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Abstract

We introduce a new, relatively simple, line-breaking construction of the a-stable tree
which realises its random finite-dimensional distributions. This is a direct analogue of Al-
dous’ line-breaking construction of the Brownian continuum random tree, which is based on
an inhomogeneous Poisson process. Here, we replace the deterministic rate function from
the Brownian setting by a random rate process, given by a certain measure-changed (a—1)-
stable subordinator. Rather than attaching uniformly, the line-segments now connect to
locations chosen with probability proportional to the sizes of the jumps of the rate process.

We also give a new proof of an invariance principle originally due to Duquesne, which
states that the family tree of a Bienaymé branching process with critical offspring distri-
bution in the domain of attraction of an a-stable law (for « € (1,2)), conditioned to have
n vertices, converges on rescaling distances appropriately to the a-stable tree. Our proof
makes use of a discrete line-breaking construction of the branching process tree, which we
show converges to our continuous line-breaking construction.

1 Introduction

1.1 The a-stable trees

The a-stable trees are a family of random R-trees which constitute the scaling limits of the
size-conditioned family trees of Bienaymé branching processes whose offspring distribution is
critical and lies in the domain of attraction of an a-stable law, for « € (1,2]. The 2-stable tree
is a (constant multiple of) the Brownian continuum random tree (see Aldous [5l 6l [7]); the rest
of the family was introduced by Duquesne and Le Gall [23, 24], building on earlier work of Le
Gall and Le Jan [35]. The focus of this paper is the case a € (1,2).

Fix a € (1,2) and let L = (Lt)t>0 be a spectrally positive a-stable Lévy process, whose
distribution is specified by its Laplace transform

E [exp(—ALy)] = exp(—tAY), A >0,t>0.

The a-stable tree (Ta, da, 11a) is a random variable taking values in the space of isometry classes
of compact metric measure spaces endowed with the Gromov—Hausdorff-Prokhorov topology.
It is usually defined in a somewhat involved fashion using a normalised excursion @ = (e¢)p<¢<1
of L. Indeed one may derive a continuous process called the height process via

1 t
hy = lim — ]l<<133< inf @T—{—e)ds, 0<t<1,
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where the limit exists in probability. The height process then acts as a contour function for an
R-tree. More precisely, we define a pseudo-metric d2, on [0, 1] via
o _ _ .
do(x,y) = ha + hy 2x/\ygt1£xvy hy
and an equivalence relation by declaring x ~ y if d2(x,y) = 0. Finally, take 7, to be the
quotient space [0,1]/~, which is endowed with the metric d, induced on 7, by d,. Take pq

to be the push-forward of the Lebesgue measure on [0, 1] onto 7,. (See [34, 23, 22] for more
details.)

Write ¢ for a random variable taking values in Ny. Suppose that E[{] = 1 and that
P& >k)~k k), ask— oo,

where ¢ : Rt — RT is a slowly varying function. Then £ is in the domain of attraction of the
a-stable law represented by the random variable Lj. Let &1,&s, ... be ii.d. copies of £&. Then
there exists a non-negative increasing sequence (ay,),>1 which is regularly varying of index 1/«
such that

1 [nt] p
— Y (& —1),t=0]| S c(Lit > 0)

a
™ i=1

in the Skorokhod sense for some ¢ > 0. By replacing a, with ca, for all n, we may assume
without loss of generality that ¢ = 1, and we will work with this specific case throughout.
Note that the Lévy measure of the Lévy process L is given by Caz~ % 'dx,z > 0, where

a(a—1
Ca = F(ia) = FE2—0¢;'

Let T™ be the rooted ordered tree which represents the genealogy of a branching process
with offspring distributed as &, conditioned to have size n. We think of this as a metric space
by endowing its vertices V(T™) with the graph distance, d", and additionally we let u™ be
the uniform probability measure on its vertices. Theorem 3.1 of Duquesne [22] proves the
convergence of the height and contour processes of T to their continuous analogues (see also
Kortchemski [33] for a streamlined proof). The following result is a corollary.

Theorem 1.1. We have

Gn

-1
(V(T"), <n> d’ﬂu“) % (Ta das o)
as n — 00, in the Gromov—Hausdorff—Prokhorov sense.

Haas and Miermont [29] provide an alternative approach to the proof of Theorem in the
case where P (¢ = k) ~ ck~®~! for some constant ¢ > 0 (see their Theorem 8).

Our aims in this paper are twofold. Firstly, we introduce a novel representation of the a-
stable tree using a line-breaking construction. Secondly, we use the representation in order to
provide a new proof of which does not make use of the height process.

1.2 Line-breaking construction

We begin by introducing what we mean by a line-breaking construction. Suppose that (yx)x>1
and (zg)k>1 in R* are sequences such that

1. (yk) is strictly increasing with yi 1 oo;



2. z < yg for all k.

We call (yr) the cut points and (z) the attachment points. Informally, we construct a tree
by cutting the half-line R™ into segments (yg,yr+1] and inductively gluing the open end of
(yk, yk+1] at position z,. Formally, we define a consistent sequence of metrics on (subsets of)
R*: the metric d}, is defined inductively on [0, yx] (with df the trivial metric on {0}) by

dz—l(u7v) u,v S Yk—1
dp(u,v) = dy_q(u, z5—1) + [0 —yp—1| w <yp—1 <wv
|v — ul U,V > Yp_1

for u < v < y. Write (T (k), dy,) for the space ([0,yx],dy). There is a unique metric d° on R
that agrees with df for all k > 1; let (7 ,d) be the completion of the space (RT,d°).

By considering the subspaces [0,¢] C T as t varies over RT, we can think of this metric
space as growing in time: we continuously grow one branch at a time, and at certain discrete
time points (yx) we switch over to a new branch started from an existing point (zy).

Now consider a random increasing cadlag process 7 = (73)¢>0 such that 7 < oo almost surely
for each t > 0 and 7w — oo as t — co. We will construct cut points and attachment points using
7. To begin, conditionally given 7, let (Y;)r>1 be the jump times of an inhomogeneous Poisson
process on R with intensity 7 dt, arranged in increasing order; these will be the cut points for
our tree. To construct the attachment points, we first sample i.i.d. uniform random variables
Ui, Us, ... on [0, 1], independent of everything else so far. Now we may set

Zy =inf{t >0: 7 > Uitc, - }.

(This picks out the time of a jump of 7 in (0, Y)) chosen with probability proportional to its
size. Note that, almost surely, Y}, is not a jump-time of the process 7, and so 7y, = Ty, a.s.)
If the cut and attachment points are generated in this way, we say that (7,d) is generated by
a line-breaking construction with intensity process 7. The case 1, = t, where Z is uniformly
distributed on [0, Y%], is precisely Aldous’ line-breaking construction of the Brownian CRT [5].

We now describe the intensity process 7 that we we will use. First, let (o¢):>0 be an
increasing Lévy process with E [exp(—\a;)] = exp(—taA®~!). Note that this is (a multiple of)
an (o — 1)-stable subordinator. Let p : R — R be the probability density function of the

random variable L;. Then [Corollary 2.2/ below states that the process (M;);>o defined by

¢ _
M; = exp </ O'Sd8> p( Jt), t >0,
0 p(0)

is a mean-1 martingale in the natural filtration of the subordinator. We use it as a Radon—
Nikodym derivative in order to define a new process (0¢)o<s<¢ via change of measure: for any
bounded measurable test-function F : D([0,¢],RT) — R, let

E[F((0s)s<t)] = E[MF((05)s<t)] - (1)

By a standard application of Kolmogorov’s extension theorem, we deduce the existence of a
process ¢ = (0¢)t>0. Moreover, ¢ is an increasing time-homogeneous Markov process (see
[Proposition 2.3| below).

Now consider the R-tree (7,d) arising from the line-breaking construction with intensity
process o. In we give an independent proof of the compactness of (7,d). We will



also want to endow (7,d) with its “uniform” measure. For each k > 1, define a measure

W = %Zle dy, on (T,d). In |Theorem 2.15, we show that uj converges as k — oo to a
limiting measure p on (7, d).

In we give a description of a discrete line-breaking-type construction of a condi-
tioned Bienaymé tree T™. In we then prove a version of [Theorem 1.1| with (7,d, p)

as the limiting space. We may thus identify this limit as the a-stable tree:

Theorem 1.2. We have .
(Ta da /L) = (7:)“ dav ,uoz)-

Along the way, we show that (7 (k))x>1 realises the random finite-dimensional distributions
of the a-stable tree. That is, for each k > 1, T (k) has the same distribution as the subtree of
T spanned by the root and k vertices chosen independently according to the measure p,. (As
shown by Aldous [7], the random finite-dimensional distributions characterise the law of any
continuum random tree.)

As we show in an analogue of the change of measure (1) works for a much broader
class of Lévy process/subordinator pairs. In view of this, we conjecture that our construction
should generalise to other Lévy trees, at least under certain regularity conditions.

1.3 Discussion

Line-breaking constructions of random R-trees date right back to Aldous’ first paper on the
Brownian continuum random tree [5]. That construction was generalised by Aldous and Pit-
man [12] to give the family of inhomogeneous continuum random trees (ICRTs), which were
further studied in [19, 1], 10l 18, [I7]. This family is parametrised by a sequence § = (6;)i>0
such that 6; > 6y > --- >0, >+, 912 = 1 and either 6y # 0 or >_,_, 6; = co. For i > 1, let
E; ~ Exp(6;) and then set -

o0
Tt:93t+29i]l(Ei <t), t>0.
=1

Then use (7¢):>0 as the intensity process in a line-breaking construction. (This succinct formula-
tion, which is due to Blanc-Renaudie [I§], is equivalent to the original formulation of [12].) The
ICRTs were shown by Camarri and Pitman [19] to be the scaling limits of a family of discrete
models called p-trees. We will find it helpful in the sequel to relax the condition ) ;5,607 =1
to the condition ||@||2 < oo, the effect being simply a scaling of all edge-lengths in the tree by
10]]2. Let us write (77, d?, %) for the ICRT with parameter 6. Blanc-Renaudie [I8] proves that
(7?,d?) is a.s. compact if and only if

> 1
/ dt < oo for some R > 0.
r tE[7]

Other line-breaking constructions with general lengths and uniform attachment mechanism
have been studied in [13| 20, 28§].

A first, more complicated, line-breaking construction for the a-stable trees was given by
the first author with Bénédicte Haas in [27] in 2015. This construction is not based on an
inhomogeneous Poisson point process, but rather on an increasing Markov chain, (M)g>1. In
order to describe it, we need first to introduce the two-parameter family of generalised Mittag-
Leffler distributions, ML(6, 8), for 8 € (0,1) and 6§ > —p. If X ~ ML(#, 8) then X takes values



in R™ and has distribution determined by its moments,

ERUNULESON.
L@/B)r@+np)” — ~

The Markov chain (M}),>; has marginal distributions My, ~ ML(1 —1/a,k —1/a) and is most

easily described via its backward transitions, which are such that, for k > 1, My = M1 - By,
where [y is independent of M1 and

E[X"]

ﬂkaeta((kH)aQ 1 >

a—1 Ta-1

These two properties turn out to completely characterise its distribution.
Now let Bs, Bs,... be ii.d. Beta(l,(2 — a)/(a — 1)) random variables, independent of

(Mj)k>1. The line-breaking construction generates an increasing sequence of trees (7 (k))g>1
as we now describe.

Initialise by setting L; = M, and letting 7N’(1) be the tree consisting of a line-segment of
length L; (rooted at one end).

Then, for k > 1, given %(k), at step k+ 1, we attach a line-segment of length (M1 — My,) -
By11 onto T (k) at a point to be determined as follows:

e We choose to attach at a pre-existing branch-point of T(kz) with probability (My— Ly)/Mj,.
Conditionally on being in this case, we pick such a branch-point of degree d > 3 with
probability proportional to d — 1 — a.

e Otherwise, with probability Lj/M}, we attach at a point chosen according to the nor-
malised Lebesgue measure on 7 (k).

(A second version of the construction was also given in [27] but since it does not apparently
reveal any extra information about the stable tree, we do not describe it here. See also Rembart
and Winkel [38] for an alternative perspective.)

In [27], it is proved that (7 (k))r>1 realises the random finite-dimensional distributions of the
stable tree. Therefore, the construction makes manifest the distributions of various distances in
the tree (see Proposition 1.6 of [27] for more details). We are able to recover these facts using
our new construction, although it requires some work, for example:

Proposition 1.3. The first cut time Yy of the line-breaking construction with intensity o is
such that oYy ~ML(1—-1/a,1—1/a).

The proof is long but fairly straightforward, so we defer it to the appendix.

The use of line-breaking constructions has recently acquired new impetus, beginning with
work of Addario-Berry, Blanc-Renaudie, Donderwinkel, Maazoun and Martin [I], who gave
a survey of analogous discrete constructions for uniform random trees with a given degree
sequence. We describe a particular instance of this in detail in below, and with
randomised degrees it will play a key role in our proof of (It has also recently

been used to study various aspects of random trees with given degrees in [16], 2, [3] 4].)

It is possible to consider mixtures of ICRTs by randomising the parameter 6: that is, we
first sample 6 according to some distribution and then, conditionally given 6, we sample an
ICRT with parameter 6. (In this context, we do not wish to constrain ||6]|2 to take the value 1.)
Aldous, Pitman and Miermont [10] conjectured that the Lévy trees of Duquesne and Le Gall [23]



(which include the stable trees) are mixtures of ICRTs. This statement has been proved in the
case of the stable trees by Wang [41]. (We understand that a complete proof in the general case
may appear in a future version of the preprint [16].)

Theorem 1.4 (Wang [41]). Fiz o € (1,2) and let (0;,i > 1) be the ordered sequence of jumps
of the normalised a-stable excursion €. Then

(Tows v, o) = (T©,d®, 1®).

As we show below in [Proposition 5.4} if (A;,¢ > 1) is the ordered sequence of jumps of &
then

(Asyi>1) L (0;,i>1)
and, moreover,
(T¢)e>0 4 Z 0,1 (E; <t) ,
izl >0

where, conditionally on O, E; ~ Exp(©;) independently for all ¢ > 1. So our approach and
Wang’s give two different perspectives on the same construction, although this does not seem
obvious a priori.

2 A line-breaking construction of the a-stable tree

In this section, we first establish the validity of a more general version of the change of measure
. We then prove various properties of ¢ and use them to show that the line-breaking con-
struction with intensity process o yields a compact R-tree. Finally, we study the mass measure
on the tree.

2.1 A measure-changed subordinator

Theorem 2.1. Let a,b > 0, and let v be a measure on R™ such that [, (z A 2?)v(dz) < occ.
Let L = (Lt)i>0 be a spectrally positive Lévy process in R with characteristic exponent

1 R
U () = ail + §b2)\2 — / (e — 1 —idz) v(d),
0
so that E [eM+] = e LN Let (04)¢>0 be a (killed) subordinator, not necessarily defined on
the same probability space, with characteristic exponent

T, (\) =a— b%iX — /Ooo(ei’\x — 1D av(dz) = —i¥, (N).

Assume that
(i) 57 (e =1 —ux)v(dx) < oo holds for all u € R;
(1) Re (¥L(N)) > [N as |A| — oco.

Then Ly has a density p, and the process Mf’a’b = exp(fot osds)p(—o¢)1 (o < 00) is a non-
negative martingale (in the natural filtration associated to o).



The proof of is quite technical, and as such we defer it to the Appendix. For
now, we give an outline of some of the key ideas.

Proof sketch. We will only illustrate the case a = b = 0 as it reduces notation (but exactly the
same argument still works in the general case — we just have more terms to keep track of).
Condition (i) implies that e=¥2() is in L1, so by Fourier inversion L has a density, namely

_ 1 e e
p(x) = 27T/Re e dA.

In what follows we write M; = M}*™" for brevity. Let (F;) be the filtration associated to
o. We will reduce the martingale property to an equivalent statement about (unconditional)
expectations. Let ¢,s > 0 and define 0. = 044, — 05; then ¢’ has the same law as ¢ and is
independent of F;, and we may compute
fs]

E My | i) = M,E [exp < / e dr) p(=01+s)
— M,E [exp </0t(05 o)) dr) w

p(_gs)
So it is equivalent to show that

fS] |

E [exp </Ot(c+ o) dr> p(—c — at)} = p(—c), forall c>0. 2)

The Fourier inversion formula shows that

1

— [ ex d\,
27T R p

where G(\) = icA — ¥ ()\). By condition (i), the characteristic exponent Wy has an analytic
continuation to all of C (obtained simply by replacing A with a complex number in its Lévy—
Khintchine decomposition), and so G has an analytic continuation too. By applying Fourier
inversion to the density in the expectation, and then applying Fubini’s theorem, we obtain

t t
E [exp (/ (c+oy) dr) p(—c— O’t):| 1 / E [exp <i/\0t —i—/ oy dr)] eCUFN=YLN gy
0 21 Jr 0

We can now handle the expectation using Campbell’s formula: indeed, ¢ is a pure jump sub-
ordinator, so we can find a Poisson process on Rt x RT, of intensity ds ® v(dx), such that the
set of atoms IT C RT x R satisfies

> @

(s,x)€ll
s<t

and so we have

E [exp <z’)\at+ /0 toydr)} =E |exp | Y (idz+ (t—s)z)



Then Campbell’s formula yields

Elexp | Y  (idx+(t—s)z) || =exp ( /0 h /0 t(eim(t—s)x—1)dsxy(dx)>

(s,2)€ell
s<t
> iz e’ —1
= exp e —t ) zv(dr)
0 X
= exp </ (e(t-i-i/\)ft _ ei/\x o t.T) V(dx)) 7
0

which we recognise as exp (¥ () — U1 (A —it)). Hence,

t t
E [exp (/ (c+oy) dr> p(—c— o*t)} = 1/ E [exp <i)\at +/ or dr>} N =YL gy
0 21 Jr 0

— % /Rexp (‘I’L(/\) = UL(A—it) +c(t +1iA) — \I]L(/\)) dA

1 . . )
=5 Rexp (cz()\ —it) — V(A — zt)) d\
1 .
=% /. exp(G(A —it)) dA.

