
A New Method That Simultaneously Aligns and
Reconstructs Ancestral Sequences for Any Number of
Homologous Sequences, When the Phylogeny Is Given’

Jotun Hein
NIEHS

Among the fundamental problems in molecular evolution and in the analysis of
homologous sequences are alignment, phylogeny reconstruction, and the recon-
struction of ancestral sequences. This paper presents a fast, combined solution to
these problems. The new algorithm gives an approximation to the minimal history
in terms of a distance function on sequences. The distance function on sequences
is a minimal weighted path length constructed from substitutions and insertions-
deletions of segments of any length. Substitutions are weighted with an arbitrary
metric on the set of nucleotides or amino acids, and indels are weighted with a gap
penalty function of the form gk = a + (bXk), where k is the length of the indel
and a and b are two positive numbers. A novel feature is the introduction of the
concept of sequence graphs and a generalization of the traditional dynamic sequence
comparison algorithm to the comparison of sequence graphs. Sequence graphs ease
several computational problems. They are used to represent large sets of sequences
that can then be compared simultaneously. Furthermore, they allow the handling
of multiple, equally good, alignments, where previous methods were forced to make
arbitrary choices. A program written in C implemented this method; it was tested
first on 22 5s RNA sequences.

Introduction

The history of homologous DNA sequences can be described by a phylogeny
with substitutions and insertions-deletions (indels) of nucleotides occurring on different
branches on the phylogeny. If gene conversions or recombinations occur, a single
phylogeny may not be sufficient to describe the relationships among the sequences.
Other genetic events different from substitutions and indels are also imaginable.

When analyzing homologous DNA sequences, scientists often invoke the principle
of parsimony: the best reconstructed history is the one that necessitates the smallest
amount of evolution compatible with the extant sequences. The form of this problem
that is addressed here is as follows: given a set of homologous sequences, what is the
most parsimonious history, where the amount of evolution is measured by the weighted
sum of substitutions and indels? The weight assigned to an indel will be restricted to
the type gk = a + (bXk), where k is the length of the indel and a and b are arbitrary
positive constants. The weight of a substitution can be given by any metric on the set
of nucleotides. Phylogenies will be restricted to trees involving only bifurcation. This
is a legitimate restriction in that the root can be moved and branch lengths can be

1. Key words: parsimony, phylogeny, alignment, ancestral sequences, 5S RNA.

Address for
Carolina 27709.

correspondence and reprints: Dr. Jotun Hein, NIEHS, Research Triangle Park, North

Mol. Biol. Evol. 6(6):649-668. 1989.
0 1989 by The University of Chicago. All rights reserved.
0737-4038/89/0606-0006$02.00

649

650 Hein

zero. Thus,
evolution.

it is solely a question of representation and not of the actual form of

The general parsimony problem has some previously studied special cases. The
first case is when either no indels are allowed or their positions are already known.
This is the traditional parsimony tree reconstruction problem that is tackled by pro-
grams in Swofford’s PAUP (1985) or in Felsenstein’s (1989) PHYLIP (phylogeny
inference package). The problem is NP-complete (Foulds and Graham 1982), which
is to say that it is unlikely that a polynomial algorithm can guarantee to find the most
parsimonious tree for a large number of sequences. For a review of the problems of
phylogeny reconstruction, see Felsenstein (1982).

A second case is the two-sequence alignment problem, where there are only two
sequences but indels are allowed. The criterion for alignment can be either similarity
maximization or a distance minimization. Whether similarity or distance is chosen is
not very important, and it can be shown (Smith et al. 198 1) that for a large set of
similarity parameters there exist distance parameters such that the distance and sim-
ilarity alignments will be identical. The focus in the present article is solely on distance
minimization.

The first methods for finding distance alignments of biological sequences were
introduced by Sankoff (1972) and Sellers (1974). Both methods minimized the number
of events, substitutions, or indels of single elements necessary to transform one sequence
into the other. This approach was generalized to any number of sequences by Sankoff
(1975) . When more than three sequences are aligned, their phylogeny must be given
to evaluate the overall number of changes that have taken place. There are three main
problems with this method. First, the phylogeny is often not known beforehand. Sec-
ond, the method is slow and not practical for more than three sequences. Last, mo-
lecular evolution of real sequences also includes indels of longer stretches of nucleotides
and the method only considers the indel of single elements. Sankoff et al. (1973) had
a faster approximate method in use, but it still had to be given the phylogeny, and it
allowed only for indels of length one. Konings et al. (1987) have a method that improves
on this by finding both the alignment and the phylogeny simultaneously. Waterman
et al. (1976) introduced a method for aligning two sequences that allowed indels of
several contiguous elements if a gap penalty function was provided that assigned weights
to indels of different lengths. This was accomplished at some cost in the speed of
computation. Gotoh (198 1) improved on this in the case where the gap penalty function
was of the form a + (bXk), where a and b are constants, and k is the length of the
indel. Gotoh’s method was generalized to three sequences by Fredman (1984) for the
case b = 0. These methods can be extended to any number of sequences (author’s
unpublished data) whose phylogeny is known, but, again, it becomes unacceptably
slow for more than three sequences. For reviews of the problems of sequence com-
parison, see Sankoff and Kruskal (1983) or the special 1984 issue of Bulletin of Math-
ematical Biology (vol. 46, no. 4) on sequence comparison algorithms.

There are several practical reasons to find an efficient approximation to the general
parsimony problem. For example, a practical method will make the parsimony phy-
logeny reconstruction fully automated. Previously, an alignment would have to be
constructed in advance of the phylogeny reconstruction; this was often done manually
and with great labor. Often the alignments were very arbitrary and influenced the final
phylogeny. Human interaction also precludes the use of computer simulations to
assess the reliability of the method. Moreover, it is conceptually more consistent to
apply parsimony to all evolutionary events, not just to substitutions. Finally, the method

General Parsimony Problem 65 1

reported gives proper alignments, even if history is not the prime concern. The se-
quences are put out in an order such that closely related sequences are adjacent, giving
an overall simple alignment.

In the present paper an algorithm is presented that solves these problems, and a
program that implements the algorithm has been written in C. The program can be
applied to very large data sets and still yield acceptable computing times. Indeed, the
present version of the program can align many (> 100) sequences 2,000-3,000 bp
long, so it is possible to compare a large number of even the largest RNA molecules.
If events or relationships very far back in time are to be reconstructed, it is advantageous
to compare as many sequences as possible, since the reliability of the reconstruction
of an ancestral molecule is bound to improve if many descendants are used. Thus
attempts to develop methods for handling very large sets of sequences are not without
practical motivation.

