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Parking on a Random Tree
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Consider a uniform random rooted labelled tree on n vertices. We imagine that each node of the tree
has space for a single car to park. A number m �n of cars arrive one by one, each at a node chosen
independently and uniformly at random. If a car arrives at a space which is already occupied, it
follows the unique path towards the root until it encounters an empty space, in which case it
parks there; if there is no empty space, it leaves the tree. Consider m = �αn� and let An,α denote
the event that all �αn� cars find spaces in the tree. Lackner and Panholzer proved (via analytic
combinatorics methods) that there is a phase transition in this model. Then if α � 1/2, we have
P(An,α ) →

√
1−2α/(1−α), whereas if α > 1/2 we have P(An,α ) → 0. We give a probabilistic

explanation for this phenomenon, and an alternative proof via the objective method. Along the
way, we consider the following variant of the problem: take the tree to be the family tree of a
Galton–Watson branching process with Poisson(1) offspring distribution, and let an independent
Poisson(α) number of cars arrive at each vertex. Let X be the number of cars which visit the root
of the tree. We show that E[X ] undergoes a discontinuous phase transition, which turns out to
be a generic phenomenon for arbitrary offspring distributions of mean at least 1 for the tree and
arbitrary arrival distributions.

2010 Mathematics subject classification: Primary 60C05
Secondary 60J80, 05C05, 82B26

1. Introduction

Let Πn be the directed path on [n] = {1,2, . . . ,n} with edges directed from i + 1 to i for i =
1,2, . . . ,n− 1. Let m � n and assume that m cars arrive at the path in some order, with the ith
driver wishing to park in the spot si ∈ [n]. If a driver finds their preferred parking spot empty,
they stop there. If not, they drive along the path towards 1, taking the first available place. If no
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2 C. Goldschmidt and M. Przykucki

such place is found, they leave the path without parking. If all drivers find a place to park then
we call (s1,s2, . . . ,sm) a parking function for Πn.

Konheim and Weiss [12] introduced parking functions in the context of collisions of hashing
functions. Imagine that we have a hash table consisting of a linear array of n cells, where we
want to store m items. We use a hashing function h : [m] → [n] to determine where each item is
stored. Item i is stored in cell h(i), unless some item j < i has already occupied it, in which case
we have a collision. We can resolve a collision by allocating item i to the smallest cell k > h(i)
such that k is empty at time i, if such a cell can be found. If not, our scheme fails, and we cannot
allocate our items to the hashing table. This collision resolving scheme is clearly modelled by
the parking functions described in the first paragraph.

Konheim and Weiss showed that for 1 � m � n cars there exist exactly (n+1−m)(n+1)m−1

parking functions for Πn. Hence, taking α ∈ (0,1) and m = �αn�, if the ith driver independently
picks a uniformly random preferred parking spot Si, then the probability that (S1,S2, . . . ,Sm) is a
parking function for Πn is

(n+1−m)(n+1)m−1

nm
→ (1−α)eα ,

as n → ∞. In particular, this limiting probability is strictly positive for every α ∈ (0,1).
Some generalizations of parking functions and their connections to other combinatorial objects

have been studied by, for example, Stanley [16, 17, 18, 19]. In a recent paper, Lackner and
Panholzer [13] studied parking functions on other directed graphs, in particular on uniform
random rooted labelled trees (uniform random rooted Cayley trees). Let Tn denote such a tree on
n vertices. Each of the m cars independently picks a uniform vertex and tries to park at it. If it is
already occupied, the car moves towards the root and parks at the first empty vertex it encounters.
If it finds no empty vertex, it leaves the tree. Lackner and Panholzer (see Theorem 4.10 and
Corollary 4.11 in [13]) prove that in this setting there is a phase transition.

Theorem 1.1. Let Tn denote a uniform random rooted labelled tree on n vertices. Let An,α be
the event that all �αn� cars, with uniform and independent random preferred parking spots, can
park on Tn. Then

lim
n→∞

P(An,α) =

⎧⎪⎨
⎪⎩

√
1−2α
1−α

if 0 � α � 1/2,

0 if α > 1/2.

In fact, the result proved in [13] is much sharper: it not only demonstrates that there is a phase
transition, but it also gives an asymptotic formula for P(An,α) which specifies its behaviour in
n, including at the critical point α = 1/2. However, the analytic methods used in [13] offer
no explanation for why the phase transition occurs. The purpose of the present paper is to find
a probabilistic explanation for this phenomenon. We employ the objective method, pioneered
by Aldous and Steele [4], to reprove Theorem 1.1. Much of our analysis is performed in the
context of a limiting version of the above model (its so-called local weak limit). Instead of Tn, we
consider a critical Galton–Watson tree with Poisson mean 1 offspring distribution, conditioned
on non-extinction. We replace the multinomial counts of cars wishing to park at each vertex by
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Parking on a Random Tree 3

1 2 3 4 5
· · ·

Figure 1. The tree T , a critical Poisson–Galton–Watson tree conditioned on non-extinction. The trees attached to the
path on N are almost surely finite.

independent Poisson mean α numbers of cars at each vertex. Once we have analysed this limiting
model, it is relatively straightforward to then show that the probability all cars can park really
gives the limit of P(An,α) as n → ∞.

1.1. The limiting model
Throughout this paper we write Po(α) for the Poisson distribution with mean α . Write PGW(α)
for the law of the family tree of a Galton–Watson branching process with Po(α) offspring
distribution (this is canonically thought of as an ordered tree rooted at the progenitor of the
branching process, although we shall frequently ignore the ordering). We begin by formally
introducing our limiting model.

Let T be an infinite random tree defined as follows. Start with an infinite directed path Π∞

on N = {1,2, . . .}, with edges directed from n + 1 to n for all n � 1. Then, for every n, add an
independent PGW(1) tree rooted at n, with edges directed towards n (see Figure 1). Finally, root
the resulting (infinite) tree at 1. This random tree has the same law as a PGW(1) tree condi-
tioned on non-extinction, and we will write PGW∞(1) for its law. (Since extinction occurs with
probability 1, the conditioning must be obtained by a limiting procedure such as conditioning the
tree to survive to generation k and then letting k → ∞; see Kesten [11]. We will discuss a more
general case of this result in Theorem 3.1 below.) At every vertex of the resulting tree, place an
independent Po(α) number of cars. There is only space for one of them, and any surplus cars
drive towards the root, parking in the first available space.

1.2. A local weak limit
Our model is the limit of the problem considered in [13] in the sense of local weak convergence,
which we now introduce.

