rCC rCG rCU

rGA rGC rGG rGU

rUA rUC rUG rUU

�
�

	
The rates are assumed to satisfy:

pXrXY = pYrYX for X ≠ Y

which means that the overall flow from base X to Y equals the
flow from base Y to X, i.e. reversibility of mutations. The rXX
values are calculated as

rXX���
Y�X

rXY

This is known as a general reversible model (Tavaré, 1986).
Given a tree, including branch lengths, the column probabil-
ities are calculated using post-order traversal as described by
Felsenstein (1981).

For base pairs, the probability of the two columns, given that
they form a pair, is calculated using a similar rate matrix, except
that base pairs are used instead of single bases. We thus have a
distribution of the 16 base pairs and a 16 × 16 rate matrix, i.e.
a general reversible model for base pairs. The reason for includ-
ing all 16 base pairs is to make it possible to model rare non-
standard base pairs. Parameterized rate matrices for base pairs
were described by Muse (1994) and Schöniger and von Hae-
seler (1994). This way of looking at base pairs means that any
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base pair change, like AU to GC, is regarded as a single muta-
tion. Even very closely related sequences show these ‘double’
mutations. Pairs of the rRNAs described below, with sequence
identity of 98% or more, were analysed (again as described
below). This showed that the base pair mutations between them
consisted of 22% ‘double’ mutations, justifying using a full 16
× 16 matrix for the mutation model. This makes it possible to
exploit the differences in base distribution and mutation patterns
between loops and stems to obtain good structure predictions.

If a gap is present in one of the sequences, it is handled by
treating it as an unknown base, according to the overall base
distribution in the model.

Probability of an alignment

Now the entire alignment is taken into consideration. The
columns are numbered C1, C2, …, Cl , where l denotes the
total length of the alignment. The input data, D, are then
given as the ordered set of columns: D = (C1, C2, …, Cl). By
M, denote the model including the mutational model and the
SCFG. Assuming that the tree is known and the model given,
the probability of the alignment can be found. This is done
by summing over all possible secondary structures, σ:

P(D|T, M)

� �
�

P(D,�|T, M)

� �
�

P(D|�, T, M)P(�|T,M)

� �
�

P(D|�, T, M)P(�|M)

The last equality stems from the fact that the secondary struc-
ture only is dependent on the tree through the data. The terms
P(σ|M) are probabilities of secondary structures, given the
model. These are the prior probabilities from the grammar
previously described.

The terms P(D|σ, T, M), i.e. the alignment probabilities,
given the secondary structure and the tree, are products of the
column probabilities. This results from the assumption that
columns which do not pair are independent:

P(D|�, TM)
� P(C1 � � � Cn|�, T,M)

� �
s

P(Cs|�, T,M)�
d

P(CdCdc|�, T,M)

The product over s is over the columns of single bases, while
the product over d is over left columns of pairs, while the dcs
are the corresponding right columns of the pairs.

The sum can be calculated using a dynamical programming
approach (Baker, 1979), by extending the view of the grammar
described above to include productions of columns as follows.
When an s is used in a production rule, it corresponds to a col-
umn in the alignment of sequences. Such a column has a prob-
ability, given the tree, which is multiplied to the production

probability each time an s is produced. Likewise, probabilities
for rules producing base pairs, like F → dFd, are multiplied to
the probability of the two columns, given that they form a pair.
This makes the grammar equivalent to a grammar that generates
columns in alignments instead of just secondary structure,
meaning that for a two-sequence alignment, the production rule
L → s covers the following rules:

L � �XY� for X, Y� {A, U, G, C}

with �XY� denoting a column with the base X in the first se-

quence and the base Y in the second sequence. Thus, for n
aligned sequences a rule like L → s covers 4n rules, while a
rule like F → dFd covers 42n rules (some being unlikely, with
rare base pairings).