It is clear from the known computational properties of the general parsimony
problem that some approximations must be accepted in a practical algorithm. Two
approximations were employed in the method described here. Since even the restricted
problem of constructing an alignment, given the phylogeny, is computationally too
difficult, a practical goal is to find a good-but perhaps not the best-alignment, given
the phylogeny. Since the general parsimony problem is NP-complete, the best tree
cannot be guaranteed to be found by a reasonable algorithm for large sets of sequences.
Therefore a good-but not necessarily the best-tree must be accepted. The present
article focuses on the alignment problem, given the phylogeny. The presentation of
the method is as follows: First, two well-established parsimony problems and their
solution are presented; these problems are (1) how to assign nucleotides to internal
nodes when the tree with nucleotides at the tips is given and (2) how to parsimoniously
align two sequences. Then it is shown how to construct a graph that represents sequences
that most parsimoniously can be postulated as ancestor sequences in alignments of
two sequences. Last, the traditional dynamic programming algorithm is generalized
to allow alignment of graphs (actually aligning alignments). This new algorithm allows
an efficient and fast approximation to the phylogenetic alignment problem.

In the accompanying article (Hein 1989) a tree algorithm will be described that,
together with the phylogenetic alignment algorithm, will provide an algorithm that
will both align and find the phylogeny of a set of sequences. The initial tree recon-
struction in this method is approached through pairwise comparisons. An additional
problem in this context is that pairwise comparisons are computationally expensive,
since they correspond to alignments. Care should be taken not to make unnecessary
comparisons when constructing the tree. This has not been a problem for previous
methods that started from an alignment and/or were given the phylogeny. So the
method is economical in the number of pairwise comparisons used to reconstruct the
phylogeny.

The Method to Align Sequences, Given the Phylogeny

The problem undertaken in this section is illustrated by the tree depicted in figure
1. The known sequences (sl, . . . , s5) are at the tips of the tree, since the tips represent
the present, while internal nodes represent sequences that are in the past and that
must be reconstructed. The problem is to perform this assignment of sequences to
internal nodes so that the total amount of evolution, the weight of the tree, is minimized.
The simple case, where the sequences all consist of one nucleotide and no indels are
allowed, is called the small parsimony problem. A solution to the small parsimony

652 Hein

A T A C G
FIG. l.-Rooted bifurcating tree with five tips, illustrating the FHS algorithm. At the tips five one-

nucleotide sequences are located. The four-dimensional vector at each node is the weight of the minimal
subtree hanging from that node if it is assigned A (position I) to T (position 4) in the vector. A minimal
assignment to all nodes can first take place when these vectors have been calculated for all nodes up to the
root by using eq. (2). The simple metric only registering identities/nonidentities was used. In this simple
case eq. (1) could have been used.

problem can be used for complete sequences if they are prealigned, by applying it to
every column of the alignment. The big parsimony problem is analogous, except that
the tree is not given and that it must be reconstructed also. The problem addressed
in this section is a difficult extension of the small parsimony problem, since it involves
complete sequences as well as indels.

The small parsimony problem in the case of the simple distance function between
nucleotides that is 1 if the nucleotides are different and 0 if they are identical was first
addressed by Fitch (197 1) and, independently, by Hartigan (1973).

In the special case of the simple distance function on the set of nucleotides, the
above procedure leads to the following simple rule. Let sn, snL, and snR be sets of
nucleotides associated with a node, its left and right descendant, respectively. These
sets obey the following recursion:

if SiZL n snR iS IIOneInpty, then Sn iS Set t0 SylL n snR (CaSe 1) ;

otherwise, sn is Set to snL U snR (case 2) .
(1)

Each time case 2 occurs, an additional substitution must be added to the tree.
This allows calculation of the weight of the complete tree. One parsimonious assignment
(of many possible) can now be chosen in the following way by going down the tree:
At the root assign any nucleotide, n, in sn . In case 1, n is also assigned to snL and S&.
In case 2, n is assigned to whichever of SnR and snL contains n and in the other set
any nucleotide in sn can be assigned.

Sankoff (1975) presented the solution to the problem when the distance function
between nucleotides was an arbitrary metric. Let dist be a metric on the set, N, of
nucleotides and let w(n), wL(nL), and wR(nR) be the most parsimonious weight of
the subtrees hanging from a specified node, the subtree hanging from its left descendant,

General Parsimony Problem 653

and the subtree hanging from its right descendant, all under the restriction that the
nucleotides assigned to these three nodes are n , nL, and nR, respectively. These quan-
tities will satisfy the following recursion:

w(n) = min[WL(nL)+dist(n,nL)] + n$[W(nR)+dist(%nR)] n a N , (2)
nL&N

subject to the initial condition w(n) = 0 if the node is a tip and n is the nucleotide
present at this tip and to w(n) = co if the node is a tip and n is not the nucleotide
present there. The recursion is the basis of an algorithm that finds the minimal weight
of the complete tree by a first upward pass through the tree from the tips and going
toward an arbitrarily chosen root. A second downward pass will allow assignment of
nucleotides to all internal nodes, by passing down the tree from the root toward the
tips. At each node choose a nucleotide that can obey recursion (2), by entering the
right side, when its ancestral nucleotide is at the left side in recursion (2). This will
give one (of possibly many) most parsimonious assignments. The algorithm for solving
the small parsimony problem will be called the FHS (Fitch-Hartigan-Sankoff) algo-
rithm. The running time of the FHS algorithm is proportional to the number of tips
in the tree.

The proof of recursion (2) relies only on the existence of a distance function on
the set of nucleotides, so exactly the same recursion can be written for sequences
instead of for nucleotides. Because of the size of the set of sequences in contrast to
the set of nucleotides, the resulting recursion does not give a practical algorithm for
calculating ancestral sequences.

One property of the solution of the recursion is the following: the state that is
eventually assigned to an internal node can be different than that which would be
assigned if the node had been the root in the small subtree hanging from it, and if the
rest of the tree were unknown. In other words, when enlarging the tree one might
have to give up what seemed to be the best solution. Assuming the contrary will be
the kernel of an approximation that decomposes the many-sequence-alignment prob-
lem to a series of pairwise problems.

Let d(,) be a metric on sequences and let w, wL, and wR be the minimal weights
of the trees hanging from the specified node and from its left and right descendant
respectively. S, SL, and SR are the sets of sequences that are assigned to these nodes.
The recursion now looks as follows:

w = min[d(s1 ,s2)] •t wL + wR sl & SLY s2 & SR . (3)

The sequences associated with each node in the upward pass will be

S = [s: d(sl,s)+d(s,~2) = d(~& for some sl E SL and s2 E SRI . (4)

In other words, the sequences assigned to a node are those that do not impose extra
evolution on the total history, relative to what would be necessary when the sequences
at the left and right descendant are known. Sequences in S are said to be between SL
and SR.

The set of sequences may still be huge, but fortunately it can be stored as sequences
generated by a graph, itself inferred from a generalization of the traditional dynamic
programming method. Sequence graphs are introduced to represent a large set of

654 Hein

sequences. The traditional dynamic programming algorithm is generalized to compare
sequence graphs and to find sequence subgraphs that are close to each other according
to some sequence metric. Simultaneously, the subgraphs are aligned. This permits a
rational selection and representation of potential ancestral sequences among these sets
of sequences, as more information is available in the form of closely related sequences.
These graphs are used to represent potential ancestor sequences at each node in the
phylogeny.