First, let G be the set of graphs G = (V (G),E(G)) with finite or countably infinite vertex set
V (G) which are additionally locally finite, that is, all vertex degrees are finite, which is equivalent
to the property that for each v ∈ V (G) and each r � 0, the number of vertices within graph
distance r of v is finite. Let G∗ = {(G,ρ) : G ∈ G,ρ ∈ V (G)} be the set of rooted locally finite
graphs, considered up to rooted isomorphism. (We will abuse notation by writing (G,ρ) for
the equivalence class of (G,ρ).) For (G,ρ) ∈ G∗, write dG for the graph distance in G, and let
BG(ρ,r) = {v ∈ V (G) : dG(ρ,v) � r}, the (closed) ball of radius r around ρ in G. Write G[ρ,r]
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4 C. Goldschmidt and M. Przykucki

for the induced subgraph of G. We make G∗ into a metric space by endowing it with the distance
dloc defined by

dloc((G,ρ),(G′,ρ ′)) = 2−sup{r�0:G[ρ,r]∼=G′[ρ ′,r]}.

Now let (G,ρ) and (Gn,ρn)n�1 be random rooted locally finite graphs. Then, following Ben-

jamini and Schramm [6] and Aldous and Steele [4], if (Gn,ρn)
d−→ (G,ρ) with respect to this

topology, we say that (G,ρ) is the local weak limit of (Gn,ρn)n�1. It is a well-known fact, first
observed by Grimmett [9], that (T,ρ) (with ρ = 1) is the local weak limit of (Tn,ρn)n�1, where
ρn is the progenitor of the branching process. Note, in particular, that (T,ρ) is locally finite.
(Indeed, it has quadratic volume growth, in the sense that there exists a constant C > 0 such that

P(|BT (ρ,r)| > λ r2) � C exp(−Cλ ), λ � 0.

This is essentially a consequence of Proposition 2.7 of Barlow and Kumagai [5]; see the discus-
sion in Section 5.3 of Addario-Berry [2].)

Now, for each v ∈V (Tn), let Pn,m(v) be the number of cars wishing to park at v out of the total
of m cars. The vector (Pn,m(v),v ∈ V (Tn)) has a Multinomial(m;1/n, . . . ,1/n) distribution and
so, for any finite subset S ⊂V (Tn) which is chosen independently of (Pn,m(v),v ∈V (Tn)),

(Pn,�αn�(v),v ∈ S) d−→ (P(v),v ∈ S),

where the random variables (P(v),v ∈ S) are i.i.d. Po(α).
In order to combine these results, we treat the numbers of cars as integer-valued marks on the

vertices of our trees. Let

M = {(G,ρ,x) : (G,ρ) ∈ G∗,x ∈ {0,1,2, . . .}V (G)},

the space of marked locally finite rooted graphs. For (G,ρ,x),(G′,ρ ′,x′) ∈M, let

R((G,ρ,x),(G′,ρ ′,x′))

be the supremum of the set of r � 0 such that there exists an isomorphism φ : V (BG(ρ,r)) →
V (BG′(ρ ′,r)) of G[ρ,r] and G′[ρ ′,r] such that additionally xv = x′φ(v) for all v ∈ BG(ρ,r). Then,
letting

dM((G,ρ,x),(G′,ρ ′,x′)) = 2−R((G,ρ,x),(G′,ρ ′,x′)),

it is straightforward to verify that (M,dM) is a Polish space. With respect to the induced
topology, we obtain

(Tn,ρn,(Pn,�αn�(v),v ∈V (Tn)))
d−→ (T,ρ,(P(v),v ∈V (T ))) (1.1)

as n→∞, where (P(v),v∈V (T )) are i.i.d. Po(α) random variables depending on T only through
its vertex labels.

1.3. Main results
The main part of our investigation of parking on random trees will be analysing the process on a
PGW(1) tree. We summarize our results in the following theorem. (We will discuss the definition
and properties of the Lambert W-function in Section 2.)
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Parking on a Random Tree 5

Theorem 1.2. Let X denote the number of cars that visit the root of a PGW(1) tree with, for
some α ∈ (0,1), an independent Po(α) number of cars initially picking every vertex.

(1) If α ∈ (0,1/2] then the probability generating function of X is

G(s) = −sW−1

(
−1

s
exp(αs−α −1+(1− s−1)(1−α))

)
,

where W−1(x) is the (−1)th branch of the Lambert W-function. Consequently, we have p =
P(X = 0) = 1−α and E[X ] = 1−

√
1−2α .

(2) If α > 1/2 then we have p = P(X = 0) ∈ (1−α,1/(4α)) and, taking

sp =
1−

√
1−4pα
2α

,

p satisfies

s−1
p exp(αsp −α +(1− s−1

p )p)−1 = 0.

Moreover, the probability generating function of X is

G(s) = −sWi

(
−1

s
exp(αs−α −1+(1− s−1)p)

)
,

where i = −1 for s � sp and i = 0 otherwise. Consequently, for α > 1/2 we have E[X ] = ∞.

Perhaps the most striking aspect of Theorem 1.2 is that the quantity E[X ] undergoes a discon-
tinuous phase transition at α = 1/2:

E[X ] =

{
1−

√
1−2α for α � 1/2,

∞ for α > 1/2.
(1.2)

We will discuss this phenomenon further in Section 3.
The second main result of this paper, which to a large extent is a corollary of Theorem 1.2, is

the following theorem about parking on T .

Theorem 1.3. Let T be a PGW∞(1) tree, rooted at ρ , with all edges directed towards ρ .
Assume that an independent Po(α) number of cars arrives at each vertex of the tree. Let Aα
be the event that all the cars can park on T . Then

P(Aα) =

⎧⎪⎨
⎪⎩

√
1−2α
1−α

if 0 � α � 1/2,

0 if α > 1/2.

In particular, we recover the phase transition and limiting probabilities of Theorem 1.1.
We analyse the process of parking on T in two stages. In the first stage, we restrict our

attention to the process on the critical Galton–Watson trees attached to the path Π∞. Our aim
is to understand the random number of cars that visit the root of such a subtree, either because
they initially chose to park there or because they have traversed the whole path from some other
vertex of the subtree (we think of these cars as stopping at the root of their subtree and waiting till
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6 C. Goldschmidt and M. Przykucki

the end of the first stage). We denote this random number of cars by X . The recursive definition of
Galton–Watson trees allows us to express X as a solution to the following recursive distributional
equation (RDE):

X
d= P+

N

∑
i=1

(Xi −1)+, (1.3)

where P ∼ Po(α), N ∼ Po(1), X1,X2, . . . are i.i.d. copies of the (non-negative integer-valued)
random variable X , (Xi − 1)+ = max{Xi − 1,0}, and all of the random variables on the right-
hand side are independent. (See the survey paper of Aldous and Bandyopadhyay [3] for more on
the theory of RDEs.) Since the critical Galton–Watson tree is finite almost surely, and X gives an
explicit construction of a solution to (1.3), we obtain both existence and uniqueness of X . We use
generating functions to understand the distribution of this solution and obtain the expressions in
Theorem 1.2.