The full model

If the phylogenetic tree relating the sequences is not given,
it must be estimated from the model. For a given tree, T,
P(D|T, M) can be calculated as above. The ML estimate of the
tree, given the model, can then be obtained by:

TML � argmax
T

P(D|T, M)

which can be found by using numerical optimization: given a
tree topology, the branch lengths can be obtained by maximiz-
ing the probability of the alignment, P(D|topology, M). This is
a 2n – 3 dimensional search for a maximum, which can be done
using standard methods (e.g. Press et al., 1992). Estimating tree
topology can, for example, be done by an exhaustive search, a
branch and bound method or a heuristic method (Swofford et
al., 1996). The choice will be highly dependent upon the
number of sequences in the alignment, considering the fast rate
of growth in the number of trees with respect to the number of
sequences. The maximum likelihood estimate of the tree is used
in the MAP estimation of the structure. It would be better to
integrate over all trees during the structure determination, but the
above described approach is simpler.

The alignment of sequences is the data to be used in the
secondary structure estimation. To perform a MAP estima-
tion, we need to maximize P(σ|D, T, M), which means to find
the most likely secondary structure, given what we know.
Using Bayes theorem, while conditioning on T and M, we
obtain:

P(�|D, T, M)

�
P(D|�,T, M)P(�|T, M)

P(D|T, M)

�
P(D|�,T, M)P(�|M)

P(D|T,M)
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P(σ|M) is the prior distribution of structures given by the
SCFG. P(D|T, M) is independent of the structure, and thus
constant over all structures. The MAP estimate of the struc-
ture is then given by:

�
MAP� argmax

�

P(D|�, TML,M)P(�|M)

which is found using the CYK algorithm (Durbin et al.,
1998) on the extended grammar, producing alignments.

From the posterior secondary structure prediction, various
questions regarding the structure can be answered, including
the most probable overall secondary structure (MAP esti-
mate), the certainty of the prediction in each position and
probabilities of the pairing of specific bases.

Implementation

The model was estimated in a number of steps:

1. A suitable database of sequences with known
structures was made.

2. Single base and base pair frequencies were
estimated.

3. Mutation rates were estimated.
4. The grammar parameters were estimated.

The database

The database used for estimating this model should represent
RNA secondary structures in general, because it is attempted
here to model RNA structures as a whole. For this reason, the
database should be composed of various types of RNA.
tRNAs and large subunit ribosomal RNAs (LSU rRNAs)
were chosen. These are publically available and have well-
established structures. The database made here consists of
RNA sequences along with their entire secondary structures.

The tRNAs are from the database by Sprinzl et al. (1998).
Part one of this database contains 2146 aligned tRNA gene
sequences with corresponding RNA structures. This data-
base was reduced by removing sequences with unknown
bases and the like. Furthermore, interior loops, having one
unpaired base on each side, were changed into stems [e.g.
structures like ‘(.(.....).)’ were changed to ‘(((.....)))’]. [Par-
enthesis notation is used for describing the structures in this
article. Matching parentheses (or later, brackets) denote posi-
tions that form a pair.] This pairs the non-standard pairs that
the structures imply, which are assumed to bond (this is
sometimes true, sometimes not). Allowing for non-standard
base pairs gives the algorithm more robustness towards se-
quencing and alignment errors. Before this operation, the
database only contained AU, GC and GU base pairs. The
revised database had 1968 tRNA sequences with correspon-
ding secondary structures.

The LSU rRNAs are from a database by De Rijk et al.
(1998), which contains 709 sequences. A reduction was per-
formed as above, resulting in 305 remaining sequences. This
database contains a number of non-standard base pairs.

The training was carried out with a weighting of the se-
quences to represent the two RNA families equally.

Frequencies

The single base frequencies were estimated from counts of
the bases in the single base positions of the sequences. Over-
all base frequencies were also determined. Base pair fre-
quencies were estimated by counting base pairs. Interesting-
ly, tRNAs show more GC than CG base pairs, meaning that
in GC/CG base pairs the G tend to be nearer the 5′ end of the
RNA than the C. This might have to do with functional con-
straints on evolution. As this model aims to be general,
unique characteristics of the training sequences should not be
modelled. Therefore, to obtain equal frequencies of XY and
YX base pairs, each occurrence of an XY base pair also
counted as a YX base pair (the rarely occurring pairs of ident-
ical bases were counted twice).