The next section will show how to find sequences between two single sequences.
Then the method will be generalized for finding sequences between two sets of se-
quences, generated by two graphs. Both problems are closely related to the alignment
of two sequences.

Sequences between Two Sequences

The majority of sequence comparison methods use some variety of dynamic
programming. In molecular biology this technique was first used by Needleman and
Wunsch (1970) to compare two protein sequences, by maximizing a similarity measure.
The following method was put forth by Gotoh (198 1): Let the length of the two
sequences, s1 and s2 be I1 and 12, and let s1 (i) and s2(j) refer to the ith and jth
nucleotide in sI and s2, respectively. Let sl,j and s2,j refer to the subsequences of s1
and s2 consisting only of the first i and j nucleotides, respectively. The distance between
two nucleotides will be dist, and the gap penalty function for a gap of length k is of
the form gk = a + (bxk). The distances between sequences are of three types:
d(si,i,s2,j,O), which is the smallest genetic distance between sl,i and s2,j, subject to the
constraint that s1 (i) and s2(j) are paired; d(sl,i,s2,j, 1), which is the smallest genetic
distance between sl,i and s2,j, subject to the constraint that s1 (i) is paired with a gap
sign; and d(S2,j,Si,i,l), which is the smallest genetic distance between s~,~ and s2,j,
subject to the constraint that s2(j) is paired with a gap sign. Alignments ending in
these three possibilities are said to be of type 0, 1, or 2, respectively. Optimality requires
that max { dist(,) } is smaller than 2Xb. This precludes the possibility that a gap sign
in s1 is followed by a gap sign in ~2. These genetic distances will now obey the following
recursion:

+ distbdO,s2Wl ;
d(sl,i,s2,j,l) = min[d(sl,i-l,sz,j,l) + a; d(sl,i-l,S2,j,l >I + b G (5)
d(S1,i,S2,j,2) = miIl[d(S1,i&j-1,O) + a; d(s1,iJ2,j-192)1 + b *

These distances are subject to the boundary conditions d(s~,~,s~,o,O) = 0 and
01,o,s2,0,~ I = 4s 1,0,s2,0,2) = a. Again the alignment of the complete sequences can
be found by backtracking. The algorithm can be implemented by storing d(Sl,i,S2,j,t)
in a three-dimensional matrix at entry (i, j,t), where t = 0, 1,2. The method is illustrated
on two short sequences in figure 2. The performance of this algorithm is 0(1 2).

When recursion (5) is applied, not all entries in the distance matrices need to be
calculated. One can cut corners, as observed by Fickett (1984) and Ukkonen (1985).
The calculations can be confined to a belt around the two 45” diagonals in the matrix
that go through (0,O) and (Z1,12), respectively. Let db be the thickness of the band
above and below the two diagonals. Ukkonen showed, in the special case where a

General Parsimony Problem 655

a Sequences sl=TGAAT s2=TCT

b 0 istances between subsequences

3

2

1

0 1 2 3 4 5 6
1

0 1 2 3 4 5

c two alignments with minimal weight 4:

TGART TGRAT
TC--T T--CT

FIG. 2.-Gotoh’s algorithm as applied to two short sequences. The weight of an indel of length k is
here 1 + k. a, The two sequences. b, The matrix with the three types of genetic distances. The three types
are 0 at the top, then 1 and 2. A dash (-) indicates that the entry is not defined and therefore set to infinity.
The entry (5,3,0) is underlined because it corresponds to the minimal alignment of the two sequences. If
an entry is underlined and another entry can fulfill eq. (5) with it, then that entry will also be underlined
and they will be connected by an edge. Thus, both (4,2,0) and (4,2,1) can be used in eq. (5) with (5,3,0),
so they will also be underlined and connected to (5,3,0) with an edge. The graph defined in this fashion is
called the backtracking graph. c, The two minimal alignments.

= 0 (thus three types of distances are identical), that if d(sr ~2) -C (1 I1 -12 1 -db)/
(2Xb), then the calculated area is large enough to guarantee that the alignment is
minimal. This inequality is applied by first performing the distance calculations with
a certain band width and then recalculating with a larger band width until the inequality
is fulfilled. This inequality will give a band that in general can be made much thinner,
while still permitting one to find an optimal solution. The band width is an input
parameter.

The goal is now to construct a graph that will generate the set of sequences
between s1 and ~2. A graph, G, is a sequence graph if it is directed, noncyclic, and
connected and has one sink (a node with only ingoing edges) and one source (a node

656 Hein

with only outgoing edges). (These last conditions are not necessary, but they are
convenient for programming reasons.) Each edge can be associated with a nucleotide
or with a set of nucleotides.

Traversing such a graph in all possible ways from source to sink will generate a
set of sequences whose elements are sets of nucleotides. Selection of a nucleotide in
each nucleotide set generates an even larger set of nucleotide sequences, S(G) .

The sequence graph for an ordinary sequence of length 1 will be a linear graph
with 1 + 1 nodes and one edge connecting them, and the ith edge will be associated
with the ith nucleotide in the sequence.

The sequence graph generating the sequences between s1 and s2 will be closely
related to the graph traversed when the backtracking graph [the BG(sl ,s2) graph] is
performed to obtain possible alignments. The nodes in the backtracking graph are
parameterized by the coordinate position (i,j,t) in the three matrices.

The first node(s) in BG(s1 ,s2) is the one that corresponds to the distance between
the complete sequences. It will be (Il,12,0), (11,12,1), or (Il,12,2), which gives the
lowest value of d(s 1,/1 ,s2,12,t). The nodes of BG(s1 ,s2) can be found recursively by
using recursion (5) to determine which (i,j,t) among (I1 - 1 ,l2- 1 ,t), (I1 - 1,12,t), and
(Il,12- 1 ,t) actually led to the previous node in BG(sI ~2). If this process is continued
until (O,O,O) is reached, all nodes in BG(s1 ~2) will eventually be found. Each time a
node is used to define a new node, the first node will have an edge pointing to the
second node; the edge will be defined to be of the same type as the first node.

Edges of type 0 are associated with the set of nucleotides (possibly one) consisting
of the union of the nucleotides of the associated pairing. Edges of type 1 or type 2 are
associated with the nucleotide that is not gapped.

If this graph is constructed for the example in figure 2, it will generate two new
sequences besides the two input sequences, TCAAT and TGACT, between s1 and s2.
The first sequence will match the first possible alignment, and the second sequence
will match the second alignment. But the graph BG(s1 ~2) does not generate all se-
quences between s1 and ~2; it fails, for example, to generate TGT. That occurs because
the graph, BG(si ,s2), obtained from backtracking requires that any piece of DNA
involved in an indel be present in BG(s1 ,s2). For such missing sequences to be included,
extra edges must be added to the graph. They are called indel edges and will not be
associated with nucleotide sets. Their function is to represent the possibility that an
indel was an insertion relative to the ancestral sequence. They will point from a node
where a series of horizontal (type 1) or vertical (type 2) edges start, to a node where
such a series ends. This modified graph will be called MBG(s1 ,s2). The MBG(si ,s2)
derived from the alignment of the two sequences in figure 2 is shown in figure 3a.
S [MBG(si ,s2)] is exactly all sequences between s1 and s2 according to the given metric.