Once we understand the law of X , we look at the parking process on the path Π∞ with Xi cars
arriving at i ∈ N, where X1,X2, . . . are i.i.d. copies of X . The crucial observation here is that the
cars can all park on Π∞ if and only if we have

Cn = n−
n

∑
k=1

Xk � 0 for all n ∈ N.

This is because the first n vertices of the path provide us with n parking places, and the number of
cars wishing to park in these spaces is at least ∑n

k=1 Xk: hence if Cn is negative for some n then we
do not have a parking function for Π∞. On the other hand, if we do not have a parking function
for Π∞ then there is some smallest n such that the cars starting their journey on [n] cannot all
park on that initial segment of the path, and so we must have Cn < 0.

It will be useful to us later to know exactly how many cars arrive at 1. Cn is the difference
between the total number of cars arriving somewhere in {1,2, . . . ,n} and the number of available
spaces. If Cn is negative then there is insufficient space to accommodate all of the cars arriving
in {1,2, . . . ,n} and at least X1 +(X2 − 1)+ · · ·+(Xn − 1) = 1−Cn wish to park at 1 (‘at least’
because it may be that spare capacity comes after it is needed and so, in fact, more cars wish to
park at the root). If (Cn)n�1 attains a new minimum at some m then all of the vertices labelled
1,2, . . . ,m must be occupied by a car, and so exactly 1−Cm cars eventually arrive at 1 from
somewhere in {1,2, . . . ,m}. It follows that the number which visit 1 is 1− infn�1 Cn.

Another useful observation will be that X is stochastically increasing in α , since if α < α ′

then we may couple the Poisson numbers of cars P(α)
v and P(α ′)

v wanting to park at each vertex v
in such a way that P(α ′)

v � P(α)
v . It is then easy to see that the number of cars wanting to park at

the root must be larger for α ′.
Let us now show how Theorem 1.3 follows from Theorem 1.2.

Proof of Theorem 1.3. The process (Cn)n�1 is a random walk with initial state C0 = 0 and
step-size 1−Xn for n = 1,2, . . . . The asymptotic behaviour of (Cn) depends entirely on its mean.
Indeed,

P(Cn � 0 for all n � 1) > 0
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Parking on a Random Tree 7

if and only if E[1−X ] > 0, that is, if and only if E[X ] < 1. By Theorem 1.2 we see that this
occurs if and only if α < 1/2. In that case, (Cn)n�1 is a random walk with positive drift which is
skip-free to the right, that is, a random walk with

E[Cn+1 −Cn] > 0 and P(Cn+1 −Cn � 2) = 0.

This enables a particularly convenient calculation of its hitting probabilities. We obtain (see e.g.
Brown, Peköz and Ross [7])

P(Cn � 0 for all n � 1) =
E[C2 −C1]

P(C2 −C1 = 1)
=

1−E[X ]
P(X = 0)

. (1.4)

Theorem 1.3 now follows trivially from (1.4) since, by Theorem 1.2 case (1), for all α ∈ (0,1/2)
we have

P(Aα) = P(Cn � 0 for all n � 1) =
√

1−2α
1−α

,

while for α � 1/2, by stochastic monotonicity in α we obtain

P(Aα) = P(Cn � 0 for all n � 1) � inf
α∈(0,1/2)

√
1−2α
1−α

= 0.

Having analysed the local weak limit, it remains to prove that the probability that all cars can
park behaves continuously with respect to this notion of convergence.

Proof of Theorem 1.1. For an arbitrary rooted tree (τ,ρ) and arbitrary numbers π = (π(v),v∈
V (τ)) of arrivals at its vertices, write χ(τ,π) for the number of cars arriving at the root. We begin
by observing the simple fact that χ is monotone in both of its arguments:

• if π(v) � π ′(v) for all v ∈V (τ) then χ(τ,π) � χ(τ,π ′);
• if τ is a subtree of τ ′ (with the same root) and π ′ gives the numbers of arrivals in τ ′ then

χ(τ,π ′|v∈V (τ)) � χ(τ ′,π ′).

We wish to prove that

lim
n→∞

P(An,α) = P(Aα),

where

An,α = {χ(Tn,Pn,�αn�) ∈ {0,1}} and Aα = {χ(T,P) ∈ {0,1}}.

First observe that Theorem 4.1 of Luczak and Winkler [14] entails that there exists a coupling
of the trees (Tn)n�1 which is increasing. (See the discussion below Theorem 2.1 of Lyons, Peled
and Schramm [15] for how to deduce this from [14].) Let us use this coupling, and take T to be
its increasing limit. For notational simplicity, when convenient we will label the vertices of T by
N, with the vertex labelled n being the vertex which appears for the first time in Tn. (Observe that
this is not the labelling by [n] which makes Tn a uniform labelled tree.)
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8 C. Goldschmidt and M. Przykucki

We now turn to the arrivals processes of cars. Given β > 0, let (P(β )(i), i ∈ N) be independent
and identically distributed Po(β ) random variables, independent of T , so that

(P(i), i ∈ N) d= (P(α)(i), i ∈ N).

We make use of a well-known fact about the Poisson distribution: for any β > 0, conditional on
∑n

i=1 P(β )(i) = m, the joint distribution of (P(β )(1), . . . ,P(β )(n)) is Multinomial(m;1/n, . . . ,1/n).
Indeed, observe that we may realize P(β )(1), . . . ,P(β )(n) by taking a Poisson point process of
intensity β on R+ and taking P(β )(i) to be the number of points falling in the interval (i− 1, i]
for 1 � i � n. Given the point configuration, suppose that we remove (∑n

i=1 P(β )(i)−m)+ of the
points, chosen independently and uniformly at random. Write P′(i) for the number of remaining
points in (i−1, i], for 1 � i � n. Then, on the event{ n

∑
i=1

P(β )(i) � m

}
,

we have

(P′(1), . . . ,P′(n)) ∼ Multinomial(m;1/n, . . . ,1/n).

Case α < 1/2, lower bound. Let β be such that α < β < 1/2. Let

E ′
n =

{ n

∑
i=1

P(β )(i) � �αn�
}

and note that, by the weak law of large numbers,

1
n

n

∑
i=1

P(β )(i)
p→ β ,

so that P(E ′
n)→ 1 as n→∞. Initially allocate P(β )(i) cars to vertex i∈N. Remove (∑n

i=1 P(β )(i)−
�αn�)+ cars chosen uniformly at random from among those on vertices in [n], and write P′

n,�αn�(i)
for the resulting numbers of cars at vertex i for i ∈ [n]. We clearly have P′

n,�αn� � P(β )(i) for all
i ∈ [n]. Moreover, on the event E ′

n,

(P′
n,�αn�(i), i ∈ [n]) d= (Pn,�αn�(i), i ∈ [n]).

Hence, on E ′
n we have

χ(Tn,P
′
n,�αn�) � χ(T,P(β )).