The obtained frequencies are shown in Table 1, which
shows that the overall base frequencies are approximately
equal. In stems, there are a significant majority of GC/CG
base pairs, which probably has to do with the high binding
energy associated with this pair.

Table 1. Base frequencies, showing nearly equal overall distribution of
bases, with a slight underrepresentation of Cs. Stems have high GC/CG
base pair frequencies, while loops have low content of Cs and Gs. The
lowest row shows the distribution of bases between loops and stems

Stem Loop Overall

AU/UA 35.6% A 36.4% A 26.8%

GC/CG 53.4% C 15.1% C 21.4%

UG/GU 9.8% G 21.2% G 26.7%

Other 1.2% U 27.3% U 25.1%

Total: 52.6% Total: 47.4%

Mutation rates

For estimating mutation rates, a number of sequences from
the above-described database were paired. All possible or-
dered pairs were made of sequences having at least 85%
identical base sequences. The 85% limit makes it reasonable
to assume that only single mutations, in the sense of the
mutation mechanisms described above, have occurred be-
tween the sequences. The single base positions in these se-
quence pairs were examined and all differences between the
sequences counted. Thus, if a given position had base X in
one sequence and base Y in the other, the counters cXY and cYX
were incremented. Columns, in the pairs, having a gap, were
not used. For a given pair, P, define tP as the time between
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sequences, NP as the number of columns in the two-sequence
alignment and Ps as the probability of a base being in a single
base position. Because of the single mutation assumption, we
have for X ≠ Y:

E(cXY)��
P

PsNp(pxtprXY� PYtprYX)

� E(cXY)� 2�
P

PsNPtPpxrXY

� rXY�
cXY

2pXPs�
P
tPNP

� K
cXY

pXPs

where the sums over P are over all pairs. K is a constant that
is independent of X and Y, implying that rXY ∝  cXY/(pX Ps) for
all bases X and Y with X ≠ Y. To ensure equal weighting of
information from different sequences, the count from pairs
having the same first sequence was divided by the number of
pairs having this first sequence. This should decrease the
variance of the estimates and only affect the constant K, en-
suring that we still have rXY ∝  cXY/(pX Ps). The rates were
normalized so that the total rate of mutations in single base
positions was one, making the rate matrix uniquely deter-
mined. In the article by Goldman et al. (1996), the rates were
found in a similar way, except that the constant K was divided
out. This meant that they had to estimate amino acid fre-
quencies from the rate matrix. In this work, it is viewed as
essential to have the best possible estimates of base fre-
quencies, thus the rate matrix is estimated using these.

Pairs were counted using symmetry, both in position and
time. The counts were dealt with in a similar fashion as the
single-base counters. The normalization was performed rela-
tive to the single base rates, which shows that the mutation
rate, considered on a single base level, for stem regions is
0.90 times the rate for single bases.

The mutation rates for single bases are shown in Table 2.
Variations between mutation rates are observed. It is obvious
that transitions (A–G and T–C mutations in DNA) are more
frequent than transversions (the rest), which agrees with es-
tablished knowledge (e.g. Gojobori et al., 1982).

Table 2. The entries, rXY, for the loop rate matrix. Transitions are more
frequent than transversions

X�Y A C G U

A –0.75 0.16 0.32 0.26

C 0.40 –1.57 0.24 0.93

G 0.55 0.17 –0.96 0.24

U 0.35 0.51 0.19 –1.05

Mutation rates for the most frequent base pairs are shown
in Table 3. This table shows that the pair mutations requiring

only a single base change are the most frequent, while muta-
tions requiring two transversions are very rare. This is what
should be expected. Table 4 shows the mutation rates for
single bases in stem regions. This table shows that the transi-
tion/transversion ratio is higher in stem regions than in loop
regions. This is because single transversions disrupt pairing,
while transitions may conserve pairing (e.g. both A and G
can pair with U).