Sequences between Sets of Sequences Generated by Graphs

The above algorithm solves the problem of constructing the most parsimonious
ancestors of two single sequences. In the process of approximating the FHS algorithm,
this would allow one to go back from sequences at the tips to their immediate ances-
tors-but not further. Therefore an algorithm is needed to align these ancestor sequence
graphs and then to construct new sequence graphs to represent the sequences between
the two sequence graphs. The following generalization of an algorithm of Sankoff and
Kruskal (1983), combined with the method of Gotoh (198 1), allows this. Let Gi and

General Parsimony Problem 657

CG

Gl:

A A T
G2: O-l 2-3

b

1

0

3 4 3
5 6

4 4 4 4

2 3 2

3 4 3 3 4

-
3 4 3 3 4

To 1 t? 3 4 5 6 7 8

C

sl TGAAT
a T-AT
s2 T-CT

52 S(Gl)=s3 s3 T-CT

FIG. 3.-Sequence graph comparison algorithm. a, Two small sequence graphs. The length of a sequence
graph is the number of nodes minus one. Gl is the modified backtracking graph from fig. 2, while G2 only
represents one sequence. The edges and nucleotides in Gl that generated the closest sequence to S(G2) are
indicated by asterisks. b, Dynamic programming algorithm. Analogous to ordinary sequence comparison,
the distances between subgraphs are tabulated in a { 0, . . . , 11} X { 0, . . . , 12 } X { 0, . . . , 2 } integer matrix.
Minimal edges connecting minimal nodes are drawn. c, Overall use of the graph comparison algorithm.
First, the two sequence graphs are compared, resulting in one alignment. S(Gl) represents sl, s2, and four
sequences between sl and s2. S(Gl) represents only one sequence, s3. The effect of introducing s3 is to
select one alignment of sl and s2 as more likely (the first alignment in fig. 2) and also to select the most
likely ancestral sequence compatible with that alignment. The use of this algorithm makes it possible to
reconstruct a complete history of the sequences. Since the comparison of G2 and s3 chose one alignment
of sl and s2 and also their immediate common ancestor, a, and since s3 was simultaneously aligned to a,
all three sequences have been aligned and the one ancestral sequence in the tree relating them has been
predicted.

658 Hein

G2 be two sequence graphs. The distance between two such graphs is defined as the
distance between the two closest nucleotide sequences in S (G,) and S(Gz), i.e.,

Let Gl,i and G2,j be the subgraphs consisting only of nodes that can be reached from
node i and node j (including these nodes), respectively, and only of edges involving
these nodes. Let d(Gl,i,G2,j,t) be the distance between these two subgraphs, restricted
to alignments of type t . The presence of indel edges leads to a nonstandard definition
of a predecessor: Node i’ is a predecessor of node i if there is a nondummy edge
pointing from i to i’ or if it is a predecessor of a node that has a dummy edge pointing
to it from node i. Between each node i and a predecessor i’ of it there will be exactly
one edge with a set of associated nucleotides, and this will be denoted n(i, j). Let
P(i, 1) and P(j,2) be the predecessors of i and j and Gi and G2, respectively. The
distances between subgraphs will now obey a recursion similar to recursion (5) .

+ dist[n(i,i’),n(j,j’)] ;
(7)

d(G,,i,G2,j,l) = min[d(Gl,i~,G2,~@) + a; ~G,P,G,,JN + b ;

d(Gi,i,G2,j,2) = min[d(Gi,i,Gz,j/,O) + a; d(Gl,i,G2,jf,2)1 + b -

The minimum is taken over i’ in P(1 ,i) and j’ in P(2, j). The function dist will
now be a distance function on sets of nucleotides that is defined as the distance between
the two closest members from each set. The initial conditions are d(Gi~,G~,~,o) = 0
and d(G,,. ,G2,0, 1) = d(Gl,o ,G2,0,2) = a. Again, successive applications of recursion
(7) allow calculation of d(Gi ,G2). Backtracking picks out the pairs of sequences in
S(Gi) and S(G2) closest to each other and simultaneously aligns them. If Gi and G2
represent ordinary sequences, then recursion (7) reduces to recursion (5) .

For an illustration, see figure 3, where a sequence graph (G1) and an ordinary
sequence (G2) are be compared and where the algorithm is used to decompose a triple
sequence alignment problem to two pairwise problems.

The sequence graph that generates the sequences between S(Gi) and S(G2) can
be constructed in a manner strictly analogous to the method of constructing the se-
quence graph of two ordinary sequences. The resulting graph is called MBG (Gi ,G2).
S[MBG(Gi ,G2)] coincides with the set defined by recursion (4). It is possible that
MBG(G, ,G2) is too rich in the sense that it might contain a subgraph that will generate
the same sequence set. An auxiliary algorithm was introduced to remove this redun-
dancy and is described in the Appendix.

This algorithm functions as the upward pass in the FHS algorithm. The downward
pass is a little more complex than in that algorithm and is now sketched. One history
among these is to be chosen recursively according to the following principle: Assume
that GIG2 and MBG (Gi ,G2) are given and that one sequence, s, has been chosen in
S [MBG(Gi ,G2)]. Now s1 and s2 in S(Gi) and S(G2) must be chosen so that d(s1 ,s)
+ d(s,s2) = d(G, ,G2). When this is done it is possible to perform a downward pass
that will choose one history with a weight consistent with the distances between all
the sequence graphs.

Assume that s1 is to be chosen. Label all edges in Gi that have pointers pointing

General Parsimony Problem 659

to them from the path in MBG(G1 ,G2) that generated s. If these edges constitute a
path from source to sink, then s1 can be chosen in the set of sequences generated by
this path by choosing in the nucleotide set just as in the one-nucleotide case in the
original FHS algorithm. If the labeled edges do not connect source and sink in Gr ,
edges must be added to make it connect source and sink. The added edge corresponds
to insertions in the history from s to s l, and it will correspond to a dummy edge in
MBG(G, ,G2) that jumped over this segment. The segment will correspond to a shortest
path connecting the same node as does the dummy edge which consists only of edges
of type 1. Any nucleotides can be chosen from the sets of nucleotides associated with
the edges of this path. A similar procedure is carried out for s2.

The concept of sequence graph is now to be used to fashion an algorithm that
reconstructs the history of many sequences by sequentially aligning sequence graphs,
instead of by aligning all sequences simultaneously.

The algorithm described in the present article is then combined with the tree-
constructing algorithm given in the accompanying article (Hein 1989) to give an
algorithm that simultaneously aligns and reconstructs the phylogeny.