So for all n � 1,

P(χ(Tn,P
′
n,�αn�) ∈ {0,1}) � P({χ(T,P(β )) ∈ {0,1}}∩E ′

n)

and hence

liminf
n→∞

P(χ(Tn,P
′
n,�αn�) ∈ {0,1}) �

√
1−2β

1−β
. (1.5)
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Parking on a Random Tree 9

Case α < 1/2, upper bound. Let γ be such that 0 < γ < α < 1/2. We perform an analogous
coupling of the arrivals: let

E ′′
n =

{ n

∑
i=1

P(γ)(i) � �αn�
}

and note that given ε > 0, there exists nε such that for all n � nε we have P(E ′′
n ) > 1− ε/3.

Initially allocate P(γ)(i) cars to vertex i ∈ N. Add (�αn�−∑n
i=1 P(γ)(i))+ cars to independent and

uniformly chosen vertices in [n] and write P′′
n,�αn�(i) for the resulting numbers of cars at vertex i

for i ∈ [n]. Clearly we have P′′
n,�αn�(i) � P(γ)(i) for all i ∈ [n]. On the event E ′′

n ,

(P′′
n,�αn�(i), i ∈ [n]) d= (Pn,�αn�(i), i ∈ [n]).

Now note that

χ(T,P(γ)|BT (ρ,r)) ↑ χ(T,P(γ))

as r → ∞. Recall the random walk representation for parking on T . We have χ(T,P(γ)) d= 1−
infn�1 Cn. Since γ < 1/2, the random walk has positive drift and so χ(T,P(γ)) < ∞ almost surely.
Hence, given ε > 0, there exists rε such that for all r � rε , we have

P(χ(T,P(γ)|BT (ρ,r)) �= χ(T,P(γ))) < ε/3.

Moreover, there exists nε,r such that for all n � nε,r,

P(BT (ρ,r) �= BTn
(ρn,r)) < ε/3.

On the event

{χ(T,P(γ)|BT (ρ,r)) = χ(T,P(γ))}∩{BT (ρ,r) = BTn
(ρn,r)}∩E ′′

n ,

we have

χ(T,P(γ)) = χ(T,P(γ)|BT (ρ,r)) � χ(Tn,P
′′
n,�αn�|BTn

(ρn,r)
) � χ(Tn,P

′′
n,�αn�).

Hence, for n � max{nε ,nε,rε},

P(χ(Tn,P
′′
n,�αn�) ∈ {0,1})

� P(χ(T,P(γ)) ∈ {0,1})
+P((E ′′

n )c)+P(χ(T,P(γ)|BT (ρ,rε )
) �= χ(T,P(γ)))+P(BT (ρ,rε) �= BTn

(ρn,rε))

<

√
1−2γ
1− γ

+ ε.

But ε > 0 was arbitrary and so

limsup
n→∞

P(χ(Tn,P
′′
n,�αn�) ∈ {0,1}) �

√
1−2γ
1− γ

. (1.6)

Case α < 1/2. Now recall that γ and β were chosen arbitrarily such that γ < α < β . Using (1.5),
(1.6) and the fact that the function x �→

√
1−2x/(1− x) is continuous on (0,1/2] with value 0 at
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10 C. Goldschmidt and M. Przykucki

x = 1/2, we obtain

lim
n→∞

P(An,α) =
√

1−2α
1−α

for α < 1/2.

Case α � 1/2. This follows straightforwardly since, by coupling, for α � 1/2 we have

lim
n→∞

P(χ(Tn,Pn,�αn�) ∈ {0,1}) � inf
γ<1/2

lim
n→∞

P(χ(Tn,Pn,�γn�) ∈ {0,1})) = 0.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1.2, which is now
the only missing piece in our proof of Theorem 1.1. In Section 3 we discuss some generalizations
of our results. In particular, we discuss a related model studied by Jones [10].

2. Parking on a critical Poisson Galton–Watson tree

The following simple proposition gives us a first piece of information about parking on critical
Galton–Watson trees.

Proposition 2.1. Let α ∈ (0,1) and let X denote the number of cars that arrive at the root of a
critical Galton–Watson tree with Po(1) offspring distribution. We have

p = P(X = 0) � exp(−1−α) > 0.

Moreover, if the solution to the RDE (1.3) has a finite mean then p = 1−α .

Proof. The lower bound on p follows from the fact that if the root of the Galton–Watson tree
has zero children and no cars want to park at it directly then we have X = 0. Thus

p � P(N = 0,P = 0) = exp(−1)exp(−α).

Now, taking expectations in (1.3), we obtain

E[X ] = α +E[X ]−P(X � 1)

so that either P(X � 1) = α or E[X ] = ∞.

Let G(s) = E[sX ], s � 0, be the probability generating function of X . We have

G(s) = E[sP]E[E[s(X−1)+ ]N ]

= exp(α(s−1))exp(E[s(X−1)+ ]−1)

= exp(α(s−1)−1)exp(E[sX−1]+ (1− s−1)p)

= exp(s−1G(s)+αs−α −1+(1− s−1)p). (2.1)

The aim of the lemmas that follow is to show that for α � 1/2 we indeed have p = 1−α , i.e.
the value suggested by Proposition 2.1.
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Parking on a Random Tree 11

Lemma 2.2. For any α ∈ (0,1), we have p � 1−α .

Proof. Recall that a critical Galton–Watson tree is finite almost surely, and so are the Po(1)
numbers of car arrivals on every vertex, hence X < ∞ almost surely and G(1) = 1. Our proof
is based on the calculation of the expectation of X . To find E[X ] we use Abel’s theorem, which
states that when X < ∞ we have E[X ] = G′(1−). Differentiating (2.1), we obtain

G′(s) = [−s−2G(s)+ s−1G′(s)+α + ps−2]G(s),

and rearranging yields

G′(s) =
(αs2 + p−G(s))G(s)

s(s−G(s))
. (2.2)

Since G(1) = 1, the limit as s → 1 of the denominator in (2.2) is 0. If p < 1−α , the limit of
the numerator is some negative constant. Hence the expectation of X is infinite in absolute value,
and since E[X ] = −∞ is impossible, we must have that G(s)− s converges to zero from above,
i.e. G(s) � s for s ∈ [0,1]. But since also G(s) � 1 for s ∈ [0,1], this implies that, as s → 1, the
limit of the derivative of G(s) is at most 1, i.e. E[X ] � 1, contradicting E[X ] = ∞. Hence we must
have p � 1−α .

It remains to show that p � 1−α when α � 1/2. This turns out to be more complicated, and
we need to learn more about the exact form of G(s) in order to achieve it.

Let Wi, i ∈ Z, denote the branches of the Lambert W-function, i.e. the branches of the inverse
of f (z) = zez, z ∈ C. In particular, this implies that for all i ∈ Z we have Wi(z)e

Wi(z) = z. (See, for
example, Corless, Gonnet, Hare, Jeffrey and Knuth [8].) Recall that

W−1 : [−e−1,0) → (−∞,−1] and W0 : [−e−1,∞) → (−1,∞]

are the two real-valued branches of W . We shall often use the following property of the Lambert
W-function.

