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The minimum spanning tree. Consider the complete graph, Kn, on vertices
labelled by {1, 2, . . . , n}. Put independent random weights on the edges which
are uniformly distributed on [0, 1] and find the spanning tree Mn of smallest total
weight; this is the so-called minimum spanning tree (MST). Now think of Mn as
a metric space by taking the metric to be the graph distance divided by n1/3. We
also endow Mn with a probability measure by placing mass 1/n on each vertex.
Our main result is the following theorem.

Theorem 1. There exists a random compact measured metric spaceM such that,
as n→∞,

Mn →M
in distribution.

The convergence here is in the sense of the Gromov–Hausdorff–Prokhorov dis-
tance, which we now define.

The Gromov–Hausdorff–Prokhorov distance. Let (X, d, µ) and (X ′, d′, µ′)
be measured metric spaces. A correspondence between X and X ′ is defined to be
a measurable subset R of X ×X ′ such that for every x ∈ X there exists x′ ∈ X ′
such that (x, x′) ∈ R and vice versa. A partial coupling of µ and µ′ is a finite
Borel measure on X×X ′ such that p∗π ≤ µ and p′∗π ≤ µ′, where p : X×X ′ → X
and p′ : X ×X ′ → X ′ are the canonical projections. The distortion of R is

sup{|d(x, y)− d′(x′, y′)| : (x, x′) ∈ R, (y, y′) ∈ R}
and the discrepancy of π is

max{(µ− p∗π)(X), (µ′ − p′∗π)(X ′)}.
The Gromov–Hausdorff–Prokhorov distance, dGHP((X, d, µ), (X ′, d′, µ′)), between
(X, d, µ) and (X ′, d′, µ′) is then the infimum of the values ε > 0 such that there
exist a correspondence R and a partial coupling π such that the distortion of R and
the discrepancy of π are both strictly smaller than ε and, furthermore, π(Rc) < ε.

Write M for the set of measured isometry-equivalence classes of compact sep-
arable measured metric spaces. Then (M ,dGHP) is a complete separable metric
space.

Scaling limits of random discrete trees. Theorem 1 is very much in the spirit
of recent work on the scaling limits of a wide variety of random discrete trees,
which began with the seminal work of Aldous [4, 5, 6] in the early 1990’s. The
prototypical result [4, 8] is that the uniform random tree on vertices labelled by
{1, 2, . . . , n}, considered as a measured metric space, converges in distribution to
the Brownian continuum random tree (CRT). The Brownian CRT is an example
of a random R-tree (see Le Gall [9]).
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Kruskal’s algorithm and the Erdős–Rényi random graph. The proof of
Theorem 1 relies on Kruskal’s algorithm for building the MST.

• Start from a forest of isolated vertices. List the edges of the graph as
e1, e2, . . . , e(n

2)
in increasing order of weight.

• At step i, add edge ei as long as it does not create a cycle.
• Stop when all vertices are connected.

Now consider the Erdős–Rényi random graph process, a natural coupling of
the different Erdős–Rényi random graphs (see, for example, [7] and the references
therein). This process may be obtained as follows: for a fixed parameter value
p ∈ [0, 1], keep all edges whose weight is at most p. By using the same edge-
weights, we can easily couple the random graph process and a continuous-time
version of Kruskal’s algorithm so that, at a fixed time p, the components of the
two processes have the same vertex-sets (and, indeed, so that the components of
the Kruskal process are the MST’s of the components of the Erdős–Rényi process).
In particular, it is straightforward to see that the Kruskal process also undergoes
the Erdős–Rényi phase transition at p = 1/n. In particular, for p = (1 + ε)/n,
there is a unique giant component containing a positive proportion of the vertices.
It turns out that the metric structure of the MST has already essentially been
built by this point (although the vast majority of the mass still lies outside the
giant component).

In order to gain a finer understanding of the metric structure, we need to look
earlier in the evolution of the process, within the critical window i.e. when p = 1

n +
λ

n4/3 for some λ ∈ R. Results from [1, 2] (described by Nicolas Broutin elsewhere in
this report) tell us that for fixed λ, the Erdős–Rényi graph possesses a scaling limit
when the graph distance is rescaled by n−1/3 within each component. This scaling
limit is a collection of random R-trees in each of which a finite number of points
have been identified to create cycles. By breaking these cycles appropriately, we
are able to obtain that, at a fixed point λ in the critical window, the Kruskal
process also has a scaling limit as a sequence of R-trees. Starting from a large
enough value of λ we are then able to control the way that the mass and metric
structure evolve as the smaller trees gradually attach to the largest tree, in order
to obtain our scaling limit.

The limit metric space. The limit metric space M is a random measured R-
tree, which is almost surely binary and whose mass measure is concentrated on
its leaves. It shares all of these properties with the Brownian CRT, T . However,
they are not the same object. Suppose that N(ε) is the number of balls of radius
ε > 0 needed to cover M. Then

N(ε)

log(1/ε)
→ 3

in probability, as ε→ 0. Since T has box-counting dimension 2, it follows that the
laws of M and T are mutually singular.
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The results presented here are the subject of the paper [3] which is currently in
preparation.
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