An Example

A program written in C implements the algorithm. When run on a Celerity
C 1260, many (>50) sequences ~3,000 bp long could be compared. Because of growth
in the size of the sequence graphs used to represent ancestral sequences, it is preferable
that the sequences are reasonably related. If ~50% of the positions of two aligned
DNA sequences are different, then they are more than sufficiently related. When the
sequences are proteins, the corresponding figure is 25%-30%. At the other extreme,
if completely unrelated sequences are compared, the number of equally good align-
ments very quickly grows to unmanageable numbers. The method was applied to the
following data set.

5s RNAs from Very Distantly Related Organisms

A set of 5s RNA sequences from very distantly related organisms were studied,
not so much to offer new taxonomy but to illustrate the method. It is preferable to
use more and longer sequences, but the size of the resulting alignment then makes it
unsuitable for an illustration.

The 22 5s RNAs were taken from GENBANK 55. The gap penalty function was
10 + (3Xk), and any substitution cost 4. It took 165 s on the Celerity computer. The
total weight of the history is 1,628. The resulting alignment including ancestral se-
quences is given in figure 4. The corresponding phylogeny is shown in figure 5, and
both the number of substitutions and the number of indels are shown in table 1. The
substitutions and indels are without time direction, since the phylogeny is unrooted.
A higher frequency of transitions than of transversions was observed. Of the six possible
kinds of substitution without time direction, two are transitions and four are trans-
versions. The number of transitions is overrepresented relative to the uniform distri-
bution. This lends credibility to the method, since this has been observed for the
evolution of other sequences, where the reconstruction of their history was unprob-
lematic.

The alignment has 42 sequences, 20 of which are ancestral. The first group of
sequences is from plants and is followed by groups from the following : chloroplasts,
bacteria, fungi, and animals. The single sequences are the proposed ancestral sequences
in the tree connecting these five groups. For instance, sequence 30 is the proposed

s
0

-gga-t--gcgataccatcagcactaaagcaccggatc--c-atca-gaactccgaagttaagcgtgcttgggcgagagtagtacta-ggatgggtgacctcctgggaagtcct---cgtgttgcatc--ct------- 13
-gga-t--gcgatcataccagcgctaatgcaccggatc--ccatca-gaactccgaagttaagcgcgcttgggcgagagtagtacta-ggatgggtgacctcctgggaagtcct- --agtgttgcacc--ct------- 39
-ggg-t--gcgatcataccagcgttaatgcaccggatc--ccatca-gaactccgcagttaagcgcgcttgggttggagtagtacta-ggatgggtgacctcctgggaagtcct---aatattgcacc--ctt------ 16
-gga-t--gcgatcataccagcgctaatgcaccggatc--ccatca-gaactccgaagttaagcgcgcttggccagatacagtactg-ggatgggtgacctcccgggaagtcct---agtgctgcacc--ct------- 42
-gtggt--gcggtcataccagcgctaatgcaccggatc--ccatca-gaactccgaagttaagcgcgcttgggccagaacagtactg-ggatgggtgacctcccgggaagtcct---ggtgctgcacc--ct-t----- 15
-gtggt--gcggtcataccagcgctaatgcaccggatc--ccatca-gaactccgaagttaagcgcgcttgggccagaacagtactg-ggatgggtgacctcccgggaagtcct---ggtgctgcacc--ct------- 40
-gtggt--gcggtcataccagcgctaatgcaccggatc--ccatca-gaactccgcagttaagcgcgcttgggccagaacagtactg-ggatgggtgacctcccgggaagtcct---ggtgccgcacc--cc------- 17
-gta-t--gcggtcataccagcgctaatgcaccggatc--ccatca-gaactccgaagttaagcgcgcttgggccagaatagtactg-ggatgggtgacctcccgggaagtcct---ggtgctgcacc--ct------- 41
-gga-t--gcggtcataccaaggctactacaccagatc--ccatca-gaactctgcagttaagcgcctttgggccggaatagtactg-ggatgggtgacctcccgggaagtccc---ggtgctgcatc--ca------- 14

--tt-ctggtgtcttaggcgtagaggaaccacaccaat--ccatcccgaacttggtggtgaaactctattgcggt--gacaatactttaggggaagccctatggaaaaatagct---cga-cgccag---ga------- 3
-att-ctggtgtcctaggcgtagaggaaccacaccaat--ccatcccgaacttggtggttaaactctattgcggt--gacgatactgtaggggaggccctatggaaaaatagct---cga-cgccag---ga------- 25
tatt-ctggtgtcccaggcgtagaggaaccacaccgat--ccatctcgaacttggtggtgaaactctgccgcggt--aaccaatactcggggggggccctgccggaaaaatagct---cgatgccag---ga--ta--- 4
tatt-ctggtgtcctaggcgtagaggaaccacaccaat--ccatcccgaacttggtggttaaactctactgcggt--gacgaatactgaggggaggtcctgcggaaaaatagct---cga-cgccag---ga--ta--- 23
tatt-ctggtgtcctaggcgtagaggaaccacaccaat--ccatcccgaacttggtggttaaactctactgcggt--gacgatactgtaggggaggtcctgcggaaaaatagct---cga-cgccag---ga--tg--- 2
-att-ctggtgtcctaggcgtagaggaaccacaccaat--ccatcccgaacttggtggttaaactctactgcggt--gacgatactgtaggggaggtcctgcggaaaaatagct---cga-cgccag---ga------- 24
-att-ctggtgtcctaggcgtagaggaaccacaccaat--ccatcccgaacttggtggttaaactctactgcggt--gacgatactgtaggggaggtcctgcggaaaaatagct---cga-cgccag---ga------- 1

-atc-ctggtggccatagcgaagaggaaccacccgatc--ccatcccgaactcggaagttaaactctttagcgcc--gatggtactgtgggtgaggccccatgcgagaatagct---cgt-cgccag---ga------- 30

-tgc-ttggcgaccatagcgatttggacccacctgatcttccattccgaactcagaagtgaaacgaattagcgcc--gatggtagtgtggg-gcttccccatgtgagagtagga---cat-cgccag---gc----tt- 7
-tgc-ctggcggccatagcgaggtggacccacctgatc--ccatgccgaactcagaagtgaaacgcattagcgcc--gatggtagtgtggg-gcttccccatgtgagagtagga---cat-cgccag---gc----tt- 26
-tgc-ctggcggccgtagcgcggtggtcccacctgacc--ccatgccgaactcagaagtgaaacgccgtagcgcc--gatggtagtgtggg-gtctccccatgcgagagtaggg---aac-tgccag---gc----at- 5
-tgc-ctggtggccatagcgaagaggacccacccgatc--ccataccgaactcggaagttaaactctttagcgcc--gatggtagtgtgggtgctgccccatgcgagagtagga---cgt-cgccag---gc------- 29
-t---ttggtggcgatagcgaagaggtcacacccgttc--ccataccgaacacggaagttaagctcttcagcgcc--gatggtagttggggtgttagcccctgcaagagtagga---cgt-tgccag---gc------- 6
-t---ctggtggcgatagcgaagaggtcacacccgttc--ccataccgaacacggaagttaagctcttcagcgcc--gatggtagttggggtgctggcccctgcgagagtagga---cgt-tgccag---gc------- 27
-t---ctggtggcgatagcgagaaggtcacacccgttc--ccataccgaacacggaagttaagcttctcagcgcc--gatggtagttaggg-gctgtcccctgtgagagtagga---cgc-tgccag---gc------- 9
-t---ctggtggcgatagcgaagaggacacacccgttc--ccataccgaacacggaagttaagctcttcagcgcc--gatggtagttggggtgctggcccctgcgagagtagga---cgt-cgccag---gc------- 28
-t---ctggtgatgatggcggaggggacacacccgttc--ccataccgaacacggccgttaagccctccagcgcc--aatggtacttgctccgcagggagccgggagagtagga---cgt-cgccag---gc------- 8