Fact 2.3. For all x � −1 we have W−1(xex) = x.

Proof. Let x < −1. Obviously, taking y = x, we obtain a solution to yey = xex, hence there is
some branch Wi of the Lambert W-function such that Wi(xex) = x. Since x∈R, we must have i = 0
or i = −1. However, we know that W0(x) > −1 for all x � −e−1, so we must have W−1(xex) = x.
We complete the proof of the fact by observing that also W−1(−e−1) = −1.

In the following lemma we show that there are only two possible values that G(s) can take for
any s ∈ (0,1).

Lemma 2.4. For all s ∈ (0,1] we have

G(s) = fi(s) = −sWi

(
−1

s
exp(αs−α −1+(1− s−1)p)

)
(2.3)

for some i = i(s) ∈ {0,−1}.
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12 C. Goldschmidt and M. Przykucki

Proof. Multiplying both sides of (2.1) by −s−1 exp(−s−1G(s)) we obtain

−s−1G(s)exp(−s−1G(s)) = −s−1 exp(αs−α −1+(1− s−1)p).

By the definition of the Lambert W-function, this implies that

−s−1G(s) = Wk

(
−1

s
exp(αs−α −1+(1− s−1)p)

)

for some k ∈ Z. The lemma then follows from the fact that G(s) must take real values.

The condition that G(0) = p > 0 and the continuity of G allow us to identify that for all
α ∈ (0,1), G(s) = f−1(s) in a neighbourhood of s = 0. However, let us remark that this does
not imply that G(s) = f−1(s) on the whole of (0,1): it is possible that we change branch of the
function within the interval. We shall return to this when we discuss the case α > 1/2.

Lemma 2.5. For all α ∈ (0,1) there exists some εα > 0 such that for s ∈ (0,εα) we have

G(s) = −sW−1

(
−1

s
exp(αs−α −1+(1− s−1)p)

)
.

Proof. To prove the lemma it is enough to show that lims→0 f0(s) = 0 �= p = G(0). Indeed,
since p > 0, we have

−1
s

exp(αs−α −1+(1− s−1)p) → 0

as s → 0. Since W0 is continuous and satisfies W0(0) = 0, this implies lims→0 f0(s) = 0.

As a check, we observe that W−1(x) ∼ log(−x) for x ↑ 0, and so as s ↓ 0 we have

−sW−1

(
−1

s
exp(αs−α −1+(1− s−1)p)

)
→ p.

Both W0(s) and W−1(s) are defined on [−e−1,∞) and they are equal if and only if s = −e−1.
For α ∈ (0,1/2] and p � 1−α this allows us to identify W−1 as the branch of the Lambert
W-function that gives us the formula for G(s) for all s ∈ (0,1].

Corollary 2.6. If α � 1/2 then

G(s) = −sW−1

(
−1

s
exp(αs−α −1+(1− s−1)p)

)
. (2.4)

for all s ∈ (0,1].

Proof. By Lemma 2.5, the corollary holds in some small neighbourhood of 0. By the continuity
of G(s) and of the branches of the W-function, in order to complete the proof it is therefore
enough to show that f0(s) �= f−1(s) for all s ∈ (0,1).

To do this, we first observe that the argument of W in (2.4) equals −e−1 for s = 1, so con-
sequently f0(1) = f−1(1). The corollary will follow if we can show that for all s ∈ (0,1) we
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Parking on a Random Tree 13

have

−1
s

exp(αs−α −1+(1− s−1)p) > −exp(−1),

which is equivalent to

g(s) = αs−α +(1− s−1)p < logs.

Since g(1) = log(1) = 0, this will, in turn, follow if g′(s) > 1/s for all s ∈ (0,1). We have
g′(s) > 1/s if

αs2 − s+ p > 0.

Now, recalling that by Lemma 2.2 we have p � 1−α , we obtain

αs2 − s+ p � αs2 − s+1−α = α(s−1)
(

s− 1
α

+1

)
,

and the right-hand side is strictly positive for all s ∈ (0,1) if α � 1/2. So we do indeed have
g′(s) > 1/s for all s ∈ (0,1). Hence, for α � 1/2 the graphs of f0(s) and f−1(s) do not intersect
in (0,1), and since f−1(s) gives the formula for G(s) near 0, the corollary follows.

Corollary 2.7. For all α ∈ (0,1/2], we have p = 1−α .

Proof. By Corollary 2.6 we have G(s) = f−1(s) for all s ∈ (0,1]. Suppose that p > 1−α . Then
s∗ = (1− p)/α ∈ (0,1) and so −1/s∗ < −1. Since also

αs∗ −α −1+
(

1− 1
s∗

)
p = 1− p−α −1+

1− p−α
1− p

p

=
−p−α + p2 +α p+ p− p2 −α p

1− p

=
−α

1− p
= − 1

s∗
,

by plugging s = s∗ into (2.4) by Fact 2.3 we obtain G(s∗) = 1. This is a contradiction since we
do not have P(X = 0) = 1. Hence we must have p = 1−α .

Once we know that for α � 1/2 we have p = 1−α , we can also find E[X ].

Lemma 2.8. For α ∈ (0,1/2], we have E[X ] = 1−
√

1−2α .

Proof. By (2.2) and Corollary 2.7 we have

G′(s) =
(αs2 +1−α −G(s))G(s)

s(s−G(s))
.

Since both numerator and denominator tend to 0 as s ↑ 1, we apply L’Hôpital’s rule to see that

lim
s↑1

αs2 +1−α −G(s)
s−G(s)

= lim
s↑1

2αs−G′(s)
1−G′(s)

=
2α −G′(1−)
1−G′(1−)

,
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14 C. Goldschmidt and M. Przykucki

which gives the relation

G′(1−) =
2α −G′(1−)
1−G′(1−)

.

Rearranging, we obtain

G′(1−)2 −2G′(1−)+2α = 0

and so G′(1−) = 1±
√

1−2α . Since X is stochastically increasing in α , we have that E[X ] is an
increasing function of α . So this identifies E[X ] = 1−

√
1−2α .

Equipped with Lemma 2.8 and Corollary 2.7 we can also deduce that E[X ] = ∞ when α > 1/2.

Corollary 2.9. For α > 1/2 we have E[X ] = ∞.

Proof. Obviously E[X ] is either a positive real constant or ∞. By the same argument as in the
proof of Lemma 2.8, we see that if p = 1−α then G′(1) is either infinite in absolute value or
complex, and so E[X ] must be ∞. If however p �= 1−α then by Proposition 2.1 we again have
E[X ] = ∞.

Theorem 1.2 case (1) now follows immediately from Corollary 2.7, Lemma 2.8 and Corol-
lary 2.6, and Theorem 1.2 case (2) is Corollary 2.9.