Table 3. Some of the entries for the stem rate matrix. Only rates between
the six most frequent base pairs are included

X�Y AU UA GC CG UG GU

AU –1.16 0.18 0.50 0.12 0.02 0.27

UA 0.18 –1.16 0.12 0.50 0.27 0.02

GC 0.33 0.08 –0.82 0.13 0.02 0.23

CG 0.08 0.33 0.13 –0.82 0.23 0.02

UG 0.08 1.00 0.10 1.26 –2.56 0.04

GU 1.00 0.08 1.26 0.10 0.04 –2.56

Table 4. Marginal rate matrix for stems. This matrix is similar to the above
matrix for loops, except that this one was estimated from stem regions.
Notice the high transition/transversion ratio relative to loops

X�Y A C G U

A –1.15 0.13 0.79 0.23

C 0.09 –0.84 0.16 0.59

G 0.45 0.13 –0.70 0.11

U 0.18 0.70 0.16 –1.03

Grammar parameters

The production probabilities of the grammar reflect the way
secondary structures behave: loop lengths, stem lengths, bi-
furcations, etc. For estimating these probabilities, secondary
structures from the database were used. This estimation can
be done using the inside–outside algorithm (an expectation
maximization procedure) on this training set of secondary
structures (Baker, 1979; Lari and Young, 1990). In the case
of the simple grammar described here, the number of times
each rule is used is uniquely determined by the training set,
meaning that only one iteration had to be performed. Further-
more, the counting was performed in a simple way, which
made it possible to analyse the long LSU rRNA sequences.
The production probabilities obtained were the following:

S → LS (86.9%) | L (13.1%)
F → dFd (78.8%) | LS (21.2%)
L → s (89.5%) | dFd (10.5%)

Probabilities are written in parentheses.
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Fig. 2. The phylogenetic tree relating the four analysed sequences,
as calculated using the ML estimation described above. The length
units correspond to the rate matrices of the model.

Results

The test sequences

To test the method described here, four representative bacter-
ial RNase P RNA sequences were chosen from the database
by Brown (1998) and analysed:

Sequence 1 Klebsiella pneumoniae
Sequence 2 Serratia marcescens
Sequence 3 Pseudomonas fluorescens
Sequence 4 Thiobacillus ferrooxidans

The structures and alignment of the sequences are known. The
sequences have lengths ranging from 344–383 bases, while
their structural alignment has a total of 385 columns. The pair-
wise sequence identities range from 65–92%. The relationships
between the sequences are shown in Figure 2, while the align-
ment is shown in Figure 3. The pseudoknot denoted by square
brackets from positions 68–76 and 368–361 could be written
using parentheses in these positions and square brackets in posi-
tion 18–12 and 370–364. This is a stem of seven positions,
while the other pseudoknot has four pairs. This means that a
structure prediction of this type will have at least 22 positions
wrongly predicted in each sequence.

Using related sequences

A number of predictions were made from the four RNase P
RNA sequences by the method described above. The accuracy
of a prediction is here defined as the total number of non-gap
positions in each sequence having the correct assignment, di-
vided by the total number of non-gap positions. A base pair is
only considered correct if both base positions are correct. The
alignments used were the structural alignments from the data-
base by Brown (1998). Firstly, all sequences were analysed one
by one, then all six pairs of sequences were used, then all four
triples, and finally all the sequences were used. The results in the
top of Table 5 show very significant improvement of prediction

accuracy when sequences are added, especially going from one
to two sequences. This exemplifies the large potential of
methods using several sequences and their phylogeny, in mak-
ing RNA secondary structure predictions. The pseudoknot
stems, denoted by brackets in Figure 3, are invariant throughout
these four sequences, which makes them hard to predict when
using mutational patterns.