-atC-c--qcqqccataqcaacqaqaaaacaccqqatc--ccatcc-qaactccqaaqttaaqcacqttaqcqCCCqqataqtaCtq-qqqtqqqqqaCcacccqqqaatacct---qqtqctqcaq---qa------- 38

-atc-c--acqqccataqqactctqaaaqcactqcatc--ccqtcc-qatctqcaaaqttaaccaqaqtaccqcccaqttaqtacca-cqqtqqqqqaccacqcqqqaatcctq---qqtqctqtqq---tt------- 12
-atc-c--acqqccataqqaccctqaaaqcaccqcatc--ccqtcc-qatctqcqcaqttaaccaqqqtaccqcccaqttaqtacca-cqqtqqqqqaccacqcqqqaatcctq---qqtqctqtqq---tt------- 31
-atc-c--acqqccataqqaccctqaaaqcaccqcatc--ccqtcc-qatctqcqcaqttaaccaqqqtqccqcctaqttaqtacca-cqqtqqqqqaccacqcqqqaatccta---qqtqctqtqq---tt------- 11

-atc-c--acqqccataqqaccctqaaaacaccqcatc--ccqtcc-qatctqcqcaqttaaqcaqqqtaccqcccaqttaqtaccq-qqqtqqqqqaccacccqqqaatcctq---qqtqctqtqq---tt------- 32
-atc-c--acqqccataqqacacaqaaaacatcqcatc--ccqtcc-qatctqcqcaatcaaqctqtqtaCCqcCCaqtcaqtaccq-qaqtqqqqqaccatccqqqaatcctqccaqqtqctqtqq---tt------- 10

-atc-c--acqqccataqcaccctqaaaacaccqqatc--ccqtcc-qatctccqaaqttaaqcaqqqtaqcqcccqqttaqtactq-qqqtqqqqqaccacccqqqaataccq---qqtqctqtaq---tt------- 31

-qcc-a--acqaccataccacqctqaatacatcqqttc--tcqtcc-qatcaccqaaattaaqcaqcqtcqcqqqcqqttaqtactt-aqatqqqqqaccqcttqqqaacaccq---cqtqttqttq-qcct-------

g
-qcc-a--acqqccataccaccctqaatacaccqqatc--tcqtcc-qatctccqaaqttaaqcaqqqtcqcqcccqqttaqtactt-qqatqqqqqaccqcctqqqaataccq---qqtqctqtaq-qctt-------

-qct-t--acqqccataccaqcctqaatacqcccqatc--tcqtcc-qatctcqqaaqctaaqcaqqqtcqqqcctqqttaqtactt-qqatqqqaqaccqcctqqqaatacca---qqtqctqtaa-qctt-------

-qcc-t--acqqccataccaccctqaatacqcccqatc--tcqtcc-qatctcqqaaqctaaqcaqqqtcqqqcctqqttaqtactt-qqatqqqaqaccqcctqqqaataccq---qqtqctqtaq-qctt-------

-qcc-t--acqqccacaccaccctqaaaqtqcctqatc--tcqtct-qatctcaqaaqcqatacaqqqtcqqqcctqqttaqtacct-qqatqqqaqaccqcctqqqa~tacca---qqtqtcqtaq-qctt-------

-qcc-t--acqqccataccaccctqaaaqcqcccqatc--tcqtct-qatctcqqaaqctaaqcaqqqtcqqqcctqqttaqtactt-qqatqqqaqaccqcctqqqaataccq---qqtqctqtaq-qctt-------

-qtc-t--acqqccataccaccctqaacqcqcccqatc--tcqtct-qatctcqqaaqctaaqcaqqqtcqqqcctqqttaqtactt-qqatqqqaqaccqcctqqqaataccq---qqtqctqtaq-qctt------t

-qcc-t--acqqccataccaccctqaaaacqcccqatc--tcqtct-qatctcqqaaqctaaqcaqqqtcqqqcctqqttaqtactt-qqatqqqaqaccqcctqqqaataccq---qqtqctqtaq-qctt-------

-qcc-t--acqqccatcccaccctqqtaacqcccqatc--tcqtct-qatctcqqaaqctaaqcaqqqtcqqqcctqqttaqtactt-qqatqqqaqacctcctqqqaataccq---qqtqctqtaq-qctt-------

22
36
20
35
18
33
19
34
21

FIG. 4.-Alignment of the 42 [22 (extant sequences) + 20 (ancestral sequences)] sequences. The genetic events that have occurred in the history of these sequences
can be obtained by combining the information in the alignment and the phylogeny in fig. 5. Take two sequences corresponding to the nodes connected by an edge in the
phylogeny. Compare the sequences site by site, and a list of events will be obtained. The different types of events in the whole tree are shown in table 1.

CHLOROPLASTS BACTERIA

8:Bacillus brevis
4:Dryopteris

FUNGI

1 OMcrostoma juglandis

32 Y 11 :Endophyllum sempervivi

31

12:A.auriculae-judae

9:B.firmus

/
27

6:B.pasteurii

7:Beneckea harveyi

PLANTS

14:Liverwort

17:Horsetail

18:X.laevis

ANIMALS
FIG. 5.-Phylogeny of the 22 5S RNA sequences. The total branch length of this phylogeny is 1,628.

The length of each edge is proportional to the weight of the differences between the sequences at the end of
the edge.

General Parsimony Problem 663

Table 1
Mutational Events (substitutions and
indels) Occurring in the History of the
Sequences Analyzed in Figures 4 and 5

A. Substitutions

A C G

c 38
G 84 48
T 41 86 35

B. Indels

LENGTH

1 2 3

No. 13 7 1

NOTE.-Since the obtained tree is unrooted, these
events have no time direction.

common ancestor for both bacteria and chloroplasts. This phylogeny is in reasonable
accordance with other investigations of the same sequences (Hori and Osawa 1987).

If approximate rate constancy is assumed, it is likely that the root of this tree is
on the long branch connecting bacteria and chloroplasts with the eukaryotes, a bio-
logically reasonable situation. In all investigations of 5s RNAs by this method, fungi
and animals were more closely related to each other than to plants. There are a few
places where the phylogeny does not match what one would expect. Birds and reptiles
(rather than mammals and reptiles, as is the case in this phylogeny) are normally
assumed to be sister groups, but the lengths of the inner branches separating these
sequences are very short. Within the chloroplasts, dryopteris should have been an
outgroup and spinach and tobacco ought to have been brothers.