Before moving on to the proof of Theorem 1.3, let us discuss the case α > 1/2 a bit further.
We shall find this useful in Section 3 where we look at other related models.

We first show that if α > 1/2 then we have p > 1−α (note that by Proposition 2.1 this also
implies that E[X ] = ∞ for α > 1/2).

Lemma 2.10. If α > 1/2 then p > 1−α .

Proof. We prove the lemma by showing that for α > 1/2 and p = 1−α , the value of the
argument of Wi in (2.3) is less than −e−1 for s ∈ (1− εα ,1) for some εα > 0. Since W−1(s)
and W0(s), the real branches of the W-function, are only defined for s � −e−1, together with
Lemma 2.4 this gives us a contradiction.

Indeed, let

gp(s) = αs−α −1+(1− s−1)p,

hp(s) = −s−1 exp(gp(s)),

so that (2.3) can be rewritten as G(s) = −sWi(hp(s)) for some i = i(s) ∈ {0,−1}.
We clearly have gp(1) = −1 and hp(1) = −e−1. Also,

h′p(s) = exp(gp(s))(s−2 − s−1(α + ps−2)), (2.5)

which implies that h′1−α(1) = 0. We also see that

h′′p(s) = exp(gp(s))(−2s−3 +αs−2 +3ps−4 +(α + ps−2)(s−2 − s−1(α + ps−2)))

= exp(gp(s))(−α2s−1 +2αs−2 − (2+2α p)s−3 +4ps−4 − p2s−5).
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Parking on a Random Tree 15

This gives

h′′1−α(1) = e−1(−α2 +2α −2−2α +2α2 +4−4α −1+2α −α2)

= e−1(1−2α) < 0

for α > 1/2. Hence, as clearly h′′′1−α(s) < ∞ around s = 1, h1−α(s) <−e−1 for s < 1 large enough.
This completes the proof of the lemma.

Since for α > 1/2 we have p > 1−α , let us again look at s∗ = (1− p)/α ∈ (0,1). We have
gp(s∗) = −(s∗)−1 and so hp(s∗) = −(s∗)−1 exp(−(s∗)−1). By Fact 2.3, we see that

f−1(s
∗) = −s∗W−1(−(s∗)−1 exp(−(s∗)−1)) = 1

and since a probability generating function may not take the value 1 for s ∈ (0,1), we cannot
have G(s∗) = f−1(s

∗). Hence we must have G(s∗) = f0(s
∗). In the following lemma we prove a

considerably stronger result about the structure of G(s) when α > 1/2.

Lemma 2.11. Let α > 1/2. Then there is some s′ ∈ (0,s∗) such that G(s) = f−1(s) if s < s′ and
G(s) = f0(s) if s � s′.

Proof. We prove the lemma by analysing the function hp(s) defined in the proof of Lemma 2.10.
Since for α > 1/2 we cannot have G(s) = f−1(s) for all s ∈ (0,1), there must be some s′ ∈ (0,1)
such that hp(s′) = −e−1 (as this is the only way for the two branches of the Lambert W-function
to meet in (0,1)). In fact, s′ must be a turning point for hp(s) to make sure that we have a real
solution for all s ∈ (0,1).

By (2.5), we immediately see that there are at most two real solutions to h′p(s) = 0. Hence
hp(s) has at most two turning points in (0,1), and since we also have hp(1) =−e−1, s′ is the only
solution to hp(s′) = −e−1 in (0,1). By Lemma 2.5 we have that G(s) = f−1(s) for s ∈ (0,εα),
and we know that G(s∗) = f0(s

∗), so this implies that G(s) = f−1(s) for s < s′ and G(s) = f0(s)
for s � s′.

Corollary 2.12. Let α > 1/2. Then p ∈ (1−α,1/(4α)).

Proof. We have p > 1−α by Lemma 2.10. We also know that for α > 1/2 the two functions
f−1(s) and f0(s) must meet in (0,1), and so there is some s′ ∈ (0,1) such that hp(s′) =−e−1 and s′

is a turning point for hp(s). However, we also must have hp(1) =−e−1, as G(1) =−Wi(hp(1)) =
1. Hence hp(s) must have two turning points in (0,1), which by (2.5) implies that there must be
two solutions to

αs2 − s+ p = 0.

This implies that 1−4α p > 0, and the bound p < 1/(4α) follows.

Corollary 2.13. The value of s′ in Lemma 2.11 is

s′ =
1−

√
1−4pα
2α

.
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Figure 2. The graphs of f0(s) (black solid curve) and f−1(s) (grey dashed curve) for α = 0.9 and p = 0.251042,
giving s′ ≈ 0.3832.

Proof. Proceeding as in the proof of Corollary 2.12, we see that the turning points of hp(s) are

s1 =
1−

√
1−4pα
2α

and s2 =
1+

√
1−4pα
2α

(notice that for p > 1−α we have s1,s2 ∈ (0,1)). Now, as we discussed above, we must have
hp(s1) = −e−1 and hp(s2) > −e−1. Consequently, we have f−1(s1) = f0(s1).

In the following corollary let us finally summarize what we can say about the value of p in the
case α > 1/2.

Corollary 2.14. For α > 1/2, taking

s′ =
1−

√
1−4pα
2α

,

the value of p ∈ (1−α,1/(4α)) satisfies hp(s′) = −e−1.

Equipped with Lemma 2.11 and the above corollaries, we can understand the behaviour of
G(s) when α > 1/2. Since we do not have an analytic expression for p in that case, Figure 2
shows an approximation of the probability generating function of X when α = 0.9, in which case
we obtain p ≈ 0.251042 and s′ ≈ 0.3832.

3. Generalizations

Consider our parking process on a PGW(1) tree. There are two aspects of this model which one
might think of generalizing: the distribution of the number of cars arriving at each vertex, and the
offspring distribution of the Galton–Watson process, i.e. the laws of P and N respectively. One
specific such situation, which we shall summarize below, has been studied by Jones [10] in the
context of a model for rainfall run-off down a hill. (We emphasize that the results in our papers
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Parking on a Random Tree 17

were obtained independently, and it was only by a happy accident that we became aware of Jones’
work.) We will then give a brief overview of the sorts of generalizations that one might expect
in the situations of subcritical, critical and supercritical offspring distributions respectively. We
do not attempt an exhaustive survey here, but rather defer that to future work. We focus on the
random variable X and potential analogues of the phase transition (1.2). We think of the parking
process as a dependent version of site percolation, where vertices for which X > 0 are occupied.

Before we discuss generalizations, we remind the reader of an important result due to Kesten,
to which we will shortly make appeal.