Thus it remains only to show that

/ exp(G(A — it)) d\ = / exp(G(A)) d),
R R

and we can do this by a contour integral (using conditions (i) and (ii) to ensure sufficient
decay). O

In our case of interest we have a = b = 0 and v(dz) = Cz~* 1dx. It is easy to compute
Re (¥ (M) = O(JA|*) and so the second condition of [Theorem 2.1 holds, but the first does not;

thus we cannot apply our theorem directly — we instead deduce it by taking limits.

Corollary 2.2. The conclusion of |Theorem 2.1| also holds in the case a = b = 0, v(dx) =

Cox— 1z,

Proof. For each € € (0,1] define a measure v; on (0,00) by ve(dz) = Coz™* te™*" dz. We
apply [Theorem 2.1]in the case a = b = 0,v = v,: let L and o° denote the relevant Lévy process
and subordinator.

First we must check that the two conditions hold. Condition (i) holds straightforwardly by
splitting the integral into (0,1) and [1,00) and using standard estimates. For Condition (ii), we
may compute

Re (¥,-) = Re (- /0 T 1~ ida) Z/E(d:n)>
= /000(1 — cos(A\z))ve(dx)

- ca/ (1= cos(|\|z))z* Le " da.
0



Now a substitution z = |A|u yields that this is equal to
& —a—1 — 2 A 2
Ca\)\\a/ (1 — cos(u))u="te=w /" gy,
0

By monotone convergence, the integral in the above expression converges to a finite quantity
Io = [;°(1—cos(u))u=*" as [A| = oo, and so Re (VU1 (A)) ~ CI4|A|* as |A| = oo. In particular,
Re (Ure) > |A].

Hence, letting p. be the density of L], we see that My = exp(f(;t 0%)pe(—oy) is a martingale
with mean p.(0). As seen in the sketch proof of [Theorem 2.1| it is easier to work with the

condition .
E [exp </ (c+0%) ds) Pe(—c— Uf):| =p(—c) forallec>0,
0

and deduce the analogous statement for o by taking limits. In what follows, we consider ¢ > 0
fixed. To handle the expectation on the left-hand side, it is helpful to consider a coupling of
o¢ and o. Since v. < v with Radon-Nikodym derivative e=¢%” taking values in [0, 1], we can
achieve this by thinning: consider a Poisson process II C R x R x [0, 1] with atoms denoted
by (z,t,u) and intensity measure v ® dt ® du. Then we set

o = E x and of = E x.

(z,s,u)€ll: (z,s,u)€ll:
s<t s<t
uSe*”2

This coupling arranges that o; 1 o for all ¢, almost surely. Thus we have

exp </Ot(c+ o) ds> > exp </Ot(c+ o) ds) as.

Now notice that p. — p uniformly: indeed, for any = € R, we have

pe(e) = pla)| = |5 [ e (exp(=T1. () — exp(- (1) dA'

<1 / ’e_\PLE()‘)—e_'I’L(/\) d,
- 27T R

a bound which does not depend on x. The integrand tends to 0 as € | 0 and, by our calculations
above, is bounded by 2e 9" 1IAZ1) for some § > 0, so by dominated convergence this integral
tends to 0. Hence, we may bound

pe(—c —07) = p(=c = o0)| < Ipe = plloo + |p(—c = 01) = p(—c — 07)],

where we know that the first term tends to 0 as ¢ — 0. Note that —c—o0f — —c—o0; a.s., and p
is continuous at —c — oy, so the second term tends to zero a.s. Hence p.(—c—0§) — p(—c—oy)
a.s. Combining with the convergence of the exponential terms, we see

exp (/Ot(c +o%) ds> pe(—c — oF) — exp (/Ot(c +0y) ds> p—c—o1) as.

The proof will be complete if we can deduce that the corresponding expectations converge.

To do this, we will give a uniform bound on all of the expressions above and apply the
bounded convergence theorem. To this end we introduce a coupling between L® and L: let



pf = v—vF, and observe that yf is a (positive) measure with u(R") < co and [ auf(dz) < co.
We can construct a Lévy process R® independent of L° with characteristic exponent

[e.e] oo .
e ) =i [ )~ [T (e - Du(da),
0 0
and with the property that L® + R® 2. Letting 7 be the law of R, we have

p(z) = /Rpg(x —y)n(dy), for all z € R.

However, R® is the sum of a deterministic drift and a pure jump process, and the intensity
measure of the jump process is u°, which is finite. Hence, 1 has an atom at —a. = — fooo xpe(dr)
of mass at least e #"®")_ It follows that

p(z) > pe(z + aa)e’“s(w).

Using that pf(RT) < p!(RT) for ¢ < 1, we see there is a constant M = e* ®") guch that
pe(—x) < Mp(—x — ac) for all € and all x.

Now by Theorem 14.35 of Sato [39], there exist constants C1,Cy > 0 and f = 2=% such

2c0—2
that
p(—x) ~ Cr2” exp (—C’Qxﬁ) as r — 00, (3)
and so in particular we can find constants 51, 62 > 0 such that
p(—z) < Cpexp (—C~'Qx%) for all x > 0.
Hence, we almost surely have the bound
t
exp [ @+ 05)ds) pu(-a = 0f) < exp (ta + o)) p(-a o)
0
< Mexp (t(a + 07)) p(—a — 0} — ac)
< sup (Me®p(—z — a.))
x>0
< sup (MC~'1 exp (tx — C~'2(:U + ag)ﬁ»
x>0
< sup (Mél exp (tw — 5’2:16%)) ,
x>0
which is a finite constant, so we are done by bounded convergence. O

Recall the definition of the measure-changed subordinator ¢ from .

Proposition 2.3. (d¢):>0 is a time-homogeneous increasing Markov process with law such that
for any suitable test functions F', G and any t1,t2 > 0 we have

E[F(0s,0 < s <t1)G(Gty4r,0 <1 < t39)]

~ t2 ~ / p(_&/tl - O-l,f ) ~ /
=E |F(0s,0 < s <t)exp / (¢, + 0y,)du | ———=—2G(0y, +0,,0 <r <t9)|,
0 P(—Utl)
where o’ is a copy of the subordinator o independent of o.

10



Proof. The increasing property is inherited from that of the subordinator o.

Now fix t1,t2 > 0 and suppose that F and G are suitable test-functions. Let ¢’ be an
independent copy of the subordinator o, which is also independent of o. Then, using the
independence of the increments of o, we have that

E[F (55,0 < 5 < t1)G (G140, 0 < 7 < t2)]

t1+t2 _
=E [exp (/ Uudu) WF(O’S,O < s <t)G(oyr, 0 <1 < tg):|
0 p

—E [exp (/Ot1 audu) p(p_(g;l)F(as,o <s<t)

to _ o
- exp </ (Jtl + 0&)du> wg(% 4 U;,O <r< t2):|
0 p(_ah)

to - |
—E [F(ES,O < s <t)exp (/ Gy, + a;)du> WG@I Yol 0<r< m)] .
0 —0y

It follows that (o4 4,,0 < r < t3) depends on (05,0 < s < ¢;) only through the value of o,
and that its distribution does not depend on ¢;. The result follows. O

We observe that the Radon—-Nikodym derivative is not uniformly integrable: indeed, one
can show that lim;_,o My = 0 a.s. Thus the absolute continuity only holds on compact time
intervals and, in particular, almost sure late-time properties of o do not carry over to . In fact,
we will see in the next section that the asymptotics of o; and oy as t — oo are very different.

2.2 Properties of o,

We aim to show that the line-breaking construction with intensity o; yields a compact R-tree:
to do this it will be important to study the moments. We can compute the Laplace transform:

Proposition 2.4. Define G(z) = [°(e** —1—za)Cox~* 1 dx for Re(z) < 0. Then the Laplace
transform of o; is given by

E {e%t} _ ZW;(O) /R exp (Gliu — \) — Gliu—t — X) + Gliu—t)) du, Re()) > 0.

The proof of this identity is obtained by an adaptation of the proof of given in
the Appendix. The following are useful consequences:

Corollary 2.5. Ast — co we have E [6¢] ~ at* L.

Proof. By differentiating the Laplace transform identity in [Proposition 2.4 at A = 0 (noting
that everything decays rapidly enough for dominated convergence to be valid), we see

o
~ 27p(0)

Recall that G(iu) = —W¥(u). Differentiating the expression for G (again valid because of
suitable decay), we see

E[—5] /R (G (iu — 1) — G (iu)) exp (Glin) du.

G'(iu) — G'(iu —t) = / (1 — e O™ da
0

11



and so

1 Ooem — e O Yex iu)) dx du
B = 55 /R /0 (1= ) Coa® exp(G(iu)) dad

= 1—e Oz </ etV (u) du> dx
/0 ( ) 2mp(0) Jr

_ > _e—tac x—ap(_x) z
- ), amecaigia

Now a substitution of z = ty yields

—aP(=y/t)
p(0) .

and by dominated convergence the integral converges to Cl, fooo(l — e Y)Cqy~“dy. Integration
r2—a) o O
a—1 — =

E 5] = t*1 /000(1 —e Y)Cuy

by parts reveals that this is equal to C,,

Corollary 2.6. Var (6;) = O(t* ') as t — oo.

Proof. Let us write H = H(\, t,u) = G(iu — \) — G(iu —t — \) + G(iu — t). We observe that

H satisfies the PDE
aiH + aiH _ G/( _ t)
7 1 B =1G (iu

0°H .0 (0H
o2 ou\ox )

so in particular we have

Using this, we can calculate

27p(0)E |57 7)“” (exp(H (A, t,u))) du

g
/ ( ) exp(H) du
/

I fexp() du+/ (%f)Qexp(H)du
5 (5

08 8H) exp(H) du

—_— —_— / p—
= 8)\ G (tu — t) exp(H) du,

using integration by parts to obtain the first term in the third line. Expanding and evaluating
at A = 0, we deduce that

E [57] =

%p / G i — 1)(G (i — 1) — G (i) exp(Giu)) du.

12



Noting that G(iu) = =V (u), we further compute that

B (5] = gy L Gl = 0(G u 1) = G da
c? =

_ —Ur(u) (iu—t)x - > wy(,—ty -
27rp /e / (e 1z da:/o e (e Dy *dydu

_ — —ty 1 —Ur(u) ( iu(z+y) —te eluy
27rp / / ) (/Re (e e ) du) dx dy

02 ey — _
= / / W—1) (e " p(—x —y) — p(—y)) dwdy.
Now recall from orollary 2.5 that E [o;] = fo (1 — e )2~ %(—x)dr. Squaring this and
writing it as a dou e integral, we obtain the %ollowmg formula for the variance:

2
Var (0¢) OS / / Ty (1 —e) <p(—y)p(0) — e “p(—z —y)p(0)

—(1- e_m)p(—fv)p(—y)> dx dy.

The term in large brackets can be decomposed into J; + Jo 4+ J3, where

J1 = p(=y)(p(0) — p(—2x)),
Jy = e p(0)(p(—y) — p(—z —y)),
Jz = —e " p(—y)(p(0) — p(—x)).

But all J; can be bounded by z||p||eo||P||s A 2[p||%- As p and p’ are bounded (a result that
can be seen by the Fourier inversion formula) we can thus find constants c1,co > 0 such that
|Ji| < (c1z) A ey for i =1,2,3. Then

Var (5¢) 302 / / WY ((e1) A c2) d dy

B 303 /Oox “((c1) A c2) dwx/oo —eW)d
p(0)* Jo ' ’ 0 v v

The z-integral is finite and independent of ¢, while the y-integral is of order t*~! (as seen in

Corollary 2.5). Thus we have a bound of order t*~1. O

The process ¢ increases only by jumps. For ¢t > 0, write Acy = o+ — ;. The quadratic
variation process (Q¢)r>0 of o is defined to be

Q=Y (AG)?

0<s<t

where the sum is over the (countably many) jumps of & occurring before time t. As @ is
increasing in t, we let Qoo = limy 00 Q; € RT U {00}.

Proposition 2.7. We have

E[QOO]SCQ/OOO

13

_aP(—7)
) dr < 00.



We expect that in fact equality holds for the above, but we only prove an upper bound as
it is sufficient for our purposes. We will make use of the following lemma:

Lemma 2.8. For any t,z > 0 we have

E [p(—gt —x)

g | e

Proof. Using we can calculate

E [exp (/Ot (x4 0s) ds) p(—os — az)]
— exp(tz)E [exp < /0 . ds> p(—os — x)}

= exp(tz)E [exp (/Ot o ds> p;zg)t) p(o)igiz)— :r)]

= exp(tz) p(0)E [W] . O

p(—2)

Proof of [Proposition 2.71. For each h € (0,1), let I}, : [0,00) — R be the unique continuous
function such that I,(6;) = +E [(G4p — 04)% | 0¢] for all t > 0. (Note that this exists by
[Proposition 2.3|) Also set

I(y) = Ca/ :UQ_O‘jrw dr for all y > 0.
0 p(—y)

We begin by showing that

(01 —x)

. ~N > 2—aP — I (7
lﬁﬁ}lh(”t)_c‘”‘/o x o) dx =I(0:) as. (4)

To this end, note that by [Proposition 2.3 we have

h _F,
0,21 exp (h&t + / Usds> w
0 p(—0t)

E[(Grn—6)° | 5] = E

515] ; ()

where o is an (a — 1)-stable subordinator, started from 0, and independent of ;.

For 7 > 0, define the functions f.(z,y) = 22 exp(r:v)p;_&;)x). Then

lg(r)lfT(x’y) = fo(z,y).

Moreover, all of these functions are bounded in both = > 0 and y > 0, uniformly for 0 < r < 1.
Fix € > 0. Now note that the right-hand side of is bounded below by

exp(hay)E [fo(on, o) | o1

and above by
exp(hoy)E [fe(on,0¢) | 04,
whenever h < e.

For r > 0, the (random) function x — f,.(z, ;) is twice continuously differentiable and such
that f.(-,0.) along with its first and second partial derivatives in z are vanishing as = — oc.

14



By Theorem 31.5 of [39], f,(-,0¢) is in the domain of the generator of o, which is the operator

L given by
) = Ca/o fly —z)y~“dy.

Hence,
1 > _ p(_&/t — .’E)
lim —E[f.(on,0¢) | T Ca 227" exp(ra) ———dz.
rl0 h [frlom, o0) | &) = /o p(re) p(—01)
It then follows that
lim inf ~E (G — 00)? | 52 > Ca / b J:Q_xmdx
RO h 0 p(—01)
and
lim sup lIE (Gt — 60)?|5¢] < Ca mf /oo 2 exp(e:c)p(_L::U)d:v
ho h p(—at)

—C / 2 {Ep O-t_):l")d ,

by bounded convergence. The claimed result follows.

Now note that, for each A > 0,

~\2 b1 >
Q= 3 (A5 < [ 1G5

0<s<t

and so by Fubini’s theorem and the tower law,
trr o o~ t ~
EQ: < / E [hE [(Gopn —0s)° | asﬂ ds :/ E [I;(0s)] ds.
0 0

We would like to apply dominated convergence to the double integral fo -] ds; we will justify
this step in a moment. For now, assuming that this application is valid, we obtaln

E(Q] < lin /0 E [1,(5.)] ds = /0 E[1(3)] ds.

Thus by monotone convergence we get E [Qo] < [ E [I(05)] ds, and so it suffices to show that
this integral is finite. This is now a straightforward calculation using

[ [ [ s ]
// ® exp(— )pz(?m))dsdx

1-aP(—2)
—/0 z! 2(0) dx < oo.

We now return to justifying the application of dominated convergence. We show that there
exists some constant M > 0 such that, for all s € R and all h € (0,1), we have I;(ds) <
M exp(os). Note that fg E [exp(ds)] ds < oo: in fact we can calculate it explicitly by analogous
methods to those used in |Proposition 2.4]

15



Using the asymptotic estimate from and the fact that p is strictly positive we see that
there exists a constant R > 0 such that

@

p(—z) < RzPexp(—Chza-1), p(—z) > =2 exp(—Cga:ﬁ) for all x > 0,

where = (2 — a)/(2a — 2).
Hence,
p(=z —y)

< R? forall z,y>0. 6
p(—z) Y )

For any s > 0 and any h € (0, 1), we may use [Proposition 2.3|to obtain

13 = 1B [Gorn — 5. | 5]

-1k [<gg)2exp < /0 " (Fot ol) du) p(j_:)”h)

]

< 4 exp(15)8 |07 exp (o) PP | 6
< exp(@) x 1B | (o) explop) ") | 5.

It now suffices to find a constant M such that
1 p(—z —o0})
b (03 exp(o) PE | <
for all z > 0 and all h € (0,1). We split the left-hand side into the sum
1 p(—z —0}) 1 p(—z —0})
—E |(0})? exp(o},) ~———L21 (o), < R)| + —E |(07)? exp(o)) —— 121 (0}, > R
VB |2 oo "I (o < 1) 4 4B (@ esplon) " (0 > )
and find constants M7, Ms bounding each term.
Using @, we can crudely bound the first term by
1 —x — 0, 1
18 (o1 exp(o) X2 (o], < )| < B x L [(oh)? exp(oit (o < )
p(—x
1
< R?ef x - E [(oh A R)?].
This bound does not depend on z, is finite for each fixed h € (0,1) and is continuous in
h on this interval. Moreover, again using the generator, as h | 0 the bound converges to

R?eR fooo (y A R)?2Coy~%dy, which is also finite. Thus there is some choice of M; such that our
bound is at most M; for all h € (0,1).

For the second term, we can use the asymptotic estimates for p again, this time to obtain
the existence of a constant R such that

y? exp(y)pi(ix ) <R forallz,y>0.
p(=x)
Using this, our second term satisfies the bounds
1 p(—x — o) ~ 1
EE (UZ)zeXp(Ug)Tx)hl (O';L > R) SRX EP (O';L ZR)
~ 1 , e
= Rx 3P (01 > Rh a—l)
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This bound also depends only on h, is finite for each fixed h and is continuous for h € (0, 1).
As h — 0, it converges to a constant (one can calculate this constant by integrating the density
in (14.37) of [39]), and so there exists some My such that the bound is at most My for all
h e (0,1). O

2.3 Compactness of the R-tree

With & constructed we may now consider a random R-tree 7 generated by a line-breaking
construction with intensity process . We already know that 7 is a metric space; we aim to
show that it is also compact. Recall that formally, 7 = (RT,d°): it will be useful to introduce
the notation 7, = ([0, z],d°) for the subtree at time z.