Discussion

Aligning n sequences takes n - 1 graph comparisons, when the tree relating the
sequences is given. Nevertheless, the total performance of the new algorithm presented
here is difficult to determine precisely. There are several reasons why exact upper
bounds are hard to define. First, the graph-pruning algorithm consumes negligible
time but probably has a poor worst-case complexity. Second, the sequence graphs
could grow to limiting sizes, but for real data they stay constant in size. For reasonably
homologous sequences, the average time used is probably proportional to the product
of the average sequence length and their number, 1 X n, while the worst-case running
time could be much worse.

The average performance of the algorithm when the tree is not given is also very
good. The number of pairwise comparisons necessary to make the initial tree is probably
o(n2) (a decreasing fraction of the distance matrix is calculated as the number of
sequences increases), but, again, the number of cycles of nearest-neighbor interchanges
necessary is hard to assess. The time consumed for a single sequence comparison
grows slower than s X 1, where s is the distance between the two sequences (or sequence

664 Hein

graphs). So the time consumption probably grows slower than l2 X n2, which is an
enormous increase in speed relative to the original many-sequence comparison al-
gorithm. So it must be concluded that, as a practical algorithm, it performs well and
can handle large data sets in a reasonable time (150 5s RNAs in ~20 min).

Since the method claims to give a complete history of the sequences, it is natural
to ask questions about the reliability of the method. Since the method has removed
much that was arbitrary from previous methods, it should give more-reliable histories.
The picture is probably the same as for other parsimony methods, where reliability
decreases as the branch lengths in the phylogeny get longer.

There exists a series of methods that produce alignments without making explicit
predictions about the history of the sequences, instead of just aligning similar regions
of the sequences (e.g., see Bacon and Anderson 1986; Bain 1986; Johnson and Doolittle
1986; Sobel and Martinez 1986; Waterman 1986). The present method is fully com-
petitive in terms of speed and size of data set it can handle, and the end result is much
more ambitious, in that it gives a complete history of the sequences. However, some
of these methods involve testing whether two (or more) sequences are homologous,
i.e., have evolved from a common ancestor. This is usually taken as being equivalent
to deciding whether the sequences are closer than should be expected if they were two
(or more) “random” sequences. Although the present method does not include such
a feature, it is still possible that it could be helpful in detecting very ancient relationships.
The reason that certain homologous pairs of sequences fail to be detected by homology
tests is that their common ancestor is too far back in time and that they have been
subject to too many events. If the two sequences in question were members of a large
family of known sequences, an obvious approach to this problem would be to recon-
struct ancestral sequences as far back in time as possible and then apply a homology
test to these sequences.

Feng and Doolittle (1987) and Konings et al. (1987) have recently published
algorithms that simultaneously align and reconstruct phylogeny of a set of sequences.
The method described in the present article should have the following advantages
over these methods: First, it is based on a method that does not assume constancy in
evolutionary rates. Second, thanks to the concept of sequence graph, it can consider
many equally good alignments when reconstructing ancestral sequences and thus avoids
an abitrary choice of alignment at this point. Third, it does not start by calculating
all entries in the distance matrix, since this is not necessary, thereby giving it an
advantage in speed. Last, the nature of the approximation to the general parsimony
problem is described in recursions (3) and (4) and thus is very clear.

The following three problems were encountered in the course of devising this
algorithm and writing the program:

1. Given a sequence graph, find an efficient algorithm that finds a minimal
subgraph generating the same set of sequences.

2. Because the method always kept only the most parsimonious sequence sets
when going upward in the tree, how much should this set have to be enlarged to
guarantee finding the minimal alignment, given the phylogeny? Is it possible to combine
with a suitable inequality methods giving close to optimal solutions (Waterman 1983;
Byers and Waterman 1985) to make such an algorithm? Previously it was investigated
how far the pairwise alignments were from being the corresponding marginal align-
ments in the three-sequences case, which is the same problem. How wrong is it to
assume that the three-sequence problem can be reduced to two-sequence problems?
Typically the three-sequence alignment could be deduced from the pairwise sequence

General Parsimony Problem 665

alignments or would be very close. It is not unreasonable to assume that only very
close to minimal ancestors would have to be investigated in order to find the ancestors
that would be minimal for the complete tree. This would allow a decomposition of
Sankoff’s original algorithm to two-sequence (graph) comparisons. It would likely
mean an enormous speedup relative to the original algorithm and give a practical
algorithm, without loss of minimality.

3. The two-sequence graph algorithm could be generalized to k-sequence graph
comparisons (suggested to me by D. Sankoff), which undoubtedly would improve
the result of the method but also would slow it down.

The following extension is being undertaken: Some molecular evolutionists (R.
Garrett, personal communication) contend that, when reconstructing very ancestral
events from ribosomal RNAs, it is essential to introduce a differential weighting to
remove “noise” from highly variable sites. In present methods this must be done by
letting the weighting be in the form of user-specified parameters, thereby introducing
an ad-hoc flavor to the analysis. It should be very easy to introduce an automatic
weighting into the presented algorithm as follows: The sequence (graph) algorithm
can be generalized to include weighting of sites (positions). When the history of a set
of closely related molecules has been reconstructed, it will be known which sites are
rapidly evolving and which are not, and they could be weighted accordingly. This
would both define important regions of the molecules and remove the noise of highly
variable sites. Weighting in the phylogenetic parsimony problem has previously been
undertaken by Far-r-is (1969), Felsenstein (198 1), and Williams and Fitch (1989),
but without simultaneously incorporating alignment.

Acknowledgments

The author had useful discussions or received help with the manuscript from
Russell Doolittle, Joseph Felsenstein, Walter Fitch, Charles Langley, Marcella McClure,
David Sankoff, William Saurin, Jeff Thorne, and Michael Waterman. The author was
supported by System Development Foundation grant GO 15 and NIH grant GM36230.

APPENDIX
Pruning of Sequence Graphs

The sequence graphs constructed will have one difficulty; they are redundant in
the sense that edges and perhaps nodes can be removed without diminishing the set
of generated sequences. This is because different alignments can lead to the same set
of ancestral sequences. To envision, notice that s1 = CCC and s2 = C can be aligned
with a gap of length two either in the beginning or at the end but that both alignments
will have the same set of potential ancestral sequences, namely, C and CCC. Since
the algorithm will eventually choose only one sequence at each node, there is no
reason to postpone the removal of this wasteful representation until the root of the
complete tree has been reached. Not to remove this redundancy is computationally
so wasteful as to render the algorithm useless for large number of sequences.