Theorem 3.1 (Kesten [11]). Suppose that (Zn)n�0 is a Galton–Watson process with offspring
distribution ν such that ν(0) < 1 and μ = ∑∞

k=1 kν(k) � 1. Let T be the associated family tree.
Then if Tn is distributed as T conditioned on the event {Zn > 0}, we have

Tn
d−→ T∞,

as n → ∞, in the sense of local weak convergence, where T∞ is the random tree constructed as
follows. First, take an infinite path labelled by {1,2,3, . . .}, rooted at 1. To each node along the
path, attach an independent random number of children, with distribution ν̂(k) = (k + 1)ν(k +
1)/μ , k � 0. Then attach an independent Galton–Watson tree with offspring distribution ν rooted
at each of these neighbours of the infinite path.

In the case where ν is a Poisson distribution we have ν̂ = ν , and so this spine decomposition
has the particularly simple form we exploited earlier in the paper.

3.1. Binary branching, paired arrivals
We turn now to Jones’ results from [10]. He takes the offspring distribution to be

P(N = 0) = β , P(N = 1) = 1−2β , P(N = 2) = β ,

where β ∈ (0,1/4], and the arrival distribution to be

P(P = 0) = 1−α/2, P(P = 2) = α/2,

where α ∈ (0,2), so that we have E[P] = α . (Our parametrization differs from the one used
in [10] to provide an easier comparison with the results of Section 1.) Note that the offspring
distribution is critical for all values of β . Jones observes completely analogous phenomena to
those we have discussed above. Specifically, for each β ∈ (0,1/4], let

αc(β ) = 1+β −
√

β (2+β ). (3.1)

Then

E[X ] =

⎧⎪⎨
⎪⎩

1−α +2αβ −
√

1−2α(1−α/2+β )
2β

for α � αc(β ),

∞ for α > αc(β ).

(3.2)

(Jones formulates his results in terms of the random variable W = (X − 1)+ but it is relatively
straightforward to translate between the two situations.) For β = 1/4, for example, we get
αc(1/4) = 1/2 and at the point of the phase transition the mean is E[X ] = 3/2.
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Strikingly, Jones observes the same ‘branch-switching’ phenomenon in the supercritical phase
as we do. The probability generating function G(s) = E[sX ] satisfies a quadratic equation to
which there are two possible solutions: in the subcritical phase, one of them gives the generating
function for all s ∈ [0,1]; in the supercritical phase, the generating function follows one branch
at the start of the interval and the other from a point in the middle of the interval.

Jones also considers what happens in the tree conditioned to be infinite. By Theorem 3.1, we
have an infinite spine to each point of which we attach an extra edge (leading to an independent
copy of the unconditioned tree) with probability ν̂(1) = 2β and no edge otherwise. An analogous
random walk argument leads to a finite expected number of cars at the root if and only if

E[P]−1+E[N̂]E[(X −1)+] < 0,

where N̂ is a random variable with law ν̂ having expectation

E[N̂] = ∑
k�0

k(k +1)P(N = k +1)
E[N]

=
E[N2]−E[N]

E[N]
= E[N2]−1.

In other words, the expected number of cars at the root is finite if and only if

E[X ] <
E[P]var(N)+1−E[P]

var(N)
=

1−α +2αβ
2β

,

which by (3.2) and (3.1) occurs if and only if α < αc(β ). We emphasize that, as in the Poisson
case, the critical point is the same for the conditioned and unconditioned trees.

(Jones also partly generalizes his results to arbitrary arrival distributions with the same binary
branching but we will not give the details here.)

3.2. Subcritical branching
For completeness, we now show that a phase transition of the form (1.2) for E[X ] cannot occur
if the offspring distribution is subcritical.

Proposition 3.2. Let λ = E[N]. If λ < 1 then E[X ] < ∞ for all α � 0.

Proof. Write Q for the total progeny of the branching process. Then it is elementary that E[Q] =
1/(1−λ ). Now observe that we have the crude bound X � ∑Q

i=1 Pi and that the right-hand side
has expectation α/(1−λ ) which is finite for all α � 0.

3.3. Critical branching
Now suppose that we fix an offspring distribution such that λ = E[N] = 1 and var(N) < ∞, and
assume that var(P) < ∞.

Let us make the (unjustified) hypothesis that var(X) < ∞ whenever E[X ] < ∞. Then, using the
RDE (1.3) and considering the variances of the two sides, we see that

var(X) = var(P)+var((X −1)+)+E[(X −1)+]2var(N).

After rearrangement and cancellation this yields a quadratic equation for E[X ]:

0 = var(N)E[X ]2 −2(1−α +αvar(N))E[X ]+var(P)+α +α2(var(N)−1).
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The discriminant is

Δ = 4(1−2α +α2 +var(N)(α −α2 −var(P))),

and this quantity must be non-negative in order to obtain a meaningful value for E[X ]. Assuming
this to be the case then there are a priori two possible values for E[X ]:

1−α +αvar(N)±
√

1−2α +α2 +var(N)(α −α2 −var(P))
var(N)

.

In both the Poisson case we study in this paper, and the situation studied by Jones, we take the
smaller root, and this value is correct all the way up to the phase transition.

In order to talk meaningfully about a phase transition in a more general setting, we need a
family of distributions for P, parametrized by α = E[P] for α � 0. Again we assume var(P) < ∞
and write h(α) = var(P)+α2−α = E[P2]−α . Note that as P takes non-negative integer values,
P(P−1) � 0, and so h(α) � 0. Observe also that h(0) = 0. We will make the natural assumption
that P is stochastically increasing in α , which entails that h(α) = E[P(P− 1)] is an increasing
function.

We must then have that E[X ] is increasing as a function of α . The function α �→ (1−α)2 −
var(N)h(α) is decreasing on [0,1]. So if var(N) � 1, the numerator can only be an increasing
function if we take the smaller root. This argument leads us to make the following conjecture.

Conjecture 3.3. Suppose that λ = 1 and that var(N) � 1. Suppose that P is stochastically
increasing in α and that var(P) < ∞ for all α � 0. Define

αc = inf{α � 0 : α = 1−
√

var(N)h(α)}.

Then

E[X ] =

⎧⎪⎨
⎪⎩

1−α +αvar(N)−
√

(1−α)2 −var(N)h(α)
var(N)

if α � αc,

∞ if α > αc.

We conjecture that the jump from E[X ] < ∞ to E[X ] = ∞ coincides with the onset of long-
range dependence in the model: above αc, the occupied cluster of the root appears to become
macroscopic in the sense that it occupies a positive fraction of the tree. Since the size of the tree
has infinite expectation, this gives that X also has infinite expectation.