Note that by we have || Eo ﬁdt < oo for all large enough R. This condi-
tion matches that in the compactness conjecture from [I§], and our proof will follow a similar
structure to the proof given there, although we will also require the variance estimate and a few
more auxiliary lemmas.

The first lemma is a variation of Lemma 4.7 in [I§].

Lemma 2.9. Let z < z € RT. Then conditionally given &, the law of d(z,T;) is stochastically
dominated by an exponential random variable of rate 62 /o ,_.

Proof. Recall the notation for cut points Y; and attachment points Z;. We produce a sequence
of points (z;,4i)i>0 € [0,00)? as follows. First, 29 = 2. Having constructed z;, we define an
index k; = max{k : Y < z}, then set y; = Y, and zj41 = Zj,. That is, y; is the start of the
branch containing z;, and 2,41 is the attachment point for this branch (i.e. y;” = 2;41). The
path zg — 21 — ... gives the geodesic from y back to the root, and terminating upon hitting
T, gives the geodesic from y to this subtree.

In particular, defining 7" to be the least integer such that zpy1 < x, the distance d(z, 7;) is

given by
T

d(z,Tz) = Y (2 — max{y;, v})
i=0
(note that the maximum is always y; unless i = T', and when i = T it equals x only if the geodesic
from z to 7, ends at x). Our goal now is to show that the terms in the sum can be stochastically
dominated by i.i.d. exponentials with parameter o, and that T' can be dominated by a geometric
variable with parameter o, /0,_ which is independent of the dominating exponentials.

First of all, note that (z;,y;) forms a Markov chain: indeed given values for (z;,y;) (and
o), the law of (2j+1,9i+1) can be described as follows. First z;4; is sampled according to the
normalisation of do|jg ). Then y; 1 is the rightmost atom to the left of 2; in the Poisson process
of cuts. Running this procedure as i increases only reveals atoms of the Poisson process from
right to left, and so y;41 is conditionally independent of (20, v0), - - ., (zi—1,¥i—1) given (z;, y;)-

We prove the stochastic domination via a coupling: let S C (—o0, 2] be (the atoms of)
a Poisson process of constant intensity o, coupled with the Poisson process of cuts such that
SN (—o0, z| is independent of the cuts, and SN (x, 2] is a subset of {Y; : i > 1}N(x, z]. Fori >0,
let w; be the largest element of S smaller than z;. Let E; be a sequence of i.i.d. exponentials of
rate o, independent of everything else, and set

zi—w;, t<T
€; = .
FE; i>T.
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Observe that e; are all i.i.d. exponentials of rate ¢,, are independent of 7', and almost surely
we have z; — max{y;, z} < e; for all i <T. Thus we have

T
d(Z,E) < Zeiv a.s.
1=0

Hence it remains only to show T is stochastically dominated by a (zero-indexed) geometric
random variable with parameter p = Z=. For each n > 0, let F,, = o((2i,%) : i < n,0) and
observe that T'+1 is an (F,,)-stopping time. Moreover, on the event {T'+1 > n} € F,,, we have

P(T+1<n+1[F) =Pl <a|F)=="—2=

Oyp— Oz

On the complement of this event, the conditional probability is 1, and so we have

P(T+1<n+1|F)>221(T+1>n)+1(T+1<n).
g

z—

More conveniently we can write

Oz

P(T+1>n+1‘]-‘n)§<1—~ )Il(T+1>n),
g

and then the tower law yields

P(TZn‘&)§(1—~0x> P(TgO\&):(l—f’”) , n>0,

Oy

completing the proof. O

The strategy to prove compactness is as follows: we take a sequence x, — oo of times and
consider the trees 7T,,. These are all compact subsets of the final tree 7, and we show that
they form a Cauchy sequence with respect to the Hausdorff distance dyr in 7. The Hausdorff
distance yields a complete metric on compact subsets, and thus 7, — T~ for some compact
Ts C T. We then argue that Too = 7, and thus T is itself a compact space.

To this end, define x,, = inf{t > 0: E 5] > 2"}. The asymptotics for the mean imply that
Yn ~ ¢2™ (@1 for some ¢ > 0. To prove Ty, is a.s. Cauchy we show the following:

Lemma 2.10. Almost surely there exists a (random) ng > 1 such that for all n > ng we have

18 log(xn _

n— — 2n n

du (T,

Proof. A straightforward second-moment argument and Borel-Cantelli reveal that o,, ~ 2"
a.s. Thus we can find a (random) n; > 1 such that

Oy, €109 x2" 1.1 x2"  foralln>n; —1.
In what follows we work with n > n; only. For any t € [0, xn], let E,(t) be the event that
d(t, Ty,_.) > %}X”). By Fubini’s theorem and we have
Xn
a'] :/ P (En(t)|o) dt
0
Xn o 181og(xn
S/ P (EXP (NXn—1> > 8 Og(X ) 5) dt
0 UXn_ 2n

( 1810g(xn)5>2(n_1)
= Xnexp | — :

=
20y, —

E

Xn
/ 1 (E, (1)) dt
0
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Using oy, _, > 0.9 x 271 and Oy, < 1.1 x 2™ and some crude numerical estimates, we see the
above quantity is at most x,, 2. Then by Markov’s inequality, we have

5) <Xt

for all n > ny. Note that Znan X! < oo a.s. and so, by Borel-Cantelli, we almost surely have

Xn
-1
P ( /0 1(E,(8) dt > x;

Xn
/ 1(E,(t)dt < x,;! forall n> ny,
0

where ng is some (random) finite bound. We claim that the estimate on the Hausdorff distance
holds for all such n. Indeed, if it does not hold, then there is some point = € T,, with

d(z, Ty,_,) > %ﬂ(){n) + x,!. But then there is a section of the geodesic path from z to

Ty, of length d(z, Ty, _,) — %H(X”) > x;, ! on which 1 (E,(t)) = 1, contradicting the integral
bound. 0

We can now put everything together:

Theorem 2.11. The R-tree (T, d) built from the line-breaking construction with intensity o is
almost surely compact.

Proof. By [Lemma 2.10| and the observation that > 7, (%ﬂ(){n) + Xﬁl> < 00, we see that

(Ty,.) is almost surely Cauchy with respect to the Hausdorff distance. By completeness, we
deduce that a.s. there exists a compact 7o C 7T such that 7,, — T a.s. in the Hausdorff
metric.

We show that (on the event that 75, exists) Too = T. Suppose not; then there exists some
point & € T \ Too. As T is compact, it is closed in 7 and so x has positive distance from 7.
Let r = d(z, Tss) > 0. It follows that d(x, 7Ty, ) > r for all n. However, observe that

UT.=UT

n>1 t>0

and, by construction of 7, the latter is a dense subset of 7. Thus we may find a sequence
rr € Up>1 Ty, such that d(z,xx) — 0. But for each k there is some n = n(k) such that
xy, € Ty, , and then

d(x7$k) 2 d(l",];(n(k)) >

which is a contradiction. O

2.4 The mass measure

We now seek to equip this compact metric space with a probability measure. For each n, recall
that y, = L 3" | 6y, is the uniform measure on the leaves of T (n) = Ty, . We will construct a

weak limit of (u,) on 7.

For each n, let m, : T — T(n) be the projection map onto 7(n). We are interested in
subsets of 7" which are pre-images under these projection maps.

Lemma 2.12. Let n > 1 and let S C T(n) be measurable. Set S = w;1(S). Then the sequence
(14i(S))i>n converges almost surely to a limit in [0, 1].
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To prove this lemma, we require the following result about time-dependent Pélya urns (part
of which is Theorem 1 of Pemantle [36]). We defer the straightforward proof to the Appendix.

Proposition 2.13. Let Ay, Moy, (my)n>1 be (possibly random) positive real numbers with Ay <
My. Write M, = My + Yy m; for brevity. Conditionally given all of these, let (A;)i>1 be a
Markov process such that

A1

P (Ai = A1 +mi | (A5)o<j<is (Mj)jzo) = v
M, | — A,
P <Ai = Ai ‘ (Aj)o<j<is (Mj)jZO) = ;47_11

Then we can find a random variable X, supported on [0,1], such that the two sequences

Ap #{i<n: A # A1}
<]Wn>n21 and ( n >n21

converge almost surely to X.

Proof of [Lemma 2.13. Take n = ng and pick S C T (ng). Let v be the unique measure on R*
such that v([0,z]) = 7, for all z > 0, and note that we can view this as a measure on 7 such
that v(T(n)) = oy, < oo for each n. Now set

Ai=v(SNT(1) and M, =v(T (i) = oy,

for i > ng, also defining m; = M; — M;_ for i > ng. We note that when going from A; 1 to A;,
the value either stays the same (if Z;_; ¢ S) or increases by m; (if Z;_1 € S), and conditionally
given everything so far, the probability of the latter is % Thus (A;)i>n, and (M;)i>n, form

a time-dependent Pélya urn as in [Proposition 2.13| (up to shifting the indices). It follows that

the sequence
(#{i <n:A;# Az‘—1}>
n>1

n

almost surely converges to a limit X, in [0, 1]. For each fixed n > ng, the numerator is counting
the number of indices ¢ with ng < i < n such that Z;_; € S. For this range of indices we have
Zi1 € Siff Y; € S, and so we can estimate

#li<n: A # A}

n

no

Mn(S)' < P 0.

We deduce that p,(S) — Xoo almost surely. O

Corollary 2.14. Almost surely the following holds: for any function g : T — R which is
bounded and continuous, the sequence (un(g))n>1 converges to a limit in R, where p,(g) =

J79(@) dpn ().

Proof. For each n, the subspace Ty, is compact, hence totally bounded, so we may partition
it into finitely many subsets each with diameter at most 1/n. Write I, I3, ..., I} for this
partition, where N = N(n) is the number of pieces. Without loss of generality we may take
these partitions to be nested, in the following sense: for any n < k, the induced partition of 7 (k)
from that of 7 (n) with pieces (m,;*(I") N T (k))i<n(n) is coarser than the partition (IF);<n -
That is, each piece IF is a subset of some 7,1 (I?) N T (k). Now pick arbitrary elements 2% € I"
for all n and .
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Write J* = m,'(I"), and note that for each fixed n, the sets (J/");<n(,) partition 7. By
[Theorem 2.11] and [Lemma 2.12] the event

G = {7 is compact} N {(pr(J;"))k>1 converges for all pairs (n,7) with i < N(n)}

has probability 1. We show that the conclusion of the theorem holds on this event. Since T is
compact, the Hausdorff distance dp (7,7 (n)) between 7 and 7 (n) is finite and tends to zero
as n — o0o. In particular, we can bound

1
Op = max diam(J) < — + 2du(T,T(n)) — 0.
1<i<N(n)

Write p(J]") = limy_yo0 i (J]"). The first step is to show that, for any bounded continuous

function g, the limit
N(n)

Jim 37 u(T)g(a) = (o)
i=1

exists. We will do this by showing the sequence is Cauchy. Fix any € > 0. Then note that by
compactness of 7T, g is uniformly continuous, so there exists § > 0 such that d(u,v) < § implies
lg(u) —g(v)| < e. Now there exists ng € N such that d,, < ¢ for all n > ng. For any m > n > ny,
we partition [N (m)] into N(n) pieces given by

Fi={je[Nm)]: ) Cm*(I1)NT(m)}, 1<j<N(n).
Now we compute

N(n)

N(m)
Do u(Ig(at) = Y p(JIMg(a)| < pIg (@) = u(IMg ()
Jj=1 i=

=1

where in the penultimate line we have used that both z7' and 27" lie within J;*, which has
diameter at most d,, < 4.

We now prove that for any bounded continuous g, we have p,(g) — p(g), where u(g) is the
limiting value obtained above. For any m > n we may estimate

|l (9) — 1(g)|
N(n) N(n) N(n)

< tm(9) = Y tm )|+ Z [ (T7) = (I g (@) + | D u(Ig(al) = nlg)| -
i=1 =1

(7)
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By writing um,(g) = Zi]i(ln) pm(glyr), we can crudely bound the first term by sup{|g(z) —

g@M)| :x € J" i < N(n)}. Now given € > 0, we proceed as follows. By uniform continuity
of g and the diameter bound on J*, we can find ny such that, whenever n > n;, we have
sup{|g(z) — g(al)| : € J',i < N(n)} < ¢/3. By the convergence to u(g) shown above, we
can also find ny such that, whenever n > ng, the third term in (7)) is at most £/3. Now take
n = n1 V ne. For this choice of n, the second term in tends to 0 as m — 00, so there is some
mg such that the second term is at most £/3 whenever m > mg. Thus, for all m > mgy we have

|em (g) — p(g)| < e, which establishes the required convergence. O

Theorem 2.15. The sequence of measures (fin,)n>1 possesses a weak limit . which is a proba-
bility measure on T .

Proof. Note that the convergence in Theorem occurs for all bounded continuous functions
simultaneously — a much stronger statement than only having almost sure convergence for each
individual bounded continuous function. On this probability 1 event, we can define a map p
from bounded continuous functions on 7 to the reals given by

p(g) = lim pin(g).

n—0o0

This is a positive linear functional and 7T is both locally compact and Hausdorff, so by the
Riesz—Markov representation theorem it is realised by a Borel measure on 7. In a slight abuse
of notation we will also call this measure p. It is easy to see that this measure has mass 1, i.e.
is a probability measure. O

Note that it now follows straightforwardly that

almost surely as k — oo, for the Gromov—Hausdorff-Prokhorov distance.

3 Line-breaking constructions for discrete trees

We begin by introducing the Ulam—Harris notation for rooted ordered trees. Set
[e.e]
u=|Jnm,
n=0

with the convention that N0 = {@}. We write elements of N” as u = uj ... u,, for any n > 1,
and we call n the length of u, for which we write n = |u|. This gives the structure of a rooted
ordered tree: indeed, & is the root and any v = uy ...u, € N” is a child of uy...u,_1.

A (locally finite) rooted ordered tree is a subset T' C U such that

(i) g eT;
(ii) For any v € T (including u = @) there is an integer c¢(u) > 0 such that for all i € N,

wi €T <= i< c(u).
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Let p be a probability measure on Ng = {0,1,2,...}. A Bienaymé tree with offspring
distribution p is a random rooted ordered tree T' C U such that all integers c(u),u € U are i.i.d.
with distribution p. (Note that in this definition we have specified ¢(u) even when v ¢ T —
this makes the definition easier as we do not need to condition on the event that w is a vertex
in the tree.) For ¢ a random variable taking values in Ny, we will often speak of Bienaymé trees
with offspring distribution &: this is shorthand for a Bienaymé tree with offspring distribution
(pk), where p =P (£ = k).

Let T,, denote the set of rooted labelled trees with n vertices. The Bienaymé trees (condi-
tioned on size) will be our primary model for discrete random trees. It will be convenient for

our purposes to think of them as random elements of T,, rather than U; we will explain how to
do this in Subsection [3.2] below.

3.1 Reverse Priifer codes

We now present a bijection between T, and [n]"~!, the space of sequences of length n — 1
taking values in {1,2,...,n}. This is a variant of the classical Priifer code, and will be useful
for constructing random discrete trees. This variant has been studied in [40] and is closely
related to the bijection presented in [IJ.

Given a rooted labelled tree (¢, p), we produce a codeword by ‘revealing’ the tree one edge at
a time. We first reveal the path from the root to the lowest labelled (non-root) vertex, then the
path from this branch to the lowest labelled vertex not already included, and so on. Formally,
set Cp =1 and L1 = min{i > 1:14 # p}. Say the path from p to L; consists of C1 > 2 vertices,

namely p = wy,ws,...,wc,—1 and L; appearing in this order. Now inductively for k > 2, we
take
k—1
Up—1 = U {wcjil, c Wey—1, L;}, Ly =min([n] \ Up_1)
j=1
and consider the path from Uj,_1 to L;: suppose its vertices are we, ,, Wy ;415 -- - Wey,—1, L

in this order (so we, _, € Ux_1). We repeat this until Uy, = [n], i.e. we have exhausted the entire
tree. Note that #U, = C} for each k > 1, and so if we stop after exploring B branches, then
Cp = n. We take as codeword the sequence (w;)i<i<cy—1, which has length n — 1.

We may immediately observe that the multiplicity of a label in the codeword is equal to the
out-degree of the corresponding vertex. In particular, the leaves never appear in the codeword.

We can also reverse this construction — given a codeword (wj;)i<i<p—1, we show how to
produce a corresponding tree. We know w; is the root. We calculate the values of L; and
C; first: we know Cp = 1 and Ly = min{i > 1 : ¢ # w;}. New branches start whenever the
codeword repeats a label or a previously revealed leaf, and so for k > 1,

Cr=min{i > Cr_1+1:w; € {wy,...,wi—1}U{Ly,...,Lr}}

and
k
Ly =mini>1:i¢ U{wcjfl,...,wcj,l,Lj}
j=1
Now given these values, we can form the branches (w¢, _,,...,wc,—1, L) and glue these together

to build a tree.

Write 1, : [n]*~! — T, for this mapping. Note that for any vector d € N? with Yo di =
n — 1, we can consider the set of codewords

Wiha={(wi,...,wy—1) € 0] : #{j:wj =i} =d; for all i € [n]}
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and note that 1w, , bijects to labelled rooted trees with out-degree sequence d (i.e. such that
the vertex with label ¢ has out-degree d;).