The following algorithm is introduced to improve on this: In the graph any node
that must be traversed by a path going from source to sink is an articulation point
(Wilson 1985). A subgraph in which the nodes with highest and lowest indices are
articulation points but in which all points between them are not articulation points
is called a pufl See figure 6a. It is not hard to see that any pruning algorithm can
consider each puff separately. So assume that the given graph is a puff and that it
starts at node b and ends at node e. At the beginning, all edges are unlabeled. The
graph is now traversed by a depth-first search. Each time e is reached, a new path

666 Hein

puff 1 puff 2

oA2C 3

-6

C

A

6

G

I
C

0
A

6
G

4

C

1

P

0

0 A 2C

6 6 6

6
T

4

C

2

C

0

A

6

T

5

C

4

C

1

A

0

o A 2C 3

A

1

6

T

5

C

4

C

2

A

0

FIG. 6.-Pruning algorithm. Top, Sequence graph with two puffs on it that can be treated separately
when checking the graph for redundancy. Middle, Another sequence graph, one with the six possible paths
from node 6 to 0. Bottom, Consecutive labeling of the sequence graph as the paths are investigated.

through the graph has been generated, and all possible paths through the graph are
generated by doing this. During this search, edges of the graph will be labeled in the
following manner: Each time a new path is generated it is checked to see whether it
can be embedded in the subgraph with only labeled edges; if not, all its edges are
labeled as well. Embedded means that a path exists in the subgraph of the same length
and that the nucleotide sets associated with corresponding edges are such that each
nucleotide set of the new path is equal to or contained in the nucleotide set of the
path in the subgraph.

For an illustration of this algorithm, see figures 6b-6c. In figure 6b is shown a
sequence graph and the six possible paths in the order in which they are generated by
a depth-first search. The path of length two has its edges labeled, since it is the first
path; so does the second path, since it is the first path of length 3; but the third path
will not, since the corresponding sequence is generated by the subgraph with only
labeled edges. The fourth path will be labeled, since it is the first of length four, but
the last two paths will not be labeled. Thus, in total, two nodes and four edges can be
removed without diminishing the set of generated sequences.

LITERATURE CITED

BACON, D. J., and W. F. ANDERSON. 1986. Multiple sequence alignment. J. Mol. Biol. 91:153-
161.

General Parsimony Problem 667

BAIN, W. 1986. MULTAN: a program to align multiple DNA sequences. Nucleic Acids Res.
14:159-179.

BYERS, T. H., and M. S. WATERMAN. 1985. A dynamic programming algorithm to find all
solutions in a neighborhood of the optimum. Math. Biosci. 77: 179- 188.

FARRIS, J. S. 1969. A successive approximations approach to character weighting. Syst. Zool.
l&374-385.

FELSENSTEIN, J. 198 1. A likelihood approach to character weighting and what it tells us about
parsimony and compatibility. Biol. J. Linnaean Sot. 16: 183- 196.

. 1982. Inferring phylogenies from quantitative data. Q. Rev. Biol. 57:379-404.

. 1989. PHYLIP manual version 3.2. University of California Herbarium, Berkeley.
FENG, D. F., and R. F. DOOLITTLE. 1987. Progressive sequence alignment as a prerequisite to

correct phylogenetic trees. J. Mol. Evol. 25:35 l-36 1.
FICKETT, J. 1984. Fast optimal alignment. Nucleic Acids Res. 12:175-180.
FITCH, W. M. 197 1. Towards defining the course of evolution: minimum change for a specific

tree topology. Syst. Zool. 20:406-4 16.
FOULDS, L. R., and R. L. GRAHAM. 1982. The Steiner problem in phylogeny is NP-complete.

Adv. Appl. Math. 3:43-49.
FREDMAN, M. L. 1984. Algorithms for computing evolutionary similarity measures with length

independent gap penalties. Bull. Math. Biol. 46:545-563.
GOTOH, 0. 198 1. An improved algorithm for matching biological sequences. J. Mol. Biol. 162:

705-708.
HARTIGAN, J. A. 1973. Minimum mutation fits to a given tree. Biometrics 29:53-65.
HEIN, J. J. 1989. A tree reconstruction method that is economical in the number of pairwise

comparisons used. Mol. Biol. Evol. 6:669-684.
. A large version of the small parsimony problem. J. Theor. Biol. (submitted).

HORI, H., and S. OSAWA. 1987. Origin and evolution of organisms as deduced from 5s ribosomal
RNA sequences. Mol. Biol. Evol. 4:445-472.

JOHNSON, M. S., and R. F. DOOLITTLE. 1986. A method for the simultaneous alignment of
three or more amino acid sequences. J. Mol. Evol. 23:267-278.

KONINGS, D. A. M., P. HOGEWEG, and B. HESPER. 1987. Evolution of the primary and secondary
structures of the E la mRNAs of the adenovirus. Mol. Biol. Evol. 4:300-3 14.

NEEDLEMANN, S. B., and C. D. WUNSCH. 1970. A general method applicable to the search for
similarities in the amino acid sequences of two proteins. J. Mol. Biol. 48:444-453.

SANKOFF, D. 1972. Matching sequences under deletion/insertion constraints. Proc. Natl. Acad.
Sci. USA 69:4-6.

. 1975. Minimal mutation trees of sequences. SIAM J. Appl. Math. 78:35-42.
SANKOFF, D., and J. KRUSKAL. 1983. Time warps, string edits and macromolecules: the theory

and practice of sequence comparison. Addison-Wesley,
SANKOFF, D., C. MOREL, and R. J. CEDERGREN. 1973. Evolution of 5s RNA and the non-

randomness of base replacements. Nature New Biol. 245:232-234.
SELLERS, P. 1974. An algorithm for the distance between two finite sequences. J. Combination

Theory 16:253-258.
SMITH, T. F., M. S. WATERMAN, and W. M. FITCH. 198 1. Comparative biosequence metrics.

J. Mol. Evol. l&38-46.
SOBEL, E., and H. MARTINEZ. 1986. A multiple sequence alignment program. Nucleic Acids

Res. 14:363-375.
SWOFFORD, D. L. 1985. Phylogenetic analysis using parsimony: users manual. Illinois Natural

History Survey, Champaign.
UKKONEN, E. 1985. Algorithms for approximate string matching. Inf. Control 64: lOO- 118.
WATERMAN, M. S. 1983. Sequence alignments in the neighborhood of the optimum with general

applications to dynamic programming. Proc. Natl. Acad. Sci. USA 80: 138 l- 1384.
WATERMAN, M. S., T. F. SMITH, and W. A. BEYER. 1976. Some biological sequence metrics.

Adv. Math. 20:367-387.

668 Hein

WATERMAN, M. S. 1986. Multiple sequence alignment by consensus. Nucleic Acids Res. 14:
9095-9 102.

WILLIAMS, P. L., and W. M. FITCH. 1989. Finding the minimal change in a given tree. Pp.
453-470 in H. FERMHOLM, K. BREMER, and H. JORN, eds. The hierarchy of life. Elsevier
Science, Amsterdam.

WILSON, R. B. 1985. An introduction to graph theory. 3d ed. Longman, Essex, England.

WALTER M. FITCH, reviewing editor

Received April 13, 1989; revision received July 14, 1989.

Accepted July 17, 1989.