Consider now the tree conditioned to be infinite, work under the conditions of Conjecture 3.3
and suppose that the conjecture is true. Then the same argument as in Section 3.1 gives that, if X̃
is the number of cars visiting the root of the conditioned tree, we have E[X̃ ] < ∞ if and only if

E[X ] <
1−α +αvar(N)

var(N)
,

which occurs if and only if α < αc.
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3.4. Supercritical branching
Finally, let us consider the situation where λ = E[N] > 1. Let E[P] = α as usual. The first
difference we immediately observe here is that an analogue of Proposition 2.1 gives us

E[X ] =
λ −α −λ pλ

λ −1
,

where pλ = P(X = 0), whenever E[X ] is finite. Observe that the assumption that E[X ] is finite
does not give us an explicit formula for pλ . On the other hand, we can always bound E[X ]
from above by (λ −α)/(λ −1). Thus we see that as α increases from 0, E[X ] undergoes a
discontinuous phase transition from a bounded value to ∞. In fact a stronger statement, found in
the following theorem, is true.

Theorem 3.4. Suppose that E[N] = λ > 1 and that P is stochastically increasing in α = E[P].
Then there exists αc ∈ (0,1) such that if E[P] = α < αc then E[X ] < (λ −α)/(λ −1), while if
α > αc then, conditionally on the non-extinction of the tree, X = ∞ almost surely.

Proof. As already discussed, if α is such that E[X ] > (λ −α)/(λ −1) then E[X ] = ∞. Let αc

be the supremum of the set of α for which E[X ] is finite. We need to show that for α > αc we
have P(X = ∞ | |T | = ∞) = 1.

Observe that P(X = ∞ | |T | = ∞) is equal to either 0 or 1, as when this event has positive
probability, there almost surely exists some vertex of the tree which is visited by infinitely many
cars, and then the same must be true of the root. (On the other hand, if {|T | < ∞} has positive
probability then, conditionally on this event, |T | has finite mean. So then E[X ||T | < ∞] < ∞ by
the same argument as in the subcritical case.)

Let T be the tree with offspring distribution N. Assume first that P(N = 0) = 0 so that |T |= ∞
almost surely. Since λ = E[N] > 1, we also have P(N > 1) = β > 0. Choose an arbitrary path
(v0,v1,v2, . . .) from the root v0 of the tree to infinity, without revealing the rest of the tree. Observe
that every vi has at least one additional child (other than vi+1) with probability β .

For i � 0, let Xi be defined as follows. If vi has no other child but vi+1, set Xi = 0. Otherwise,
let wi be an arbitrary child of vi other than vi+1. Next, let Yi be the number of cars that arrive
at wi in the usual parking process on the subtree of T rooted at wi, and let Xi = (Yi − 1)+. By
assumption, we have E[Yi] = ∞, so also E[Xi|wi exists] = ∞. Hence,

E[Xi] = βE[Xi|wi exists] = ∞.

Thus by the random walk interpretation of the parking process on a path, and by coupling the
original parking process on T with the process we describe above, we see that the number X of
cars that arrive at the root is infinite almost surely.

Now, assume that P(N = 0) > 0 and let q = P(|T | < ∞). As P(N = 0) > 0 and E[N] > 1, we
have 0 < q < 1. Conditioned on {|T | = ∞}, the distribution of T is that of a multitype Galton–
Watson tree T̃ with vertices of two types, s and e. The root of T̃ is of type s. A vertex of type
s produces S children of type s and E children of type e, with probability generating function
G(x,y) = E[xSyE ] given by

G(x,y) =
GN((1−q)x+qy)−GN(qy)

1−q
.
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Most importantly, the probability that a vertex of type s has no children of type s is given by

G(0,1) =
GN(q)−GN(q)

1−q
= 0.

Moreover,

∂
∂x

G(x,1) =
G′

N((1−q)x+q)(1−q)
1−q

= G′
N((1−q)x+q),

which for x = 1 is equal to G′
N(1) = E[N] > 1. On the other hand, the vertices of type e produce

only children of type e, and the subtrees rooted at vertices of type e are subcritical with offspring
distribution Ne given by P(Ne = k) = qk−1

P(N = k) for k � 0. (For more on the distributions of
conditioned Galton–Watson trees see Abraham and Delmas [1].)

To complete the proof, we now look at the parking process on the subtree of T̃ induced by
the vertices of type s. By the above, these vertices form a supercritical Galton–Watson tree with
offspring distribution Ns satisfying P(Ns = 0) = 0. Hence, we are back in the case we have already
analysed and, by coupling the parking process limited to this subtree with the original process,
we see that we again have X = ∞ almost surely.

In the following proposition we discuss a natural example of the parking process in the su-
percritical setting: the complete infinite binary tree, with the distribution of the car arrivals
concentrated on the values 0 and 2 only. In this case, we are able to provide bounds on the
critical value αc.

Proposition 3.5. For the complete binary tree (i.e. P(N = 2) = 1) with arrival distribution

P(P = 2) = α/2, P(P = 0) = 1−α/2,

there exists αc ∈ [1/32,1/2] such that if α < αc then E[X ] < 2−α , while if α > αc then X = ∞
almost surely.

Proof. By Theorem 3.4 we know that we either have E[X ] < 2−α or X = ∞ almost surely. Let
us show that for α > 1/2 the latter holds. Consider first only the vertices in the ‘even’ generations
of the tree (with the root being the 0th generation), with edges ‘inherited’ from the original tree
(so that every vertex is adjacent to its four grandchildren). This gives a complete quaternary tree.
Consider now the set of vertices in this quaternary tree at which there are non-zero arrivals. For
α/2 > 1/4, there is an infinite path of initially occupied vertices. Observe that these vertices
on their own give us an infinite eventually occupied path in the original tree, as the vertices in
even generations on the path each have P = 2. However, infinitely many of the vertices in odd
generations on this path will also be initially occupied almost surely, which implies that infinitely
many cars will arrive at the starting vertex of the path, and so also at the root of the tree. Thus
X = ∞ almost surely in this case.

Now assume that α < 1/32. We want to show that the eventually occupied cluster of the root
is finite with positive probability. This implies that X < ∞ with positive probability, which in turn
gives us X < ∞ almost surely, and so also E[X ] < 2−α . If the cluster of eventually occupied
vertices containing the root is infinite, then for any M there is some n � M and a set A of initially
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occupied vertices of size at least n/2 (as P = 2 for an initially occupied vertex) such that the cars
arriving in A on their own occupy a cluster of size n containing the root in the final configuration.

Such a cluster of size n, together with all the immediate descendants of its vertices, forms a
binary tree with n + 1 leaves. It is well known that the number of such trees is equal to the nth
Catalan number

Cn =
1

n+1

(
2n
n

)
< 4n.

There are
( n
�n/2�

)
< 2n ways to choose the set A. Therefore, the probability of the event that such

a cluster of size n can be found is at most
∞

∑
n=M

Cn

(
n

�n/2�

)
(α/2)n/2 <

∞

∑
n=M

4n2n(α/2)n/2 <
∞

∑
n=M

((32α)1/2)n =
((32α)1/2)M

1− (32α)1/2
< 1

for α < 1/32 and M = Mα large enough. This completes the proof of the proposition.
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