We observe that revealing entries in the codeword one at a time gives a way to grow a tree.
This is a deterministic construction, but gives a nice way to grow uniformly random trees with
a given degree sequence using the fact that the entries of a uniform element of W, 4 (or indeed
[n]"~1, corresponding to uniformly random trees with no restrictions on individual degrees)
have a relatively simple law. Here is an explicit description of this growth process: throughout,
we keep track of an ‘active vertex’ where we expand the tree. In the first step, we reveal the
root (whose label is wj) and mark it as the active vertex. At step k& > 2, we reveal the kth
entry wy, in the codeword, and

(i) if this label has not yet appeared in the tree, we add a new vertex labelled wy, connect it
to the active vertex, and make wy the new active vertex;

(ii) if the label has previously appeared in the codeword, we add a new vertex, whose label
is the lowest index not yet present in the tree, connect it to the active vertex, and then
make wy, the new active vertex;

(iii) if the label has previously appeared in the tree but not in the codeword, we add a new
vertex exactly as in case (ii), then make wy the new active vertex.

In this sense, we have a discrete analogue of the line-breaking construction for CRTs: if
we think of repeated labels as rare events, then most of the time we are growing a branch,
occasionally interrupting the process to move to a new position and start growing a new branch.

3.2 Relation to Bienaymé trees

We now consider randomising the degree sequence d, and conditionally given d sampling a
uniform element of W, g4; this will turn out to give a construction of (a labelled, unordered
version of) a Bienaymé tree conditioned to have fixed size n.

Let £ be a random variable taking values in Ny and such that E [¢] = 1; then & is the offspring
distribution of a critical Bienaymé tree. For simplicity we shall assume that ged{k : P ({ = k) >
0} = 1. We consider sampling a random vector D € N with the distribution of n i.i.d. copies
of £ conditioned to have sum n — 1. Now conditionally given D, we sample a uniformly random
w € W, p, and use the bijection v, to map it to a rooted labelled tree (1™, p).

We prefer to work with ordered trees, so we use the following random procedure to convert
our labelled tree into an ordered tree. First, we map the root p to @. Now for any vertex ¢
of T™ that is not a leaf, we identify its children and give them a uniformly random ordering,
independently of everything constructed so far. Finally, we forget our original labelling. We
claim that this gives a conditioned Bienaymé tree with offspring distribution &.

Proposition 3.1. The ordered tree corresponding to (T"™,p) has the law of a Bienaymé tree
with offspring distribution £ conditioned to have n vertices.

Proof. Fix a rooted ordered tree t of size n; we study its probability of arising from our con-
struction. It will be helpful to consider the rooted labelled ordered tree ¢ that arises in the
process just before forgetting the labelling: there are n! possibilities for ¢ that give rise to the
final tree ¢, so we study the probability that ¢ arises instead.

Consider traversing ¢ in lexicographical order: let dy,ds,...,d, be the out-degrees of the
vertices in this order (so, for example, d; is the degree of the root, regardless of the labelling).
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Let o be the permutation of [n] such that, for all 4, the ith vertex in lexicographical order has
label (i) in . We observe that our construction generates ¢ if and only if all three of the
following conditions are satisfied:

(1) The degree sequence D is chosen so that D; = d,-1(; for all 4;
(2) The rooted labelled tree generated by the codeword matches ¢ without its ordering;
(3) The randomly chosen ordering on the labelled tree matches the ordering of .

Condition (1) occurs with probability

n
ITim Pd, _ H?:l Pd;

D, = dafl(n)) = P(Z?:l &=n—1) P(Z?:l §i=n— 1)‘

P (Dy = dy 101y, ---

Given that condition (1) occurs, the codeword is chosen uniformly from a set of size ( d?:;n)’
and exactly one of these codewords produces the correct labelled tree, so we meet condition (2)

n—1

with probability ( dy.. dn)_l. Given that conditions (1) and (2) are met, the ordering matches iff,
for each i, the permutation of children of the vertex with label i matches the ordering in ¢. As
the vertex with label ¢ has d-1(;) children, the probability that all sets of children are correctly

ordered is
1 1

H?:1 da—l(i)! B H?:l ;!
Putting everything together, the probability that we generate ¢ is

H:‘L:l Dd; x < n—1 >_1 v 1 _ HzT’L:I D4,
P(Z?:l 5@ =N — 1) d1 dn H?:l dz' (’I?,— 1)‘P (Z?:l 62 =n — 1),
and this quantity is the same for all £ which produce ¢ upon forgetting the ordering. Thus the
probability of generating t is n! times this, which is

H?:1 Pd;
TPy &=n—1)
By the cycle lemma, the denominator is equal to the probability that a random walk with steps
& — 1 reaches —1 for the first time at time n, which in turn is the probability that a Bienaymé
tree with offspring distribution £ has size n. The numerator is the probability of ¢ arising from
an unconditioned Bienaymé tree, completing the proof. O

Let us return to our picture of growing trees one vertex at a time: instead of revealing the
entire degree sequence in the beginning, we can consider only revealing degrees of vertices the
first time we encounter them. To this end, it is useful to reorder D based on first appearances
of the corresponding labels in the codeword (with all the zero entries appearing at the end, as
there are no leaves in the codeword). Formally, letting M < n — 1 be the number of distinct
entries in the codeword, we define indices Iy, Is, . .., Ip; inductively by I; = 1 and

I = min{i : w; & {wr,,wr,,...,wr, }}.
Then we define an injection 3 : [M] — [n| by (k) = wy, and set

N

E: (Dlaf)%"an) = (Dz(l)v"'7DZ(M)707"'70)'

Note that D has M nonzero entries which are precisely the first M entries of D.

We observe the following property of the reordering D, which we will not prove as it is
straightforward:
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Proposition 3.2. D is a size-biased random reordering of D: that is, conditionally given D,

we have
D,

n—l—zZ lD

]P’(E(l) =o(1),....5(k) = o(k) ) D) ﬁ

i=1
for any k < M.

Propositions and show that, provided we have a way to sample D directly, we can
run the following algorithm to generate an unlabelled, unordered conditioned Bienaymé tree.
(We note that this procedure is also used in [3] to study Bienaymé trees in the case that & has
finite variance.) Once again we keep track of an active vertex, which we will call Vi,. We will
also draw half-edges connected to some of our vertices. Let Hj be the set of half-edges after
the kth step. Most of the interesting behaviour of our algorithm is captured by Vi and Hy,
but for technical reasons we must also consider a set of ‘dormant’ vertices, denoted Zj,. These
correspond to vertices created at the ends of branches, whose labels do not show up in the
codeword. We will arrange that the active vertex is never dormant.

We begin with the root as our only vertex, which is marked as active, and with no half-
edges or dormant vertices. That is, Vo = p, Hy = @ and Zy = @. For k = 1,2, ... the kth step
consists of the following:

e Sample a random element X}, from Hy_1UZ_1 U{Vi_1}, according to the following rules:

1
P(Xk:e):n—k: for all e € Hy,_q,
n—k—#H, 1
P(X,=u)= for all Zh_
(Xk = u) Wkt #zy)  erAluE Ze,
n—k—#H,._
o - - S5 H

(It is easy to see that these quantities sum to 1, so for X} to have a well-defined law we
only need to check that each quantity is non-negative. For this it is sufficient to show
#Hp_1 <n—k, afact we will show later.)

e (Branching event) If X} = e € Hy_ is a half-edge, then we complete this half-edge by
creating a new vertex v and connecting it to e. The previously active vertex Vj_; becomes
dormant, and the new vertex becomes the active vertex, i.e. Vi = v;

e (Growth event) If X} = Vj_1, we sample the next entry of ﬁ, say D;. We will show that
this is always at least 1. Assuming this for now, we add D; — 1 half-edges to V4_1, then

add one full edge by creating a new vertex v. The dormant set is unchanged from step
k—1;

° (Actlvatlon event) If X = u € Z;_; is a dormant vertex, we Sample the next entry of D
say D;. Once again, we assume for now that D; > 1. We add D; — 1 half-edges to u, then
add one full edge by creating a new vertex v. The previously active vertex V;_1 becomes
dormant, u ceases to be dormant and the new vertex v becomes the active vertex.

To motivate the choices for the law of Xj, observe that the process # 7} increases by one in
every branching event and stays constant in growth and activation events. Thus #Z7 is equal
to the number of repeats among the first k£ entries of the codeword, and so n — k + #Z;, is
the number of unused labels in the codeword. Conditionally given that a branching event does
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not occur (and the probability of this is %), any given dormant vertex becomes active

iff the entry in the underlying codeword matches that of the dormant vertex. This codeword
entry is conditionally uniform on the set of unused labels in the codeword so far, and so the

conditional probability is Wl#zk

The following calculation shows both that X has a valid law and that the sampled D; in
any growth event is at least 1: among the first kK — 1 steps of the algorithm, #7;_ 1 of them are
branching events, and the other k — 1 —#Z7;_1 are growth or activation events. Each branching
event removes a half-edge, while each growth or activation event samples the next entry D; of
D and adds D; — 1 half-edges. It follows that #Hy_1 = Z;:ll_#zk‘l(Dj —1)—#Z; 1. In
particular,

k—1—#Zp 1 p
n—k—#Hey n—1-3,, #h1 D
= > O7
n—=k n—=k -

and since k — 1 — #Z,_; is the number of entries of D revealed so far, equality holds iff we have
already revealed all nonzero entries of D. Thus, conditional on the first & — 1 steps, a growth
event at step k has positive probability iff there are still positive entries in D to reveal.

Note that #7;, < k, and so if £ < n the probability of activation events is negligible. In
fact, for m < /n we see that with high probability no activation events occur during the first
m steps of the process. For this reason, it will turn out that we can usually work on the event
that no activation events occur on the time intervals we are interested in.

3.3 Relation to size-biased distributions

In light of the previous section, we seek to understand the law of the size-biased random re-
ordering D. We will show that this vector is related by a measure change to an i.i.d. sequence

& of random variables with the size-biased distribution: that is, £7,&5, ..., &, are ii.d. with law
KP (€ = k)
P =k =——==kP(=k).

We will mostly be interested in the first m entries of these vectors, where m = o(n) as n — occ.
We can only relate the laws on the event {N™ > m}, where N" is the number of non-zero
entries of ﬁ, but in our case this event has probability tending to 1. In what follows, write
=, to denote a sum of n i.i.d. copies of £ (note that this is a sum of non-size-biased offspring
distributions).

Proposition 3.3. For 1 < m < n and any bounded continuous test function f:R™ — R, we
have

E[f(D1,.... Da) L(N" = m)| = E[f(&, . &)OM(E -, )

where O is the function given by

on (ki,y... . km) = ( n Zz_lk)H< n—i+1 )

= — 5 _ i—1
PEi=n-1)  \n-1-yi 1
Proof. By linearity it is enough to consider the case f(z1,...,2m) =1 (21 =71,...,Tm = Tm),
where 71, ...,7, are all at least 1 and sum to at most n — 1. For such a choice of f we have

E f(Dl,,Em)]].(anm)] :P(l/jl :T17‘..’ﬁm:rm>
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and
E[f(& - &n)On (&l &)l = 00 (r, - r) P (&L =115 & =) -

The event A = {f?l =ri,..., Dy = rp} occurs iff there is an m-tuple ¢ = (i1,...,%,,) of
distinct indices in [n] such that

D;, =rpfor1<k<m and X(k)=1i;forl<k<m.

Let us call this event A;. Note that the events (A;) are disjoint, and so P(A) = >, P (4;).
The number of valid index tuples is (n%in)!, and by exchangeability the corresponding events
all have the same probability. Thus we can consider a fixed index tuple i* = (1,2,...,m), and
now P (A) = — P (A;). For brevity, we will write A* = Az«

— (n—m)!
For the event A* to occur, we first require that Dy = rq,..., Dy, = r,, and the remaining

n — m entries sum ton — 1 — Z;n:l rj. This occurs with probability

Conditionally given this, the probability that X(1) = 1,...,X(m) =m is [[}",
[Proposition 3.2 It follows that

B n! PEpm=n—1-=>",71) i e r;
P(A) = P P(S, = 1 : pn'H i—1
(n —m)! En=n—1) el Y=Ly
m m m
P(Epem=n—1=>",7) 1
= H(n —i+1) = = : H(m-pn) H i—1
i=1 P(En=n-1) i=1 i \n—1=3>7r;
PErm=n—1-3" 7)1 n—i+1 e
i g(: —n—l)l =1 =i | 1)
=n = i\ —1—- Zj:l i/ i=1
=05, )P (& =71, 6 =Tm)
completing the proof. O

This result gives us a general strategy to study expectations and probabilities associated to
our discrete line-breaking construction: first, we use the tower law to reduce the problem to
studying a conditional expectation given D. Then we observe that this conditional expectation
is some (deterministic) function of D. Finally, using the measure change, we replace D with
an i.i.d. sequence of size-biased distributions and insert a factor of O], into the expectation.

As an example, consider the length Y7 of the first stick in the construction. (We define the
length of a stick to mean the number of edges it contains). We note that Y* = C; — 1, so in
particular the first stick has length at least k (i.e. it consists of k& + 1 vertices and k edges) iff
the first k steps in the algorithm are all growth events. Conditionally given D, we see

e The first step is a growth event with probability 1;

e Given that the first j — 1 steps are all growth events, we have #H;_1 = Zg;ll(f)l - 1),
S (DimD)

n—j

and so the jth step is also a growth event with probability 1 —
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It follows that i '
. >Ii(Di - 1)
P(Y" >k ) D) = ] === 7
( L= ) ]1;[1 ( n—7j

G=1 (g
Taking any m > k, and setting f(x1,x2,...,Tn) = Hle (1 - W), the measure change

result applied to f implies that

D E{GESY

k
P(Y" > k,N">m)=E H( — )9%(51‘,...7&;;)
j=1

3.4 Heuristics for scaling limits in the a-stable case

In the next section, we will give a full proof of We will sketch a proof here in the
more restrictive setting where P (¢ = k) ~ Ck=~! for some constant C' > 0. Note that then
€* is such that P (£* = k) ~ Ck~®. Following the strategy outlined in the previous section, we
seek limits in distribution for various functions involving £*. Let us begin with the measure
change O = O (&5,...,&),). First we should determine how m should grow with n. We can

study the probability
P (En_m =n-1-) & «s*)
i=1

to get an idea: assuming m < n we know that :"*;:177:% converges in distribution to a

spectrally positive a-stable random variable L, say with density p. (Note that this may not
be quite the same Li defined in — there may be a constant scaling involved. We will
deal with this more precisely later). We may write

)

m
P(En_m:n—1—2;§;
=1

and now, by the local limit theorem, if nl% Yot (& — 1) converges in distribution to some

m

) En-m—n+m 1 . 1
5) _]P)( nl/a T /e Z(Q —1)—m

=1

random variable Z, then the above probability is asymptotic to n='/*p(—Z). Meanwhile the
probability P (Z,, = n — 1) is asymptotic to n~/*p(0), and so the ratio converges to p(—Z)/p(0).

We know that k~a-1 ZZLt:klj (& — 1) converges in distribution as k — oo to o¢, an (a — 1)-

stable subordinator (again possibly scaled by a constant). Thus we should choose m = |tk],
1

where k = k(n) is such that ka—1 = n!/®, That is, k = n'~a, and m = Ltnl_éj. Varying ¢ will

allow us to consider growing trees over time.
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With this choice of m, let us estimate the product in ©7), as

nlié ”17% 11— * -1
“HJ n—i+l :“HJ 1_Zj:11(€j—1)+1
n_1_23.;11§;f n—i+1

i=1 =1

ltnl=a | i1 (ge 1)
> (& —-1)+1
— _ _ Leg=11%g
= exp E log <1 ] )

1
~ew | > G-

/= exp

t
 exp </ osds
0

Putting everything together, we expect that

N—

converges in distribution to o, we then expect the process given by

) tn!= 5 | )
j=1
to converge to the measure-changed version ¢ of o.

Assuming that branching events are rare in the discrete process, the partial sums of D
approximately give the number of free half-edges attached to the subtree already created at
each step of the construction. Near the beginning of the process, the probability of a branching
event is roughly 1/n times this number of free half-edges, and so D is playing an analogous
role to the intensity function in a line-breaking construction. Thus, o acts as the intensity for a
line-breaking construction that ylelds the a-stable tree. Indeed, looking back to our first stick
length example, if we take k = | sn' aJ for some s < ¢, then we see

P (YI” > [snl=a |, N" > Ltnl—éj)
[sn' ]
:]E 1 @ 1 g ey 11
]Hl ( n—y = \ S0 S

and by similar calculations to the ones used for ©},, the product term should converge to
exp(— fos osds). As the © term converges to the measure change, the limit of this expectation
should be E [exp(— fos O ds)], which is exactly the probability that the first stick has length
> s in the line-breaking construction driven by .
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4 Convergence of discrete trees: a new proof of [I'heorem 1.1|

Our goal in this section is to show that the discrete trees introduced in converge
on rescaling to the continuum tree (7,d, ) introduced in thus giving a proof of
Mheorem .11

Recall that we assume the offspring distribution £ is in the domain of attraction of a stable
law of index a. As in the previous section, we let =, = > " | &, where & are i.i.d. copies of
¢. By Theorem 1 of Kortchemski [33], there exists an increasing sequence a,, > 0, regularly
varying of index 1/a, such that 527;” converges in distribution to L, where L is the spectrally
positive a-stable Lévy process, and moreover we have the local limit theorem

k
anIP’(En—n:k)—p<)‘:0,

Qn

lim sup
n—oo keZ

where p is the density of L. We can also obtain a scaling limit for the random walk with jumps
following the size-biased distribution £*. In what follows, let m,, = n/a,.

Proposition 4.1. For any t > 0, we have the convergence in distribution

tmn

- Z 57, _>Ut7

where o is an (o — 1)-stable subordinator with Lévy measure Cox~*dzx, © > 0. (Note that

Co = ?E;:;i s the same constant appearing in the Lévy measure of L. In particular, we have

E [e7] = exp(—taX*!).)