Table 5. Structural alignment, no phylogeny

Structural alignment

No. of sequences 1 2 3 4

Min result 41.2% 65.2% 73.9% 79.2%

Max result 57.7% 82.1% 79.6% 79.2%

Average 48.3% 73.6% 77.8% 79.2%

CLUSTAL W alignment

No. of sequences 1 2 3 4

Min result 41.2% 54.9% 60.1% 73.8%

Max result 57.7% 69.1% 76.9% 73.8%

Average 48.3% 64.4% 68.5% 73.8%

Structural alignment, no phylogeny

No. of sequences 1 2 3 4

Min result 41.2% 59.9% 67.7% 76.2%

Max result 57.7% 76.6% 76.6% 76.2%

Average 48.3% 68.9% 72.2% 76.2%

Table 6. What happens when a limit of certainty is imposed on the results.
Each row shows how many positions have a certainty above a given limit
and how many of these are correctly predicted. There is a high correlation
between the accuracy of prediction and the certainty that the model predicts

Limit No. of positions Correct positions Accuracy

0% 1459 1156 79.2%

50% 1314 1146 87.2%

70% 1150 1064 92.5%

80% 1068 1014 94.9%

90% 932 890 95.5%

95% 825 799 96.8%

In many situations, the structural alignment is not available.
Therefore, it is necessary to assess the results using an alignment
algorithm. For this, the same analyses as above were made, but
each subset of the four sequences was aligned using CLUSTAL
W (Thompson et al., 1994). The results of this are shown in the
middle of Table 5 with the column of one sequence identical to
the earlier analysis. This gave lower accuracies than using struc-
tural alignments, which is not surprising. The rise in accuracy,
when using more sequences, now arises both from better align-
ments and more data. Good results are still obtained using four
sequences.
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Neglecting phylogeny

If the phylogeny of the sequences is not taken into account,
some information is lost and poorer prediction results. Such
results are shown at the bottom of Table 5. This table was
made like the top of Table 5, but using long branch lengths
to simulate independent sequences. For two and three se-
quences, the phylogenetic information improves the result
by ∼5%. This shows that the tree conveys information about
the structure. Results are compared in Figure 4.

Weight of results

The algorithm allows for a calculation of the probability that
each position is correctly predicted. This is done using the
inside and outside variables. It can give the user of the
method an impression of how certain the predictions are, as-
suming that the model is correct. This can be considered as
an equivalent to the partition function for energy calculations
(McCaskill, 1990).

Taking the analysis of the structural alignment of all four
sequences with a phylogenetic tree as an example, results
from choosing only to believe regions of high certainty are
shown in Table 6. This shows that discarding, for example,
positions having a certainty of <70% means that 309 posi-
tions are discarded, of which only 92 were correctly pre-
dicted. This results in an accuracy of prediction for the re-
maining positions of 92.5%. This, of course, does not im-

prove overall accuracy, but shows that badly predicted areas
can be pointed out. Other methods, perhaps experimental,
can then be used for these areas.

Comparison with other methods

To give an impression of the performance of this method rela-
tive to other methods, some comparisons have been made.
The folding program, MFOLD Version 3.0 (Web server URL:
http://www.ibc.wustl.edu/∼zuker/rna/form1.cgi), by Zuker
(1989) and Walter et al. (1994), using energy minimization
was used for folding the four sequences one by one. Standard
parameters were used, resulting in predictions ranging from
36 to 68%, with an average of 51% (see Table 7). This is com-
parable to the above-described method applied to single se-
quences, but does not suggest that this method is always as
good as Zuker’s for single sequences. The energy minimiz-
ation method has more parameters than the above-described
model, in the case of one sequence, where evolution does not
come into consideration. This gives Zuker’s method a poten-
tial for better results. Varying the parameters for the method
might improve results; furthermore, results will be different
for different families of RNA.

