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We imagine a coalescent process as modelling the genealogy of a sample from a
population which is subject to neutral mutation. We work under the assumptions
of the infinitely many alleles model so that, in particular, every mutation gives
rise to a completely new type in the population. Mutations occur as a Poisson
process of rate ρ along the branches of the coalescent tree. The allelic partition

groups together individuals of the same allelic type, and is obtained by tracing
each individual’s lineage back in time to the most recent mutation. An example
of this construction is given below.

6

7

1

4

8

2

5

3

The allelic partition here is {1}, {2, 3, 5}, {4, 7, 8}, {6}. Let Nk(n) be the number
of blocks of size k in the allelic partition, when we start with a sample of n

individuals and let N(n) =
∑n

k=1 Nk(n). The allele frequency spectrum is the
vector (N1(n), N2(n), . . .) of block counts.

We are interested in the distribution of the allele frequency spectrum associated
with the Λ-coalescents, a class of exchangeable coalescent processes introduced by
Pitman [10] and Sagitov [11]. Each such process corresponds to a finite measure Λ
on [0, 1]. Since the state of a Λ-coalescent is an exchangeable random partition of N

for all times and the mutation occurs in a symmetric manner, the allelic partition is,
itself, exchangeable. This entails that there exists a sequence of underlying random
block frequencies F1 ≥ F2 ≥ . . . ≥ 0 such that

∑∞

i=1 Fi ≤ 1. The allelic partition
could then be viewed as the partition created by sampling from these (unknown)
frequencies in an i.i.d. manner, according to Kingman’s paintbox process. For a
general exchangeable random partition, the quantities Nk(n), k ≥ 1, and N(n)
(thought of the numbers of boxes discovered by the first n samples) have recently
been of particular interest; see Gnedin, Hansen and Pitman [8] and the references
therein.

For Kingman’s coalescent, the distribution of the allele frequency spectrum is
known completely and is given by the celebrated Ewens sampling formula [7]:

q(m1, m2, . . .) := P (N1(n) = m1, N2(n) = m2, . . .) =
n!θ

P

i≥1
mi

(θ)n

∏

j≥1 jmj mj !
,
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where θ = 2ρ and (θ)n = θ(θ + 1) . . . (θ + n− 1). For no other Λ-coalescent (apart
from the degenerate star-shaped coalescent with Λ = δ1) is q(m1, m2, . . .) known
explicitly, although Möhle [9] has proved a recursion that it must satisfy. However,
Berestycki, Berestycki and Schweinsberg [2, 3] have recently proved asymptotic re-
sults for the Beta coalescents with α ∈ (1, 2); that is, the coalescents corresponding
to

Λ(dx) =
1

Γ(α)Γ(2 − α)
x1−α(1 − x)α−1dx.

In this case,

nα−2N(n)
p
→

ρα(α − 1)Γ(α)

2 − α
and, for k ≥ 1,

nα−2Nk(n)
p
→

ρα(α − 1)2Γ(k + α − 2)

k!
as n → ∞.

The Bolthausen-Sznitman coalescent [4] is the α = 1 Beta coalescent i.e. Λ(dx) =
dx. It has several nice properties and seems to be more tractable than most other
Λ-coalescents. A significant difference between it and the Beta coalescents with
α ∈ (1, 2) is that the Bolthausen-Sznitman coalescent does not come down from
infinity; that is, it has infinitely many blocks for all time. The main result of [1]
gives the corresponding (and rather different) asymptotics for the allele frequency
spectrum of the Bolthausen-Sznitman coalescent:

Theorem. As n → ∞,
log n

n
N1(n)

p
→ ρ

and, for k ≥ 2,
(log n)2

n
Nk(n)

p
→

ρ

k(k − 1)
.

As a corollary, we obtain that log n

n
N(n)

p
→ ρ.

The proof of this theorem involves proving a fluid limit result for the path of the
coalescent with mutations, using the method described in Darling and Norris [5].
We need to add some structure in order to follow the mutations and so (following
Dong, Gnedin and Pitman [6]) we allow individuals to be in two possible states:
active (unmutated) or frozen (mutated). Blocks may contain both active and
frozen individuals, and the status of an individual is ignored by the operation of
coalescence. At rate ρ, any block containing active individuals receives a mutation.
A block can contain individuals which were frozen at different times, but all those
frozen at the same time form a block in the final allelic partition. The process
continues until all individuals are frozen. Now suppose that we start with n active
individuals in singleton blocks. For k ≥ 1, let Xn

k (t) be the number of blocks
containing k active individuals at time t. Let Zn

k (t) be the number of blocks of
size k in the final allelic partition which have already been formed by time t. Let
Tn = inf{t ≥ 0 :

∑n

k=1 Xn
k (t) = 0}. Then

(Xn
1 (t), Xn

2 (t), . . . , Zn
1 (t), Zn

2 (t), . . .)0≤t≤Tn
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is a Markov jump process whose terminal value is of interest to us. We show that
(
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n
Xn
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(

t
log n

)

, log n

n
Xn
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(

t
log n

)

, log n

n
Xn
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t
log n

)
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log n

n
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1

(

t
log n

)
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(log n)2

n
Zn

2

(

t
log n

)

,
(log n)2

n
Zn

3

(

t
log n

)

, . . .
)

0≤t≤(log n)Tn

behaves asymptotically like the deterministic function

(x1(t), x2(t), x3(t), . . . , z1(t), z2(t), z3(t), . . .)t≥0,

where

x1(t) = e−t, xk(t) =
te−t

k(k − 1)
, k ≥ 2,

z1(t) = ρ(1 − e−t), zk(t) =
ρ

k(k − 1)
(1 − e−t − te−t), k ≥ 2.

Heuristically, then, (log n)Tn should not be too far from inf{t ≥ 0 :
∑∞

k=1 xk(t) =
0} = ∞. It is possible to show rigorously that we do, indeed, have

log n

n
Zn

1 (Tn) ∼ z1(∞) = ρ and
(log n)2

n
Zn

k (Tn) ∼ zk(∞) =
ρ

k(k − 1)
, k ≥ 2,

as stated in the Theorem. See [1] for a full proof.
We remark that this fluid limit is ususual in two respects. Firstly, we scale

time down rather than up and, secondly, different co-ordinates of the process have
different scalings.
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