Proof. As £ is in the domain of attraction of an a-stable law, there exists a slowly varying
function {(¢) such that P (£ >¢) = [(¢)t™“ for all ¢ > 0. By the proof used in Theorem 3.8.2
in [25], we also know nP (£ > za,) — [0°Ct™tdt = gfn_o‘ for any fixed . Combining these
results, we deduce that

Cal

an

l(xay) ~

as n — oo with x fixed. Now we may calculate

P (" 2t):t]P’(§2t)+/oo]P’(£2x) dx

and so by Karamata’s integral theorem (Proposition 1.5.10 of [I5]) we have P (" >t) ~

—C ()t~ >, In particular, for fixed z we have

. o _ 1 C _ 1 [ _
]P)(g Z .’I,'(In) ~ ﬁl(xan)(a}an) o+l ~ mfﬁx atl = m/ t adt
n n x

and so, following the proof in Theorem 3.8.2 in [25], we deduce the desired convergence in
distribution. O

We can extend this convergence result to a statement about convergence of cadlag processes:
we may define, for each n, a cadlag process ¢™(t) such that

m
1
a”(t)i— Z (& —1), 0<t<T
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and now 0" - o as elements of the Skorokhod space D(]0,T]). (We could equally have defined
o™ as a sum of £, without subtracting 1 from each, and obtained the same limit, but it is
convenient to include the subtraction as it simplifies calculations in the rest of this section.)
By the Skorokhod representation theorem we may construct ¢” (for all n) and ¢ on a common
probability space such that ¢ — o a.s. (with convergence holding in the Skorokhod J1-metric).
For the rest of this section we will work in this setting. It will be useful to name the relevant
copies (S?’* of the size-biased distribution, so that

1 Lmal

o"(t)=— Y (&7 - 1)

a
=1

The following lemma on N, the number of vertices of out-degree at least 1, will be helpful
when applying the measure change later:

Lemma 4.2. For any T > 0 we have P(N"™ < |[Tmy]) — 0.

Proof. If &1,...,&, are i.i.d. copies of the (non-size-biased) offspring distribution, then N, has
the law of #{i < n :& > 1} conditional on )" ; §& = n — 1. Thus we can crudely estimate

4{i <06 > 1) < |Tma))
Pl &i=n—1)
By construction m,, < n so the numerator decays exponentially in n by e.g. Chernoff bounds

for binomial distributions, while the denominator only decays polynomially. Thus we have a
bound tending to 0. O

P(N" < |Tmp]) < 20

4.1 Convergence of the measure change

The key result in this section follows.
Theorem 4.3. Fiz a finite time horizon T > 0. Set M]* = @Ttan &, .. ’éftmnj) for0<t<T,
and let My = exp(fg osds)p(—oy)/p(0). Then M™ 4 M in the Skorokhod space D([0,T]).

In what follows, and in all subsequent proofs, we will abuse notation and write P (Z,, = Z)
as a shorthand for the random variable ¥,,(Z), where ¥, is the probability mass function of

Zn. We can also view this as the conditional probability P (En =7 ‘ Z ) with =,, taken to be
independent of Z.

Proof. As discussed earlier, we work in the setting that ¢™ and o are defined on a common
space with ¢ — o a.s. Define

M = Oy (67 Em )

we will show that M™ — M a.s. in the Skorokhod metric.
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We begin by handling the product term: we may write

Mn . Mn 11— 7% -1
Ltl—[J n—z—l'—l :Ltl—[J 1_2]‘:11(5]- -1)-1
n—l—Z};ﬁff’* n—i+1

i=1 i=1
[tmn | Zi—l (gn,* N 1) 1
_ _ _ Leg=1t5g
= exp zZ;log<1 e )
Ltmn] [smn ]/ #n,*
o - T —1)—1
= exp (—/ my log (1 — Zj_l (gj ) ) ds)
0 n—[smy]

[tmn ]
mn, n n - 1
= exp (/ my log (1 — aa(s)> ds) .
0 n— smn]

We would like this to converge to exp( fg 05 ds) and so we will prove that the integrand converges
to —os a.s. (again, in the Skorokhod metric). As ¢ — ¢ a.s. in the Skorokhod metric, it is
enough to show that

n " —1 . .
<mn log <1 — aa(s)) + U”(S)) — 0 a.s. in the Skorokhod metric,
s€[0,7

n— |[smy]

which amounts to showing uniform convergence to 0. This is easily shown using a Taylor
expansion and the observation that, for any s, 0™(s) — o5 a.s. and this quantity is at most o7.
Now, as integration is a continuous operation on D([0,7T]), we obtain

t n _ t
—/ my log 1—M d8—>/0'5d8
0 n— [smy] 0

almost surely, again with respect to the metric on D([0,77]). The left-hand side is not quite
of the correct form as the upper limit of integration is slightly wrong (we have ¢ instead of
the correct |tmy]/my), but this is easily remedied by showing that the difference tends to 0

uniformly a.s. — that is,
t n -1
/ mylog (1— 7 ) = 1Y 4o
Ltmp | n— [smy]

mn

sup —0 as.

te[0,7

This is again a straightforward calculation, so we omit it. Now we finish by exponentiating
(again a continuous operation on D([0,T7)).

Now we can handle the ratio of probabilities: writing k& = k(t) = [tm,] for brevity, we
observe that

—_ k *
P (:‘TL—]C =n—1-— Zi:l 51) B a/TLIP (Enfk — (’I’L — k) = _angn(t) — 1)
FE =D aP@E—n=-l)

By a straightforward application of the local limit theorem the denominator (which is non-
random) converges to p(0).

We handle the numerator with another application of the local limit theorem: setting S™ =
suppez [anP (Ep —n =€) — p(£/ay)| — 0, we have

P (B = (1 1) = a0 ()= 1) = 2 (2 ni) - L)

Ap—k Ap—k Anp—k
a a
S n Sn—k? S Sup { n Sn—k‘(t) } ,
ap—k te[0,T] \ On—k(t)
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and similarly

a a 1 a 1 a
(o= ) (- e o) < s {1l
An—k an—k An—k an—k an—k t€[0,7] \ An—k(t)

Hence the processes

(anP (Enpy — (n—k(t)) = —ano™(t) — 1) >

an 1
atsro-a)
An—k(t) Un—k(t) / / yejo,1)

are a.s. uniformly close to each other. Thus it suffices to show the latter converges a.s. to p(—oy),
which is clear by continuity of p. O

te[0,7)

and

Note that E[|MP|] = E[M}] = P (N" > LTnlféJ) 1 = E[|M]], and so by Scheffé’s
lemma we have E UM,’; — Mt” — 0 in the setting that everything is defined on the same space.
R With this convergence es‘fablished, we can study limits of conditional probabilities given
D by replacing the entries D; with i.i.d. entries . In an abuse of notation, we will write
P ( ’ D= 5*) to denote this alternative setting.

The processes t — ai ZZ@{’” D; are obtained as measure changes of ™ by M"™. As we can

construct a common space on which both ¢ — ¢ and M™ — M almost surely, we deduce that
(i Z}Z{l” Dt < T) 4 (0¢,t <T). As the time horizon T" was arbitrary, we can extend this

an

to a convergence result on D([0, 00)):

Corollary 4.4. Asn — oo,

1 [mnt]
— > Dit>0| 5 (G4t >0)
an

=1

for the space of cadlag functions D(]0,00)) endowed with the Skorokhod topology on [0, 00).

4.2 Convergence of random finite-dimensional distributions

Recall that C1,Cs, ... are the positions of repeated entries, i.e. times of branching events (but
not activation events), in the codeword for the discrete construction. We will write CT,C%, ...
for clarity. We also introduce the attachment points J{*, J3, ... defined as follows: if the branch-
ing event at time C]' selects a half-edge with vertex v, then J* is the first time that the label
of v appears in the codeword. We aim to show that, for any k > 1,

1
a—(C?,Cg,...,cg,J?,...,Jg)i(m,yg,...,yk,zl,...,zk)

where Y; are the jump times of a Poisson process of intensity &, and conditionally given o and
(Y1,...,Y%), the random variables (Z1,. .., Z) are independent and Z; has c.d.f. 5;‘/—?7, t€[0,Y;).

Our strategy of proof is similar to that of Section 4 of [3].

As alluded to before, it will be easier to work in the non-measure changed setting — we will
show the following analogous result first:
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Proposition 4.5. Let k > 0 and let t1,...,tx < T be fixed. Define processes Q?’k,Qf for
t€[0,T] by

n

i Jn Jn C con R
v :mn]ID(lgsl,...,kgsk,1§t1,...,k§tk,0£+1:|_tmnj ‘sz* ,

n mp mp mnp

and

t
Qf = 0y_ exp (—/ audu) / T(up <ug < -+ <ug < t)H (au__ /\asi) duy ... duyg,
0 H?:l[()’ti] ; ¢

i=1
with the convention that the product integral in QY is equal to 1. Then Q™" LN Q" in D(]0,T)).

Before we prove this lemma, we give some motivation for choosing this statement to prove.
If ;; < me < ... are the jump times of a Poisson process of intensity o, then we know

U
IP’(m Gdul,...,nkeduk‘a) =1(ug <+ <Uk) Oy, -..0y, €XpP </ err> duy .. .duy.
0

Now adding in attachment points (i, (2, ..., again such that conditionally given o and (7;);>1,
the random variables ({1, (2, ...) are independent and (; has c.d.f. at/an_ﬁ,t € [0,7;), we obtain

P(m € dui,...,m € dug, (1 < s1,..., Gt < Sp—1| 0)

k-1 ur
=1(u <--- <ug)oy, H ((Usi /\au_f> Tus ) exp <—/ oy dr) duy ... dug.
i O'u; 0

=1

Replacing k£ by k + 1, renaming w1 to ¢t and integrating over 0 < u; < t;,1 <1¢ < k yields

P(Tll gtla"wnk’ Stkvnk-‘rl edtaCl Ssla-"vgk < Skz)

t Ous
=dto exp<—/audu>/ T(up < -+ <ug <t) 05, N0y Y duy ... dug,
t 0 ?:1[01751'} H ( ‘ > Ou;

=1 i

which is almost in the form of Q¥ dt, except for the factors of 0y; /0, in the integral. However,

. . oy Oy,
o has countably many discontinuities, and so Hle L

- = 1 Lebesgue-almost everywhere on

Hle[(), t;]. Thus we have exactly
P <ty < tromigr € [t +dt), G < 51,000, G < ) = Q di.
We will need the following analytic lemma in our proof.
Lemma 4.6. Let [, fn, gn, gn be (deterministic) cadlag functions [0,T] — R. Suppose that
(@) supyefo,r) | Fa(t) = Falt)] = 0 as n — oo;
(b) supseio 1) lgn(t) — Gn(t)] — 0 as n — oo;

(¢) There exists a constant C' > 0 such that sup,cp 1 |fn(t)] < C and supyepo,r 19n(t)| < C for
all n sufficiently large.

Then
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1. SUP¢elo,T] ‘fn(t)gn(t) - fn(t)gn(tﬂ — 0 asn — oo;
2. There exists a constant C' > 0 such that all of supycio. 1) [fn(t)], Supseio,r) 19 (t)] and
SUPye(o,7] | fu(H)gn(t)| are at most C".

We do not prove as it is straightforward, but we will make use of it extensively
to prove |Proposition 4.5]

Proof of |Proposition 4.5 We will use the Skorokhod representation again and prove almost
sure convergence in the Skorokhod metric. We introduce auxiliary processes R} ’k, defined
analogously to QF but with o replaced by ¢”. With this we know R™* — Q¥ in the Skorokhod
metric (using the same time change that gives 0™ — o), and so it is enough to show that as

n — oo, the difference between Q" and R}"* tends to 0 uniformly in ¢. We seek to prove this
stronger convergence result by induction on k.

Dealing with activation events precisely requires handling a great number of cases, but we
can exploit the fact that these events are rare in order to effectively ignore them. More precisely,
define an auxiliary process Q?’k by

ok Jn Jn cr o .
v —mnP<1 <81 s, = <ty <y, Oy = [t EMF \ D=¢
n m’n mn mn

where we define the event

E™* = {there are no activation events among the first min{|Tm,|,Cp ,} steps}.

Note that 1 — P (E”k) < % for all n and k, so for all n and all £ we almost surely have
the estimate

_ 2
sup |7 - Q| <0 (m) = o(1).
] n

tel0,T

We deduce that, for any fixed k,

sup ‘Q?k — R?k‘ —0as. <= sup ‘Q?k — R?k‘ — 0 as. .
t€[0,T] t€[0,T]

First consider the case k = 0, so that
01 = maP (CF = [tma ), €™ | D = ).

The event {O = 1} N E™Y occurs if and only if the first I — 1 steps are all growth events and
step [ is a branching event. We know that conditionally given that among the first j — 1 steps
there have been b > 0 branching events and no activation events, at step j we:

j—1—b s
2oy (ET-1)-b,
n—j )

ji—1—b,en,
Yo (€T
n—j+b :

e branch with probability
e grow with probability 1 —

It follows that

P (CF = [tma], €™ ] Dr=¢n) =

n—1i n— |tmy]

Bl <1 g 1>> g -y

=1
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By an argument very similar to the one in [Theorem 4.3] the product is uniformly close to

exp(— fo . In addition, as m,/n =1 / ap we have
Y A
—o'(t—)—0
" n — Ltmnj o' (t-)
uniformly. Both exp(— fo ) and 0" (t—) are uniformly bounded in n (as they have cadlag

limits in the Skorokhod space) so we may apply [Lemma 4.6} m to get uniform closeness of the
products. This establishes almost sure uniform closeness between Q"O and R, hence also
uniform closeness between Q™° and R.

Now assume k£ > 1 and the uniform closeness holds for the (k—1)-dimensional marginals. We
observe that conditionally given D = ¢*, all of (C7, ... ,CroJr, ..., J0 ) and that E*~1 holds,
the random variables J;' and C}!, | are independent. Letting F7' be the o-algebra associated to
this conditioning, the conditional c.d.f. of J is

—1-B(r *
S PE -1 - B
Cr—k * ’
Yk G =) = (k-1)
where B(r) = B! ,(r) =#{1 <i <k—1:J <r} (note in particular that B(C}! —1) = k—1).
We would like to say that this probability only depends on JF}' through C}', but this is not
quite true due to the appearance of B(r), a random function defined in terms of Jp,...,J}" ;.

However, as 0 < B(r) < k — 1 for all r in the relevant range, we can essentially ignore it: more
precisely, we have estimates

SINET -1 (k-1 Dy (& 1)
Cr =k nx C n,*
2t (T 1) = (k1) ST 1) = (k= 1)
which depend on F}! only through C}'. Thus for any nontrivial F}'-measurable event A with,
say, A C {C}! =1}, we have the almost sure bounds

r—k/enx - o r=Lleens
A Ut O DD /= il I
2T -1 —(k—1) > i1 (51 -1)—(k-1)

Importantly, this is true only for 0 < r <[ —1; if [ < r then the probability is trivially equal to
1.

P(Jggr’fg): 0<r<Cl—1

<IP’(Jk <r’]-_")

Similarly, we can handle C’, | conditionally given F}'. Conditionally given that £™ +=1 holds,
we know that

Ct.y =1 and £™F holds <=
steps Cj' +1,...,r — 1 are all growth events and step r is a branching event.
This occurs with probability

r—1 i—1-k/ enx 7‘.717’{ o _ _
p(c}gﬂ — oy, EMk ‘ ]_-]qcz) _ H (1 B 2-1 (& 1)) " dic (& 1) k:?

n—1+k n—r
i=Cp+1 +

which depends on F}' only through C}'. Thus for any F}'-measurable event A C {C}} = [} we
have

P(Cityy =r, " | A) =

n—i+k n—r

ﬁ <1 Y 1)) o et

i=l+1
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We are now ready to prove the convergence of @”’k: we will give almost sure upper and lower

bounds for @Q™* which are both uniformly close to R™*. In what follows, it will be helpful to
abbreviate

Jy iy Cy Criq
Ak—lZ{ml<817---, < spo1, —= <ty .., <tg_1¢,

n mp n mp,

nkl

so that for example Q" myP (Ak_l, Cn = [tm,],EMF L | D= 5*). To prove the upper

bound, note
Qi = maP (Aio, Ji < Lswma, CF < [tima ), Gy = [tmn ] € | D = ¢7)

[tkmn ]

=mpy Z P (Ak_l,C,? =1, J < [semnl, Cpyq = Ltan,gn’k ‘ D= 5*)

[tmn ]
—mn > P (A1, O =1EM | D =¢)
=0
xP(J,;LgLskan,C;;H [t )., & ’Ak LCP =1, D = g)
[tkmn]

Z Qe (U7 < Lsma) Oy = Lim,) €74 | Ay, O = Le™ D = &)
Mn n,k—1 Spmn |—1

< thJQl/m" ( ZJL ol & -1 /\1>

T me \ XA - - (k-1

S (SR m S ) -k
n—i+k n— [tmy,]

i=l+1
At this point it is helpful to rewrite these in terms of the discrete processes ¢”(t): we have
~ ik
Q/
tkmn k-1 tmn|—1 i—1
B S AU AN | (e () ) ot~ e
- O-n( )

R L=ky _ ma(k=1) il (n—i+k)m, 1 — ltmn]
n [tmn]—1 n (i=1
[ sm ) (o) Y ity
, v o (u — min) o mn(s—l) i Lamn 41 (n—1i+k)m, my,
+ o(1).

where the o(1) term is a.s. uniform in £. We now aim to estimate the integrand for each u € [0, tx].
We know that, almost surely,

(a) Q"' is uniformly close to Ra*™! (by hypothesis);

(b o"(sp—1/my)

o (u—)Ao"(si) .
o (u—k my)— "=

A1 is uniformly close to o T

(c) HZUT?’Z#;H n) is uniformly close to exp (— fi o™(r) dr), by imitating the
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(d) o™(t —1/my,) is uniformly close to " (t—).