The method of maximum weighted matching was used on
the four sequences, with the structural alignment. The scor-
ing schemes used here are the ones described by Tabaska et
al. (1998). Both helix-plot and mutual information were in-

Fig. 3. The alignment of the four RNase P RNA sequences. The predicted structure, using all four sequences, is denoted p. The structure from
the database is denoted s, with square brackets denoting parts of pseudoknots. The square brackets used here match the structure description
in the database. The curly brackets denote positions where the structure differs: the sequences that have a non-standard pair in these positions
have loop regions or bulges, the rest have pairs.
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Fig. 4. A comparison of results with and without phylogeny.
Diamonds (� ) denote the curve for predictions with phylogeny,
while boxes (�) denote the one without. Crosses (�) denote results
using CLUSTAL W alignments and phylogeny estimation. The
dotted line at 94% represents the maximum possible prediction
accuracy with regard to the pseudoknots.

corporated, giving a maximum of 60% accuracy. The cova-
riance method, COVE Version 2.4.4., by Eddy and Durbin
(1994), was also tried on the sequences, with lower accuracy.
These methods were developed for larger numbers of se-
quences, and should not be expected to give optimal results
using only four sequences. This shows the significance of the
method described here in situations where only a few se-
quences are known.

Table 7. Accuracy table, showing comparisons of single sequence
predictions using the method described in this paper and MFOLD Version
3.0, by Zuker (1989) and Walter et al. (1994). Predictions of secondary
structures were made on single sequences, which is the only possibility
using MFOLD. The average results are comparable

Sequence SCFG method MFOLD

Seq 1 57.7% 67.1%

Seq 2 48.2% 54.0%

Seq 3 41.2% 35.6%

Seq 4 46.2% 50.3%

Average 48.3% 51.7%

Conclusion

The limitations of this method include:

� Inability to predict pseudoknots.

� Loop and stem lengths are assumed to be
geometrically distributed.

� A good alignment is needed.
� The dynamical programming algorithms are

relatively slow. [They have a time complexity of 
O(N3) with respect to the length of the alignment.]

The problem with pseudoknots is shared by many algo-
rithms (e.g. Zuker, 1989; Eddy and Durbin, 1994), although
some algorithms can predict pseudoknots (e.g. Tabaska
et al., 1998).

The problem relating to the length distributions has to do
with the nature of the specific SCFG used here, and can be
solved by making different non-terminals producing stems or
loops of various lengths. Special non-terminals describing
small bulges will probably improve results. This introduces
some extra computation time, but can definitely be carried out.

The problem of the alignment is not easily solved, because
making an alignment without knowing the structure is un-
likely to produce a structural alignment. It might be possible
to realign sequences once a structure prediction has been
made. This approach would probably be prone to local
maxima in the likelihood function for alignments. One poss-
ible way of avoiding this would be to use Gibbs sampling in
a Markov chain Monte Carlo method, sampling from align-
ments and summing over structures (Gilks et al., 1996).

An alignment method which simultaneously folds and
aligns a set of RNA sequences to find common structural
elements locally has been implemented by Gorodkin et al.
(1997). The algorithm has a computational complexity of
O(N4), relative to the sequence length. The method has
proven useful for relatively short sequences, and an align-
ment produced by such a method would be a good starting
point for SCFG methods (Gorodkin et al., 1997), including
the one described here.

Profile SCFGs and covariance models predict secondary
structure at the same time as making alignments, but seem to
need a large number of sequences (Eddy and Durbin, 1994;
Sakakibara et al., 1994). Further work in making algorithms
for simultaneous RNA folding and alignment will probably
show up in the future because of the importance of solving
this problem.

Further improvements to the method introduced here in-
clude modelling base stacking, which is not very difficult. It
consists of conditioning the probability of two pairing col-
umns on the neighbouring columns. Thus, in estimating the
model, neighbour base pairs should be counted to indicate
the conditional distributions of base pairs. This information
could then be used in the calculations to give improved re-
sults.

Finally, it would be interesting to look into the evolution-
ary model proposed here. Statistical tests of its ability to de-
scribe RNA evolution would be enlightening. It would also
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be useful to reduce the number of parameters for the rate
matrices, especially the base pair rate matrix, e.g. as done by
Muse (1994).

It is the hope of the authors that this method can be made
available to the public via the World Wide Web.
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