In addition, all of these estimates are uniform in u € [0, tx]. The right-hand side of each estimate
is uniformly bounded in n (as they converge in the Skorokhod metric). Thus by iteratively
applying we see that the integrand of our estimate on Q} * s uniformly close to

s szk—l"n(ugg(gf; ) cxp <— /u on(r) dr) o (t-),

and moreover this is uniform in v € [0,¢x]. Using the uniformity in v we may integrate to see
that our integral bound on Q?’k is uniformly (in t) close to

tL N, __ n t
t / Rﬂ’k_la (u=) A o"(sk) exp (—/ o™(r) dr) o"(t—)du = R?’k.
0 u

o™ (u—)

Thus for all € > 0 there is almost surely an N such that for all ¢ € [0,T] we have QI"" < RI"" +¢

whenever n > N. The lower bound is completely analogous, and so Q?’k is uniformly close to
n,k .
R,"", completing the proof. O

By integrating the processes in [Proposition 4.5|from 0 to t;1 and shifting & we deduce that

Cn mn Jn Jn_ .
]P’(létl,--wkétk,lésl,---, Pl <y ’ D=¢

mnp mpy mnp mp

d
%P(nlgtla”'unkgtk)gl§817"‘7Ck—1§8k—1 ‘ U)a

where 7; are the atoms of a Poisson process with intensity ¢ and (; are the attachment points
defined conditionally given o and 7 as before. Now we can introduce the measure change to
recover the law of the true rescaled branch times: note that

oy i JT Jiq
Pl—<t1,...,— <tg,— <51,..., < Sp—1,Np > | Tmy, |
mn mn mn mn
—E|P g<151 —’?<t £<31 ]?_1<s ‘i):g* n (&)
my, ST S k,mn_ e T S k—1 | Tmn |

t _
—E {P (771 <ty <t G < sty Gt < Skt ‘ U) exp (/ Usd8> p;((gf)t)}
0

:E[P<771§t1,---,77kﬁtk£1Ssl,---,Ckfl§3k71 ‘ UZEH
=P(Y1 <t1,.... Ve <tg, Z1 <815, Zp1 < Sp1)

where in the third line we have used the Skorokhod representation and the fact that the measure
change converges in L' in this setting. Thus we have the following convergence in distribution:

Theorem 4.7. Let C7',C3,... be the times of repeats in the codeword used to generate a
Bienaymé tree conditioned to have n vertices, and Ji', J3, ... the first occurrence times of these
repeats. Let Y1,Ys,... be the jump times of a Poisson process of intensity o, where ¢ is the
process introduced in[Section 1), and let Z1, Zs, ... be the corresponding attachment points. Then

1
— (OO TR LT ) S (Y, Y 2 Zae).

n
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Proof. We have already shown that, for ¢1,...,t, < T,

cr cr J1 Sy
P<1§t17"'7kSt’wlSSl)"') k1§5k717NnZ£Tan

mn mn n mn

=P <ty,.... Ve <y, Z1 <s1,..., Zp—1 < 5—1)

and so it is enough to remove the N™ > |T'm,| from the left-hand side (as then we have
pointwise convergence of distribution functions). But we can do this since P (N" < |T'm,,|) — 0

by [Lemma 4.2 s

4.3 Gromov—Hausdorff-Prokhorov convergence of the trees

We begin by converting the convergence in into a statement about convergence
of subtrees. We can do this as follows: let T™ be the discrete rooted labelled tree of size n as
constructed from the algorithm in and let T"(k) be the subtree spanned by the root
and vertices labelled 1,2,...,k. On the event that labels 1,2, ...,k do not appear in the code-
word before time C}' (which we can show occurs with probability tending to 1), 7" (k) precisely
matches the tree constructed after time C7' — 1. Recall that d" denotes the graph distance on
V(T"™). The R-tree corresponding to the rescaled discrete tree (V (17 (k)), andn\T"(k))a is a.s.
isometric to the R-tree obtained from a line-breaking construction with cut times

1 )
y?:mfn(cf—l), 1<i<k
and attachment times ]
Z?:min(t]i”—l), 1<i<k-1

taken at time y'. We endow (V (7™ (k)), %ndn’Tn(k)) with the empirical measure ! = + Zle i
on the vertices labelled 1,2,...,k.

Analogously, we can consider the tree T constructed from the procedure in and
recall that 7 (k) = Ty, is the subtree obtained by terminating the process at time Y;. Recall

also that ui = %Zle dy, and that, from , that we have

(T(k)’ d|T(k) ) Mk) - (T7 d, /‘L)

almost surely as k — oo.

For each fixed k, we have that
d
Wy 2 2ie1) = Yoo Y, 2, Zg)

and it follows straightforwardly that

n

(V). Pl ) (TRl ) )

for the Gromov—Hausdorff-Prokhorov distance. In other words, the random finite-dimensional
distributions converge.

In order to complete the proof of Theorem we need a tightness argument to deduce that

(V(T™),d"™/my, u™) 4 (T,d,p) in the Gromov-Hausdorff-Prokhorov sense. We follow closely
the strategy deployed by Haas and Miermont in Sections 4.3 and 4.4 of [29]. That paper proves a
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collection of scaling limit theorems for Markov branching trees, a family of models which includes
conditioned Galton-Watson trees. Indeed, Theorem 8 (Case 2) of [29] is a version of
restricted to the special case of offspring distributions satisfying P (¢ = k) ~ ck=* ! as k — oo
for some ¢ > 0. Haas and Miermont’s method for showing convergence of the random finite-
dimensional distributions makes use of the theory of fragmentation processes, and is completely
different to ours. Their tightness proof, however, adapts well to our situation. Since we wish
this paper to be self-contained, we reprove various estimates used in [29] via our line-breaking
approach rather than appealing to the fragmentation perspective.

As argued in Section 4.4 of [29], by Proposition 2.4 of [26], the convergence in distribution

(V(Tm™),d"”/my) 4 (T,d) in the Gromov-Hausdorff sense entails that (V(T™),d"/mpy, itn) is a
relatively compact sequence in the Gromov—Hausdorff-Prokhorov sense. Therefore, it suffices
to identify any subsequential limit as (7, d, x). But this then follows from the convergence of
the random finite-dimensional distributions @ Therefore, in what follows we may ignore the
measures and just prove tightness for the Gromov-Hausdorff distance.

In this subsection, let us abuse notation and write 7" (k) in place of (V(T™),d" |y (rnk)))
and T in place of (V(T™),d"™). By the principle of accompanying laws (see e.g. Theorem 3.2
of [I4]), it is enough to show

lim limsup P (dgu(T"(k),T") > emy) =0

k—oo pn—co
for any € > 0. Note that 7" \ T™(k) is a forest: indeed, conditionally on the number of vertices
in 7" (k) and the number of edges from 7" (k) to its complement, it is a forest of i.i.d. Bienaymé
trees conditioned on its total size and number of trees. Moreover, dg (177 (k),T") is at most
the maximum height of any individual tree in this forest. Write F{*(k), F53'(k), ... for the sizes
of the trees in the forest, and write H(m) for the height of a Bienaymé tree with the same
offspring distribution conditioned to have size m. Then

P (dau (T"(k), T") > emy) <E | Y P(H(F(k)) > emn| F'(k)) | - (10)
i>1

We adapt Lemma 33 of [29] to prove the following.

Lemma 4.8. For each q > 0, there exists a universal constant My > 0 such that

M,
P(H(n) > xmy,) < —qq
x

for all x >0 and alln > 1.

Proof. Lemma 33 of [29] makes use of a hypothesis (H'), which Haas and Miermont only prove
holds in the restricted case P (¢ = k) ~ ck~* 1 as k — oo for some ¢ > 0. However, all that is
really needed in the proof is that for fixed ~,

Dl A Y
lim inf m,E |1 - <> >0, (11)

n—o00 - n
=1

where Aj, As, ... are the sizes of the subtrees of the children of the root. We will give a crude
bounding argument to show that this condition also holds in our case. Writing 5 =~ —1> 0,

we observe that R
D1 ﬁ
AN A
mnE 1—Z<n) > m,E 1—<n*>

=1

)
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where A, is a size-biased pick from (A;). Letting Fy, F5,... be ii.d. random variables having
the same distribution as the size of an unconditioned Bienaymé tree, and setting S, = =, — n,
where (Z;,),>1 is the random walk with increments £ as before, we see that the right-hand side
of the above is

n—1n—1 -\ B . . .
J - j P(Fi=j)P(Fi+--+Fp1=n—1—j)
mnzz_:<1_<n> )P@d)‘d'n—l : IP’(F1+~-—|—Fd=71L—1)
n—1ln—1 -\ B
J (d=1DPE=d)P(S; =-1)P(Sh-1-j = —(d—1))
:ng:Z(l_(n) ) n—1-—j P (Sp—1 = —d) ’

using the cycle lemma. For the sake of obtaining a lower bound, we may restrict our attention

A\ B
to j € [3, %"] and d € [an,2a,|. Here, the term 1 — (%) is uniformly bounded away from

0, and n — 1 — j = O(n), so for sufficiently large n we have that is bounded below by a
constant multiple of

2n/3 2an

B(S; = ~1)P(Sua s = —(d- 1)
mz/gdz e P (St — —d)
—m, Y LE [(s—np(sj — e e e 0, < <20,

J

_ My Gp—1 a;iP(S;=—-1)an1-jP(Sp_1-;=—(£—-1)]§)
=3 g (- S T <€ <200

a;P(S; = 1) an—1—jP (Sp—1—j =—(—-1) | §)
ap—1P (Sn—l = _g | f)

1(an <€ 2an)} :

For any fixed § > 0, three applications of the local limit theorem yield that for sufficently large
n, is bounded below by

(v(0) - ) (v ( el

Q(l)ZﬂE (€ —1) )_5>]1(an<§<2an)
j nan p( )-1-5 -

an—1

As (a,) is regularly varying, we can find a constant R such that a, 1—; > % whenever n is

sufficiently large and j 6 (5 2”] For such n, we observe that on the event a,, < ¢ < 2a,, we have
=L < [0,2R] and —— € [0,2R]. Thus taking § < inf,¢g2r) p(—7), we obtain the existence

An—1—j

of a constant n > 0 such that

() - 9) (p (;52) - 9) -
p(an 1> +0

whenever a,, < £ < 2a,. Thus we obtain that is bounded below by

2n/3 2n/3
Q1) Y TEE[E - Dl (an < § < 2a,)] = L) Y TP (a0 < € < 20,)
j=n/3 " j=n/3

= Q1) x m,P <ai e [1,2]) .
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By standard theory of Lévy processes we know m,,P <£ €1, 2]) — vq([1,2]), where v, is the
Lévy measure of the a-stable Lévy process L. In particular, our lower bound has a strictly
positive limit.

The proof now follows as in Lemma 33 of [29]. We provide a sketch of the argument here:

first, without loss of generality we can focus on large values of ¢, specifically ¢ > -%5. Pick

some € > 0 such that v := q(O‘T_1 —¢) > 1. Now we can find a new sequence m,, ~ m,, such
that

E\l A Y - ,',";;L k; %75
myE 1—Z<Z> > M for alln and ~k§<> forall<k<n,n>N

—~\n My, n

for some fixed N. Now pick M, large enough that the following hold:
o (1 —u)"9<1+2qu for all u € [0, My ];
o M, > (2q/M)%;
e M, >E[H(n)]/mi for alln < N.

We prove the result via a double induction: we prove the main result by induction on n, and
to prove the result for a given n, we prove by induction on ¢ > 1 that

Y, :
P(H(n) < xzmy,) >1——2 for all x € <0, ~Z> .
x4 My,

Markov’s inequality handles the case n < N (for all i), and the right-hand side is negative for

small enough values of x (and i), so we only need to consider n > N,z > Mq1 /4. Since H (n) is
1 plus the maximum height across all subtrees rooted at children of the root,

Dy
P(H(n) < zimn) =E |[[P (H(A) < @ity — 1 | A;)
=1
Dy A N
q''"A;
-E N (1 - (ml)>
_z':l
[ 51 ~4q
Mymy,
>E 1_;(xmn—1)q

Note that the first inequality is valid by our inductive hypotheses: on the event that (A;) is a
non-trivial partition, we can use the inductive hypothesis for n, and on the event that it is the
trivial partition, we can use that xm,, —1 < i— 1, so the inductive hypothesis for ¢ is valid. Now

we can use the bounds — ! < (1 + %) (valid as x > Mql/q) and (%)q < <ﬂ>7

xmp—1)7 — (zmy)? n

(valid as n > N). Some further algebra implies the required bound.

We continue to proceed exactly as in [29]. Note that since (my,),>1 is regularly varying of

index 1 — 1/, we have that (mia/ (a_l)n_l)nzl is regularly varying of index 1 and so we can

find a constant C' such that
mia/(a_l)k:_l B C\/E
m%a/(a—l)n—1 - n

43



for all 1 < k£ < n. Combining and Lemma and taking ¢ = 2a/(a — 1), we obtain that
for any n and k,

m n Mq mFZn(k) 20‘/(&_1)
P (don (T"(k), T") > emn) < — 2K | S <mn>

misle /R (k)

M, F (k)
<GB

T et = n- |77 (k)| n
F'rl
< R(e)E *Tfk) ,

where R(e) is a constant depending only on € and F}'(k) is a size-biased pick from the sizes
(F{'(k), F3(k),...) of the trees in T™ \ T" (k). The key result to prove is the following:

Proposition 4.9. For each fized k, we have F]'(k)/n LN F.(k) as n — oo, where Fy(k) ~
Beta(l — 1/a, k) and so, in particular, Fi(k) 40 as k — oo.

Before we prove this proposition, we note that it is sufficient to deduce the desired tightness,
as we have

lim limsup P (dgy (T"(k),T") > emy) < R(e) lim limsup E [ F*”(/f)/n}

k—0c0 n—oo k—00 n—oo
= R(e) lim E[ F*(k)] = 0.
k—o0

Proof of [Proposition 4.9 In what follows, let L = |T"(k)| be the number of vertices in T"(k),
and let N be the number of edges from 7™ (k) to T™ \ T™(k). One can show that conditionally
given L and N, the forest 7" \ T"(k) has the law of N ii.d. Bienaymé trees (with offspring
distribution &) conditioned to have total size n — L.

We study the conditional probabilities P (Ff(k) > |an] ‘ L,N ) for fixed > 0. This prob-
ability is zero whenever x > 1, so we can consider x € (0,1). Let Fy, F5,... be ii.d. random
variables, also independent of L and N, distributed as the size of an unconditioned Bienaymé
tree with offspring distribution £&. Then

, L NE(Fi=j | LN)P(Fat + Fy=n—L—j|LN)
P (F/'(k) > |an] | L,N) =) 2 P(Fi+-+Fy=n—L|LN)
j=Lan] ’

Taking S, = =, — n as before, independently of L and N, we know by the cycle lemma that,
for any fixed a,b > 1,

a
P(F1+---+Fa:b):EP(Sb:—a).
Using this, we have

: n PS:—I]P’F%-‘FFf:”_L_J L,N
P ]
j=lan) " ’
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We now wish to apply local limit theorems to this expression. We already have a local limit for
(Syn), namely

anP (S =1) = p (7’) +o(1)

Qn
as n — oo, uniformly in 7, but by Theorem 4.2.1 of [31] we also have a local limit for sums

of F;: specifically, we can find a sequence b,, such that FlerinJrF” converges in distribution to a
(1/a)-stable subordinator at time 1. Letting ¢ be the density of this limit law, we have

bn]P’(F1+---+Fn:r):q<b2> +o(1)

as n — 0o, again uniformly in r. We note that b, is regularly varying of index «, and we may
further choose the sequence so that b|,,| ~n asn — oo.

Guided by our limits, we write the conditional probability in the more suggestive format

l i CLn—L' n aJP(Sj:_]‘)bN*I]P)(Fl_F+FN71:H—L—‘]‘L’N)
<o) a; bn-1 an—r1P (Sn—L = —_N ’ L, N)

which, via the substitution j = |un], can in turn be expressed as the integral fxl I}}(u) du, where

Ap—1, . n a[unJP(SLunJ :—1)-bN,1IP’(F1+...FN,1:n—LunJ—L ‘ L,N)
Alun| bN-1 an—rP (Sp—r,=—N | L,N) '

Ty (u) =

We seek a pointwise limit for I;'. Let Yj be the time of the kth cut in the continuous line-
breaking construction. Then we know that

N 4 L

— E) 0y, and —_— ﬂ) Yk

Qanp mny
as n — oo (with k fixed), and these convergences hold jointly. Let us work on a probability
space where these convergences hold almost surely. Then, almost surely, for all u € (z,1) the
following hold:

e LKnasn —>o00,so0n— L ~n. Thusﬁ—)u‘l;

e Since the numerator and denominator of ﬁ both tend to +oo and (ay,) is regularly
varying of index 1/« it follows that ZT—_LJ — u Ve,

un

an

Nf
and so

— (y,)"!. As (b,) is regularly varying of index « it follows that f};—fi — (oy,)"%,

n
by 1

also converges to (oy, ) ™.

e By the local limit results for X and F', the fraction converges to

p(0) - ¢ (A —u)/(0y;))

p(_gyk)

Combining everything, we obtain the pointwise limit

lim I () = w4 @y, =22 <1~3u> = Li(u)-

45



By studying the above estimates more closely, we see that there exist constants R = R(z) <
=%+ 100 and ng € N such that for all n > ng and all u € (z,1) we have I}'(u) < R-Zy(u). In
particular, if we can show that fml Tk (u)du < 0o almost surely, then by dominated convergence
it will follow that

1
P (F(k) > |an] | L,N) —>/ T (u) du. (12)

To estimate Zj(u) we can use the duality relation (14.41) in [39] between p and ¢: we see that

. __ v
1 P(0) p( <1u>é)

T (u) :u_é(l—u)_ a0y, =5y )

, u€[x,1)

and as u — 1 we have Z(u) — 0 almost surely (to see this use the stretched exponential decay
estimate (3|) for p). Thus Zj is the restriction to [z, 1) of a continuous function on [z, 1] and so
is bounded. We deduce that holds. Now we can use the bounded convergence theorem to
eliminate the conditioning, and obtain

P (F™ (k) > anJHE[/xlzk(u)du} :/ZlIE[Ik(u)] du, z€(0,1).

By monotone convergence we also have folJE [Zr(u)] du < 1, and so we may define a right-
continuous non-increasing function Gy : R — [0, 1] by

1 t<0
Gr(t) =1 ['E[Zp(w)] du 0<t<1
0 t>1.

It follows that we can construct a random variable Fi (k) with c.d.f. 1 — Gj. We have

lim P (F['(k) > |2n|) = Gi(z) (13)

n—o0

for all x # 0. If Gx(0) = 1 then the convergence also holds for # = 0; if not, then Gy is
d

discontinuous at 0. It follows that 1| holds at all continuity points of Gy, and so F'(k) —
We now show that F,(k) ~ Beta(l —1/a, k). If this is the case then
1-1/a

BRG] = 17

as k — oo, and it follows immediately that Fy (k) 40 as k — oco.

Recall that F,(k) has density function ¢y(x) = E [Zx(z)]. Applying the measure change at
the stopping time Y} allows us to write this density as

oy, exXp </0Yk s ds> P (—&)] :

Conditionally given o, the stopping time Y has density

m(tya):(kitl)! </Ot05ds> exp(—/otasds>, >0,
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and so by the tower law (and Fubini’s theorem) we obtain

PR k. M /OOOIE o? </0t05d5>k1p<—(1_a;);>] .

(k—1)!
By the scaling property of the subordinator o, we have the following equality in distribution
(as processes):

(o¢,t > 0) 4 ((1 —x)éa(

t lfx)71+é’t = 0) :

Thus we may express the density ¢y (z) as

_1 141 k—1
ra(l—x) e oo 9 1
/0 B0 gd \U _;,;)a/o I p<_at(1—x)‘1+%) dt

(k—1)!

1 1 _1+l
za(l—a) e [ ) t(l—z)"'*a
- (k—1)! /0 . Tty (1- x)/o ordr | p <_Jt(1fx)_1+é> dt
k—1

1 1 141
aTa(l—ax)Pre e ) t(—z)
k- /0 |t /0 aedr | p (=0, yer) |

e () ]

after various changes of variable. The integral term in the last expression does not depend on
x and thus acts only as a normalising constant for the density. In particular, we can identify
this density as that of the Beta(1 — é, k) distribution, and it also follows that

OOE o2 uardr ’Hp—au du:w. O
[l o) e

I'l-1/a)
Remark 4.10. F,(k) may clearly be interpreted as a size-biased pick from among the compo-
nent sizes of the forest 7\ 7 (k). To the best of our knowledge, its distribution had not previously
been explicitly identified in the literature for a general k, although it is easy to deduce it from
pre-existing results, as we now show. In the case k = 1, the ranked sequence of component sizes
of T\ T(1) forms the fine spinal mass partition defined in [30]. By Corollary 10 of the same
paper, the sequence of sizes follows a Poisson—Dirichlet distribution with parameters (é, 1-— é)
(See Chapter 3 of Pitman [37] for more information about the Poisson—Dirichlet distributions.)

Now let P* = (P, P, ...) be the ranked sequence of component sizes of 7 \ 7 (k). Condi-
tionally given P*~1, we can sample PF as follows: we take a size-biased pick from the components
of T\ T (k—1), then reveal the fine spinal mass partition of this component. This has the effect
of replacing some Py~* with the collection {PF~'P; : i € N}, where I is a size-biased index, P
is a copy of P! independent of everything else, and finally we reorder the sequence to preserve
the decreasing order. By Theorem 3.1 in [21], we see that if P*~! ~ PD(1,6) for some § > 0,
then P* ~ PD(Z,0+1). It follows by induction that P¥ ~ PD(L,k — 1) for every k > 1. Now

F,(k) is just a size-biased pick from P*, and thus it has law Beta(1 — <, k).

Q=

5 Relation to Wang’s construction

In this section, we show that our construction provides a new perspective on Wang’s construction
of the stable tree from [41]. The key result is Proposition below, which connects ¢ and the
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jumps of a normalised a-stable excursion.

For a sequence X = (x1,29,...) with a largest element, we will write (x)* for the same
sequence with the entries put into decreasing order. Recall that A; > Ag > --- > 0 are the
ordered jumps of . Let A} > AZ > ... > 0 denote the ordered (out-)degrees in the finite-n
model, so that (A7, A%, ..., A") = (Dy,Ds,...,D,)%. For all m > n+1, let A?, = 0 so that
we append an infinite sequence of 0’s to the end of this vector.

Let E% = {(x1,x9,...) : &1 > x2... > 0} which we endow with the usual o norm. For
sequences indexed by an arbitrary countable set I we instead write ¢5(T") for the corresponding
set of square summable sequences, and E; (T') when all of the elements of the sequences are
strictly positive.

Proposition 5.1. Asn — oo,

ail( ?117 S?’-')g(ALAQ,...)

n
m Eﬁ.

The proof of this result will make use of the theory of size-biased point processes developed
by Aldous in Section 3.3 of [8]. We need a little set-up.

Suppose that I is a countable index-set and we have Y = {Y,, : v € T'} such that Y € ¢5 (T).
Conditionally on {Y, : v € '}, let E, be exponentially distributed with parameter Y,,, indepen-
dently for different v € I'. If the sequence Y is summable then it is straightforward to check
that putting the values Y, in increasing order of their associated exponential random variables
has precisely the effect of putting them in size-biased random order. But the construction also
makes sense when the sequence is not itself summable, as long as it is square-summable. For
t € RT, define

St)=> Y,1(E, <t).

vyel

Then S(t) < oo a.s. for all t. Let Sy = S(Ey—). The set = := {(S,,Y,) : v € I'} is called the
size-biased point process associated with Y. This is an element of the set M of collections of
points in [0,00) x (0,00) such that there are only finitely many points in compact rectangles of
the form [0, a] x [,1/d], a > 0,5 > 0. We endow M with the topology of vague convergence of
counting measures on [0, 00) x (0,00).

Observe we may also construct the process S(t) in terms of an i.i.d. sequence of Exp (1)
random variables, say {E’ : v € I'}, again independent of Y: then we may set

S(t)=> Y,1(E, <Yyt).
yel’

This is useful for coupling processes S(t) across various choices of Y.

A convenient formulation of the result we shall use is given in Proposition 17 of Aldous and
Limié¢ [9], which we reproduce below.

Proposition 5.2. Suppose that Y™ ¢ oy (T™)Y and that 2™ is the associated size-biased point
process, for each 1 < n < oo. Suppose further that

(n) 4, =(o0)

[1]

)

where
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1. sup{s : (s,y) € 2> for some y} = oo a.s.

2. if (s,y) € =) then Z(s’,y’)eE<°°> y = s a.s.
s'<s

3. max{y : (s,y) € ) for some s > a} 50 as a — occ.
Write Y for the projection of 2(°) onto its second co-ordinate. Then
(Y M)+ 4 (y(ee))d

m @.

Proof of |Proposition 5.1 Let Y™ = {a;'D; : 1 <i < n,D; > 0}. By construction, the process
(8™ (t),t > 0) is a random time-change of (a;,! ZZLZI"” D;,t > 0) and so, in particular, we have

i—1
lia~ 1=
5<">={< Di,Dj> :]21}.
(079 1 (479

By we have

| L]
— S Ditz0] %5
An =1

we will use this to show that
=) 4 =) = [(5,_,AF,) : AG, > 0,t > 0}.

To prove this, by a strengthening of Theorem 16.16 of [32] it is enough to prove conver-
gence in distribution of 2™ (U) to () (U) for any open, relatively compact set U such that
E(Oo)(aU ) = 0 a.s. Proving this statement is routine but rather long, so we give only a brief
sketch here: fix a set U and let us work on a common probability space such that the conver-
gence (é ZZLZL”J D;,t > 0) — & in D(]0,00)) is almost sure. We now work on the (probability

1) event that this convergence does occur and that the limiting point measure puts no mass on
the boundary.

Now suppose that Z(°) has precisely K atoms (s1,%1) ..., (sk,yx) € U. That is, the process
o has jumps whose values go from s; to s; + y; for each i, and that these are the only jumps
for which (o,—,Acy) € U. Using the convergence of cadlag processes we note that, for each

(m) ™ + y("), such that

n, we can identify K jumps of the nth discrete process, say from s; ;

sgn) — s; and yi(n) — y; for all i. (Note these jumps need not be distinct, but for sufficiently

large n they will be.) As U is an open set, we conclude that for sufficiently large n, all points
(SE”)7y§n)) lie in U and thus Z(™ has at least K atoms in U.

to s;

It remains to show that for all but finitely many n these are the only atoms in U. Suppose
not, then we can find a subsequence in n along which there is an extra atom (u(™, v™) € U.
Using relative compactness of U it is straightforward to derive a contradiction: either we find
another atom in the limiting measure in U or on the boundary, or we find that Z(™) has a pair of
atoms that both converge to a common point (which violates either right continuity or existence
of left limits in 7).

We now just need to check Conditions 1-3 of [Proposition 5.2 Since o; — 0o as t — oo, 118
clear. Condition 2 is a consequence of the fact that ¢ is a right-continuous increasing process
which evolves only by jumps. Condition 3 follows immediately from the fact that the jumps of
o are a.s. square-summable, which was proved in [Proposition 2.7| ]
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We will need one more proposition formalising an intuitive result about convergence of the
processes S . The proof is deferred to the Appendix.

Proposition 5.3. Let X X be random elements of E% = Zé(N), not necessarily defined on
the same probability space. Define, for t > 0,

S (1) ix 1(B<x™t)  and  S( ZXIL B < Xit),

=1

where E; ~ Exp (1) are i.i.d. and independent of XM gnd X. If X" LA X, then we have
(SM(t),t > 0) 4 (S(t),t > 0) in the Skorokhod space D([0,00)).

Proposition 5.4. Let © = (01,02,...) be the ordered jump sizes of a normalised c-stable
excursion. Then

(Tt)t>0 4 Z ;1 (E; < ©;t) ;

i>1 £>0

where Fy, Es, ... are i.i.d. Exp (1) and independent of ©.

Proof. Define a new process p as follows: first, generate a sequence (4A;);>; € Eé distributed
as the law of the jumps of o arranged into decreasing order. Independently of these, let E; ~
Exp (1) be i.i.d. and set

oo
= ZAZ-IL (B; < Ajt).
i=1
The main step is to show that p and o have the same law.

In what follows, write " (t) = ZLtm"J D;, and note that " 4 5. (This is not exactly the
analogue of ¢" defined in |Pr0p081t10n 4.1] as we have not subtracted 1 from each term in the
sum, but as m, < a, this difference vanishes in the limit and the convergence in distribution
still holds.) We will show that " also converges in distribution to p in the Skorokhod metric
D([0,T]), where T is an arbitrary time horizon.

By [Proposition 5.1| and Skorokhod’s representation theorem we can construct (A?) on the
same space as p such that a, (A7, A% ...) — (A1, Ag,...) almost surely in /2. By

the processes
o (m=0)

TL

converge to p in probability on the space D([0,7]). Moreover, the jump chain of p" has the
same distribution as that of ¢". Let 0 = 7' < 7' < 73’ < --- < 77 be the jump times of p", and
let (A") be the reordering of (A™) induced by the jumps of p". We see that 5" (¢) 4 P (N™(1)),
where A" is the unique piecewise linear function with A"(;;-) = 7;, and (say) such that A" is
constant beyond time n/m,.

We would like to use A" as a time change for bounding the Skorokhod distance between
p" and ¢", but unfortunately it may not fix the endpoint 7T". In order to resolve this issue, we
define a modified version A" such that

P <Z> =7 AT fori<|Tm,]

mpy
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and A\"(T) = T. We will show that
sup |p" o A" — p" o A" B 0,

sup [A"(t) —t| >0 and
t€[0,T]

t€[0,T]

which will establish p" %, & in the Skorokhod metric. For the first limit, we note that we
can bound the supremum by looking only at the endpoints of each piece. Moreover, for all
i < |T'my,] note that an is closer to 7; AT than to 7;. Hence we can bound

i

Ti——|-
Mn,

sup [\"(t) —t| < sup
te[0,T i<[Tmy ]

By identifying the conditional law of 7; — 7;,_1, we see that the process defined by
i j—1 -1
1 1 13-
Yi=1— — 1———= A}
R (BEEEIY

n
k=1

is a mean (0 martingale. We may bound

><)
: -1

-1
1 1 1 13-~ 11

i
=1

1
T — —
mnp

P (sqp

7

We bound the first term on the right-hand side by Doob’s inequality and a technical condition
as follows. Let A, be the event that Z,EZT"J A} <n/2. We can calculate

P ({sgpm\ > ;e} mAn) < iffu«: [YmenJ (An)} <5 Z E[(Y; — Vi 1)1 (4,)] .

Now for each 7 we can estimate

E[(Y; - Y;i1)’1(4,)] <E

Conditionally given (32) k<i—1, the increment Y; — Y;_; has the law of a centered exponential
random variable of rate 8; = m,, (1 — % - % 22;11 32) The conditional second moment of this

is 3, 2 and so by the tower law

i1 i i1 —2 ic1
B | (V- Yi0)?1 (Z&g < m)] — m%E (1 ) :&z) 1 (} Ap < n/z)
n n
k=1 k=1

L k=1
/1 1 a\7? Z“
-2 N

1 1\7?
—2 <2 > <om,, 2 for sufficiently large n.
n

o1



Putting this into our initial estimate, we obtain the bound

1 1 80T
P <{sup|Yi| > 25} ﬂAn> < — X = — 0.
i

mp

Finally we note that P (4,) — 1, and thus P (sup, [Y;| > 3¢) — 0 too.

For the second term on the right-hand side of , we note that the term in the absolute
value function is always non-negative, and the supremum is always attained at i = |T'm,,].
Thus the probability is equal to

| Trmn | =N -1 N
P 1———=) A7 -1 L 1
Z ( n n; k) - 2 (5)

j=1

On the event A, (introduced above) the estimate

T = 1 1228
1-=—=N"A7) <1+C|=+=S Ay

holds for every j, where C' is some absolute constant. Working on this event yields that is
bounded above by

[Tmn ]
(5 (1 2Em) ) v

[Tmn] j

1 ~ 15 T
<P| = A”> nl——-— 1).
N " jzl k=1 L= (20 n> +etd

Since L . Tm"J Zf;ll ﬁ}g converges in distribution to fOT G5 ds, while my, (35 — L) — oo, this

probability tends to zero. This establishes sup,c( 7 A () —t| 0.

It remains to bound the distance between p™(\"(t)) and p™(A\"(t)). Observe that this
distance is maximised at ¢ = T (we prove this by splitting into the cases T|Tm,) < T and
T|Tmn| > 1), where we have

PN (T _mi Z and p"(\" ZA

where I = sup{i : ; < T'}. For any § > 0 the event Bf = {I € ((T' — 6)mp, (T + 6)my,)} has
probability tending to 1, and on this event we have

B | @EOma)
" (N(T)) — p"(N"(T))| < p Z AV
" i=[(T—8)mn ]

As n — oo the right-hand side converges in distribution to opis — op_s. Thus, by picking &
suitably for each e, we see that P (|p”(X"(T)) — p"(A™(T))| > 5) — 0. This proves " LN p-

Thus we have identified & < Yooy AL (E; < Ajt). It remains only to identify (A;). By

Proposition 5.1) we know that for any k we have a,'(A7,..., A7) LS (A1,...,Ag), so we
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will show the same sequence converges to (©1,...,0). Let L™ : {0,1,...,n} — Z be the
Lukasiewicz path of the discrete tree T of size n, and construct a cadlag function e € D(]0, 1])
by taking

e"(t) = a, "L™(|nt)).

Then we have " % e, where e is a normalised a-stable excursion (this result is implicit in [22]
or [33]). Now consider a map J : D([0,1]) — RF given as follows: for any f € D([0,1]), we
identify the k largest upward jumps of f and arrange them into decreasing order (appending
zeros if there are fewer than k such jumps). This gives a well-defined continuous map, and
applying it to the above convergence gives

3(e") 3 3(e).

We identify J(e") £ a7 !((AT — 1)*F,..., (AT — 1)*) and J(e) £ (©1,...,0y). It follows that

a; (AT, A7) S (0y,...,0;) and so (Ay,...,Ar) L (©1,...,0}) as distributions on R¥,
As k was arbitrary, the result follows. O
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Appendix: omitted proofs

Proposition 1.3. The first cut time Y1 of the line-breaking construction with intensity o is
such that oYy ~ ML (1 —1/a,1 —1/a).

Proof. Recall that if M; ~ ML(1 —1/a,1 —1/a) then

T+ 1)r(1-2)
E (M| = T((k+ )(1— 1))

for £k > 1 and (by Carleman’s condition) the distribution is determined by its moments. So it
is sufficient to show that [E [Yﬂ =a "R [Mﬂ

In what follows, denote by ¥, the characteristic exponent of L (the spectrally positive a-
stable Lévy process such that L; has density p) and by ¥,_; the characteristic exponent of o.
We will prove that the result holds for all £ € (0,00) (including non-integral k). We begin by
restricting to the case that (k + 1) (1 — é) Z 7.

By the measure change formula we have the identity

P(Y;>1)=E [e—fot?rsds] _E [p;z(;f)t)} ‘
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For any k£ > 0 we can write

o0

o
E [Ylk] - / kR 1P (V) > ¢) dt = lim [ kR (V> 0) d
0 € 0

using monotone convergence to prove the limit on the right. For each fixed £ > 0, we have

/ ktFle S (Y] > t) dt = / kt*te 'R [p(—0y)] dt

_ iAot ,—Va(N)
e%e d\| dt
27TP(0) 0 [/R }
_ 1 / ktk—le—st </ E |:6i)\crti| e—lIla()\) d)\) dt
2mp(0) Jo R
1 /Oo R (/ T () —Ta(N) )
= kt" e e e tWemFal N dX\ | dt
2mp(0) Jo R

_ 1 / e—\Ila(/\) </00 ktk‘—le—(a-f—‘lfa_l()\))t dt) d\
2mp(0) Jr 0

_ 1 e—‘l’a()\) . —k

= 5mp(0) /R (e4+Wao1(N) " EI'(k) dA
_D(k+1) k= Ta()

= 2mp(0). /R (e4+Tao1(N)) dA.

Now if j > 0 is an integer such that aj — (. — 1)k < —1, we can show that (still for fixed € > 0)

/(g + o1 (V)L (M) dX = 0.
R

Indeed, by contour integration, for every R > 0 we have

/(5 + W 1 (AT, (V) dX = /(a + W 1 (A +iR)*U (N + iR)7 dA
R R

aj—(a—1)k

but the modulus of the right-hand side is at most a constant multiple of [,(R*+2?)” 2  du,
which tends to 0 as R — oc.

This condition on j is met for j = 0,1,...,0 — 1, where [ = [(k+1)(1 — 1)|. It follows that

T(k+1) . . ~Ta(N)!
E|Ykl = 22"/ U, 1(\)7F Ta(N) _q \pa)\_..._o‘i d)\.
We may now apply dominated convergence to obtain
I'k+1) _ B (—U, )\))l—l
BV =—="—2 [ Ty (N)7F Vo) 1 4 W (\) == 0 ) g,
v 27p(0) /R 1) <€ +Za() i—1)
Now we have the relations

d
and —iV,_1(N) = o

Q=

a1 (A) = a(=Ta (W)~ (—Ta(N),

which are valid for all A € R. (Some care is required taking fractional powers of complex
numbers. For example, given a,b € R and z € C, we can only say (2%) = 2% if aarg(z) €

o4



—Z,Z%) or b is an integer. Fortunately, the results above turn out to be true whenever A is
2072 g y
real). Using these, we get

E [Y1 ] — ;F(l‘;m/(_\pa)(kﬂ)(li) <6\1’a 14— (\Ija)l_l> i(_\lla) d\

mp(0)ak+1 =1 Jdx
ik +1) k1) (1-1) [ - a
27Tp( )akH /z ef—1—-z (=1 dz,

where v : R — C is the curve given by y(\) = =¥, (A) = (—i\)*.
l

Now let G(z) = z~*+DA-3) (e 1
integration as follows. Note that for each R > 0, v(—R) has negative real part and positive

imaginary part, while 7(R) = v(—R). We can replace v|_g ) by the union of the following
four pieces:

( 1)) We evaluate f G(z) dz via contour

e The vertical line from v(—R) down to Re(y(—R));

e The horizontal line from Re(y(—R)) to 0 (where we take arg(z) = 7 to deal with the

branch cut for z*(kﬂ)(l*é));

e The horizontal line from 0 to Re(y(—R)) = Re(vy(R)) (where we take arg(z) = —m in-
stead);

e The vertical line from Re(v(R)) down to y(R).

As R — 0, the integrals along the vertical lines go to zero. Meanwhile, by standard integral
expressions for I'(z) when Re(z) < 0, we see that the two horizontal integrals each converge to

L Fin(k )= ) (1 (k1) <1 _ 1)) |
«

In total, we see that
i _1 ; _1 1
/G(z) dz = <e in(k+1)(1-3) _ gir(k+1{ a)> Ff1—(k+1)(1-—
y @
.. 1 1
= —2isin <7T(k—|— 1) (l - )> r <1 —(k+1) <1 - >>
e} o

_ -7
L((k+1)(1-1))
using the reflection formula for the Gamma function to obtain the last line. Finally we have

_iT(k+1) —2im o I'(k+1) 1
E [Yﬂ = 2mp(0)akt T (k+1)(1-1)) “ kr (k+1)(1-2)) * ap(0) (18)

Recall that this holds whenever (k + 1)(1 — 1) is not an integer — the set of such k is dense
n [0,00). The right-hand side of makes sense for all £ > 0 and is continuous in k. By
dominated convergence the map k— E [Ylk] is continuous for k£ € [0,00). It follows that the
left and right-hand sides of are equal for all kK > 0. Using that E [Ylo] = 1, we see that
=T1- 7) completing the proof. O

ap( )
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Theorem 2.1. Let a,b > 0, and let v be a measure on RY such that [p. (x A 2?)v(dz) < oc.
Let L = (Lt)t>0 be a spectrally positive Lévy process in R with characteristic exponent

Ur(A) = ai\+ ébz)\2 - / (e —1 —i\z) v(dz),
0

so that E [eM+t] = e e Let (0)>0 be a (killed) subordinator, not necessarily defined on
the same probability space, with characteristic exponent

U, (\) =a— b2\ — / (e — 1) zv(dx) = =i (N).
0
Assume that

() fooo(e“” — 1 —wuz)v(dr) < oo holds for all u € R;
(ii) Re (UL(N)) > |A] as |A| — oc.

Then Ly has a density p, and the process M;”a’b = exp(fot osds)p(—o¢)1 (op < 00) is a non-
negative martingale (in the natural filtration associated to o).

V()

Proof. By condition (ii) we know e~ is integrable, and so L; has a density by Fourier

inversion, namely
1 —ide—WL(\)
= dA.
pl) 2m /]Re ‘

As discussed in we will prove the equivalent condition that

E [exp (/Ot(c+ o) ds> p(—c— o)1 (o4 < oo)] = p(—c).

First observe that o is killed at rate a, independently of its other jumps, and so P (o, < 00) =
e~ we can pull this factor out of the expectation and henceforth forget about the killing in
o: we aim to show that

o [exp < /0 ‘et o) ds) p(—c— at)] — p(—0). (17)

Using the Fourier representation of the density, the left-hand side of expands to

—at t
‘ E [/ exp (i(c—l— ot —|—/ (c+0s) ds) e Ve d)\] .
21 R 0

We would like to exchange the integral with the expectation — this is valid provided the modulus
of the integrand has finite double integral. To this end, we compute

|/

t
exp <z(c + o)A+ / (c+0s) ds) e
0

_ /]R ‘e*‘PLW( d\ x E [exp (/Ot(cjuas)dsﬂ .

We already know that the integral term is finite, so we just need to prove that the expectation
is finite too. We can represent o, = b?s + J,, where J is a pure jump subordinator. Then we

have . [exp </Ot(c +oy) ds)] = exp <ct + ;thQ) E [exp (/ot Js dsﬂ .

o6

s




We can apply Campbell’s formula to the rightmost expectation: let IT C RT x RT be the (atoms
of) the Poisson process of jumps of J, so that

Jt: Z x.

(s,x)ell
s<t

Then fg Jsds =Y 4 (t — s)x. Tt follows that

E [exp ( /0 "L ds)] = exp < /O h /0 t (e“*s)x - 1) ds xy(d:c))
~exp ( /O Tl 1 ta) u(d:r)) |

This quantity is finite by condition (i). Thus the exchange is valid, and so the left-hand side of

is equal to
—at

e
2

/R E [exp (i)\o*t + /0 . ds)] exp (c(t +iA) — Tr(\)) dA.

Once again, we can decompose oy = b*t + J;, so that

t 1 t
i\oy + / osds = <62i/\t+ 2b2t2> + <z’)\Jt + / J ds) )
0 0

Thus the LHS of further expands to

e—at

¢ 1
/ E [exp <i)\Jt + / J ds>] exp <b2i)\t + U Fe(t +iN) — \I'L()\)> dA.
2 R 0 2

By another application of Campbell’s formula, the inner expectation is

E [exp (i)\Jt + /0 t J, dsﬂ — exp < /0 - /0 t (ez‘m“—sﬁ - 1) dsmy(dm))
— exp ( /0 h (em (em; 1) - t) xu(da:))
— exp < /O T (e e ) y(dm)) ,

noting that all of these integrals are finite by condition (i). Thus, the left-hand side of can
be written as

1
27TR

S . |
exp <—at + / (e(t“’\)x . tx) (da) + BiN + SV + et + i) - \IJL(/\)> X,
0

For brevity, let us denote by H (¢, \) the expression inside the exponential. It is now useful to
separate the drift and Brownian term in ¥y, from the (compensated) jumps: write

1
T (\) = ail + 5()2)\2 + To(N),

where



Condition (i) implies that W¥( has an analytic continuation to all of C, given by the same formula.
We now observe that

/ <€(t+i)\)x _gide _ t:c) v(dz) = Uo(N) — Uo(A — it),
0

and so we have

1
H(t,\) = —at + Ug(\) — Uo(\ — it) + b2t + §b2t2 +c(t +i\) — UL\
1 1
= —at — Uo(\ — it) + bZixt + 5b2t2 +c(t 4 i\) — aiX — 5b?>\2

= —ai(\ —it) — %bQ()\ —it)? +ic(t —iX) — Wo(\ — it)
= ic(\ —it) — Up (A —it).

In summary, we have shown that
t 1
e YR [exp </ (c+o0s) ds> p(—c— O't):| =5 / exp (ic(\ —it) — W (A —it)) dA,
0 TJR

and we would like to show that this common quantity is equal to p(—c). By Fourier inversion
we know

1
p(—c) = / exp(icA — U (N))dA
2 R
and so it remains only to prove that
/ exp (ic(A — it) — Wy (A — it)) dA = / exp (ich — WL (A)) d. (18)
R R

To this end, set G(z) = icz— ¥ (2), z € C. We can show that, for any closed polygonal contour
v, we have 56"7 G(z)dz = 0 — this is by Fubini’s theorem, which is valid due to condition (i).
Thus by Morera’s theorem G is holomorphic on C, so exp(G(z)) is holomorphic too.

Thus for any closed contour « in the complex plane, we have fv exp(G(z))dz = 0. We
consider the rectangular contour with vertices at £R, £R — it and then take R — co. Observe
that

R R
jgexp(G’(z)) dz = / exp(ic(A —it) — W (A —it)) d\ — / exp(icA — W (N))dA

¥ -R —R
+ i/() exp(G(R — is))ds — i/o exp(G(—R — is)) ds,

and so we will obtain if we can show that the final two integrals tend to 0 as R — oo.

To this end, we will show that the integrands of these two integrals tend to 0 uniformly: that
is, for z = A—is, s € [0, t] we have exp(G(z)) — 0 uniformly in s as |A\| — co. As |exp(G(z))| =
exp(Re (G(2))) it suffices to show Re (G(z)) — —oo uniformly. It is straightforward to calculate

1 1 oo
Re (VL(A—1is)) =as — 56232 + 5/\2b2 - / (% cos(|A\|x) — 1 — sx) v(dx).
0

Note that the term as — %bzs2 is bounded. We can decompose the integral as
— / (% cos(|A\|x) — 1 — sx) v(dx)
0
= / e’ (1 — cos(|A|z))v(dx) — / (e*® — 1 — sx)v(dr).
0 0

o8



The second term is bounded by condition (i), while the first term is lower bounded by removing
the e** term. Hence we have

1 o
Re (W5(A— is)) > L\ +/ (1 = cos(|A|z) v(dz) + O(1)
0
and now we recognise that
1 oo
2/\2b2+/ (1 cos(|A|z)) v(dz) = Re (U1 (A)) — oo,
0

by condition (ii). This completes the proof. O

Proposition 2.13. Let Ay, Mo, (mp)n>1 be (possibly random) positive real numbers with Ay <
My. Write M, = My + Y_i", m; for brevity. Conditionally given all of these, let (A;)i>1 be a
Markov process such that

A
P (Az' = A1 +m; | (45)o<j<is (Mj)jz(J) = 117 and
M;_1 — A;_
P <Ai = A ‘ (Aj)o<j<is (Mj)jz(J) = ;4711

Then we can find a random variable X, supported on [0,1], such that the two sequences

Ap #{i<n:A #A 1}
<Ml>n>l and ( n >n>1

converge almost surely to X.

Proof. Write X, = J\ATZ and Y, = w for brevity, and define a filtration

Fn = 0((M;);>0, (Ai)o<i<n)-

A straightforward calculation reveals that X, is an (F,,)-martingale. We also have X,, € [0, 1]
for all n, so the martingale is uniformly integrable and thus converges almost surely to some
Xoo. Now let

n

Sn=1 <1 (Ai # Aim1) — j@ll) :

i=1

Another calculation reveals that (Sy,),>0 is also an (F,,)-martingale. Since

Sy 1= Aig
Y, =" 4 =
" n +7’L§MZ’1’

and we already know + 37 | ]'\Z*_ll — X almost surely, it suffices to show % — 0.

By the Azuma—Hoeffding inequality (noting that the increments of S, all have modulus at
most 1) we obtain, for each £ > 0,

1
P(|Sp| > en) < 2exp (—2527@) ,

which is summable in n. Hence, almost surely, we have |S,,/n| < e for all but finitely many n.
Repeating for, say, each ¢ = 1/k, we see S,,/n — 0 almost surely. ]
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Proposition 5.3. Let X X be random elements of E% = K%(N), not necessarily defined on
the same probability space. Define, for t > 0,

S™ (1) ZX 1(B<x™t)  and S ZXII (B < X;t),

where E; ~ Exp (1) are i.i.d. and independent of XM gnd X. If XM LA X, then we have
(8™ (t),t > 0) 4 (S(t),t > 0) in the Skorokhod space D([0,00)).

Proof. Note that it is sufficient to prove the convergence in D([0,T]) for arbitrary T" > 0. So
fix T > 0. We begin by handling the case that X(™ and X are deterministic, say X = (™)
and X = 2. We can construct S and S on the same probability space by using the same E;
for all of them. In this setting we will prove that S — S in probability with respect to the
Skorokhod metric on [0,7]. We introduce an intermediate sequence of processes R™ defined

by
Zml (E <m )t).

Let dp be the Skorokhod distance on [0, T]. We will show that dp(S™, R™) — 0 in probability
and dp(R™,S) — 0 in probability.

For the first of these statements, we will show convergence in probability with respect to
the uniform norm (which implies the desired result). For any ¢ € [0,T] we have

1S (¢) — RO (1)] < Z 2™ — 2,1 (E < mgn)t)

< Z 2" — i1 (B < 2(T) .
=1

This bound does not depend on ¢ and so

E | sup [S™ () — R™ (¢ ] < Z |x — (1 - e_xgn)T>

te[0,7)
= TZ 2" — ] - 2
i=1

< Tllz™ = x|z - [Ja™)]]2.

Now z(™ is bounded in £5 and 2™ —2 — 0 in £, so this expectation tends to zero. In particular,
by Markov’s inequality we have, for any € > 0,

P ( sup |S™(t) — R™ (t)| > g> -0,

te[0,7

establishing the first convergence in probability.

For the second convergence, some more care is needed. Let € > 0 and § > 0 be given. We
will show that for sufficiently large n we have P (dD(R("), S) > E) < 6. We introduce a new
notation || - ||, n defined by




We can interpret this as the ¢3-norm of the projection of u onto the subspace of codimension
N spanned by the ith unit vectors for i > N. Note that for any u € ¢5 we have ||ul|o y — 0 as
N — o0. For any N and any n we can estimate

N . . (") . ) - ) ' (n) ' 4
E ! i:%:Hxl (1 (B <al"T) +1(E; < sz))‘ < i:%:ﬂxl (P(B: <o('T) + (B < wiT))

i=N+1

<7 (llal B + lellon - [12]1)

< Tljalla, (Ilallz + 1]l

< Cllz|[2,n,

where C' is an absolute constant (here we are using the fact that z(™ is bounded in £3). This
bound does not depend on n, and goes to zero as N — oo. By Markov’s inequality we can
choose N large enough such that
1
<egl|>1-=6
ot

]P) <
(n)

for every n > 1. Let A;

o0 | o | |
i:%;_l i (ﬂ (El < T) +1(E; < sz)>

denote this event.

Having chosen N, we define truncated processes

N N
RM™(t) = Z x;1 (EZ < xgn)t) and  S(t) = Z il (B < xit) .
i=1 =1

Let B be the event that S does not Jump at time T, and note that this has probability 1. Let K
be the (random) number of times S jumps before time 7', and let 7 : [K] — [N] be the unique
injection such that these jumps occur at times

B En B
W _ By Eruo

Tr(l)  Tr(2) Tr(K)

Let Agn) be the event that R™ also has K jumps before time T and that these are given by

E, E E,
<n(>1) < (n(>2) <s <n(>K)’
Tr)y T2 LK)

using the same permutation w. We observe that on the full measure event B, the events Agn)

necessarily occur for all sufficiently large n, and so P (Aén)) — 1. On the event Agn) we may

construct a time change A" : [0,T] — [0,T] as follows: we take the minimal piecewise linear
function such that A (0) = 0, \("(T) = T and

A\ <E7r<z‘>> _ Er
Tr(s) )

(n
ZL‘ﬂ_(-
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fori=1,2,..., K. Observe that

E_. E_.
sup ‘)\(")(t) - t’ < max Tr@) 7@
te[0,7] <K | Tr(s) xfr’"(”z)

which converges to 0 almost surely (on the event that A is defined). Letting Agn) be the event

that sup;cpon) ‘)\(”) (t) —t| < e, we see that P <A§n)> — 1. Note that RM™ (A" (¢)) = S(t) for

all t € [0,T]. In particular, we can compute

s [ROOM®) = S0 = sup ix (1 (B <o) ~1(8: < rwf>)|
- s (R0 =50+ 3 = (1 (B < a”t) = 105 < i) ‘
S APORICICER RIEEND)]
< %1m (1(B: <al"T) 41 (B: < sz))|

On the event Agn) this quantity is at most e. Thus on the event A := Agn) N Aén) N Agn) we
have dD(R(")7 S) < e. Note that liminf, ,. P (A(”)) >1- %5, and so for sufficiently large n
we have P (A(”)) >1—4. Thus R™ — S in probability in the Skorokhod metric.

This completes the proof in the case that X and X are deterministic. For the general
case, we use Skorokhod’s representation theorem to construct X and X on the same space
such that X — X almost surely. Constructing our exponential random variables also on this
space, independent of everything else, and using them to define all processes S and S, we
deduce from the previous case that for any fixed € > 0 we have

P (dD(S("), S)>e ‘ X("),X) — 0 almost surely.
By the bounded convergence theorem we may take expectations of the above to see that

P (dD(S<">, S) > 5) 0.

As € was arbitrary we see that S(™ — § in probability for this coupling. In particular, the laws
of S converge weakly to that of S. O
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