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Abstract. We consider fragmentations of an R-tree T driven by cuts arriving according to a Poisson process on T × [0,∞),
where the first co-ordinate specifies the location of the cut and the second the time at which it occurs. The genealogy of such a
fragmentation is encoded by the so-called cut-tree, which was introduced by Bertoin and Miermont (Ann. Appl. Probab. 23 (4)
(2013) 1469–1493) for a fragmentation of the Brownian continuum random tree. The cut-tree was generalised by Dieuleveut (Ann.
Appl. Probab. 25 (4) (2015) 2215–2262) to a fragmentation of the α-stable trees, α ∈ (1,2), and by Broutin and Wang (Bernoulli
23 (4A) (2017) 2380–2433) to the inhomogeneous continuum random trees of Aldous and Pitman (Probab. Theory Related Fields
118 (4) (2000) 455–482). In the first two cases, the projections of the forest-valued fragmentation processes onto the sequence
of masses of their constituent subtrees yield an important family of examples of Bertoin’s self-similar fragmentations (Ann. Inst.
Henri Poincaré Probab. Stat. 38 (3) (2002) 319–340); in the first case the time-reversal of the fragmentation gives an additive
coalescent. Remarkably, in all of these cases, the law of the cut-tree is the same as that of the original R-tree.

In this paper, we develop a clean general framework for the study of cut-trees of R-trees. We then focus particularly on the
problem of reconstruction: how to recover the original R-tree from its cut-tree. This has been studied in the setting of the Brownian
CRT by Broutin and Wang (Electron. J. Probab. 22 (2017) 80), who prove that it is possible to reconstruct the original tree in
distribution. We describe an enrichment of the cut-tree transformation, which endows the cut-tree with information we call a
consistent collection of routings. We show this procedure is well-defined under minimal conditions on the R-trees. We then show
that, for the case of the Brownian CRT and the α-stable trees with α ∈ (1,2), the original tree and the Poisson process of cuts
thereon can both be almost surely reconstructed from the enriched cut-trees. For the latter results, our methods make essential use
of the self-similarity and re-rooting invariance of these trees.

Résumé. Nous considérons des fragmentations d’un R-arbre T dirigées par des coupures qui arrivent selon un processus de
Poisson sur T × [0,∞), où la première composante désigne le point auquel se produit la coupure et le deuxième, l’instant auquel
elle a lieu. La généalogie d’une telle fragmentation est codée par l’arbre des coupes, qui a été introduit par Bertoin et Miermont
(Ann. Appl. Probab. 23 (4) (2013) 1469–1493) pour une fragmentation de l’arbre brownien. L’arbre des coupes a ensuite été
généralisé par Dieuleveut (Ann. Appl. Probab. 25 (4) (2015) 2215–2262) à une fragmentation des arbres α-stables, pour α ∈ (1,2),
et par Broutin et Wang (Bernoulli 23 (4A) (2017) 2380–2433) aux arbres continus inhomogènes d’Aldous et Pitman (Probab.
Theory Related Fields 118 (4) (2000) 455–482). Dans les deux premiers cas, l’évolution de la suite des masses des sous-arbres
apparaissant dans le processus de fragmentation constitue une famille importante de processus de fragmentation auto-similaires de
Bertoin (Ann. Inst. Henri Poincaré Probab. Stat. 38 (3) (2002) 319–340); dans le premier cas, une fois inversée dans le temps, la
fragmentation devient un coalescent additif. Remarquablement, dans tous ces cas, la loi de l’arbre des coupes est la même que celle
du R-arbre initial.

Dans cet article, nous développons un cadre général pour l’étude de l’arbre des coupes d’un R-arbre. Par la suite, nous nous
concentrons particulièrement sur le problème de la reconstruction : comment retrouver le R-arbre initial à partir de son arbre des
coupes. Ce problème a été étudié pour l’arbre brownien par Broutin et Wang (Electron. J. Probab. 22 (2017) 80), qui démontrent
qu’il est possible de reconstruire l’arbre initial en loi. Nous décrivons un enrichissement de la construction de l’arbre des coupes, qui
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dote l’arbre des coupes d’une structure supplémentaire que nous appelons une collection cohérente de routages. Nous démontrons
que ce procédé est bien défini sous des conditions minimales sur le R-arbre. Ensuite, nous démontrons que pour l’arbre brownien
ainsi que pour l’arbre α-stable avec α ∈ (1,2), l’arbre initial muni de son processus de Poisson de coupures peut être reconstruit
presque sûrement à partir de l’arbre des coupes enrichi. Pour ces derniers résultats, nous utilisons de façon essentielle l’auto-
similarité et l’invariance par réenracinement de ces R-arbres aléatoires.

MSC: Primary 60C05; secondary 05C05; 60G52; 60J80

Keywords: R-tree; Cut-tree; Fragmentation

1. Introduction

1.1. Cutting down trees

Consider a combinatorial tree Tn with vertices labelled by 1,2, . . . , n. A natural cutting operation on Tn consists of
picking an edge {i, j} uniformly at random and removing it, thus splitting the tree into two subtrees. Iterating on each
of these subtrees, we obtain a discrete fragmentation process on the tree, which continues until the state has been
reduced to a forest of isolated vertices.

A continuum analogue of this process has played an important role in the theory of coalescence and fragmentation.
Let T be a Brownian continuum random tree and consider cuts arriving as a Poisson point process P on T × [0,∞)

of intensity λ ⊗ dt , where λ is the length measure on the skeleton of the tree. Careful definitions of these objects will
be given below; for the moment, we simply note that λ is an infinite, but σ -finite measure, and that there is also a
natural probability measure μ on T which allows us to assign masses to its subtrees. This Poisson cutting of T was
first introduced and studied by Aldous and Pitman [9]. For s ≥ 0, let F(s) = (F1(s),F2(s), . . .) be the sequence of
μ-masses of the connected components of T \ {p : (p, t) ∈ P, t ≤ s}, listed in decreasing order. Then (F (s), s ≥ 0) is
an example of a self-similar fragmentation process, in the terminology of Bertoin [14]. Moreover, a time-reversal of
this fragmentation process gives a construction of the standard additive coalescent (see [9] for more details).

The uniform cutting operation on trees described in the first paragraph was first considered in the mathematical
literature in the early 1970’s by Meir and Moon [44,45]. They applied it repeatedly to the component containing a
particular vertex (labelled 1, say) and investigated the number of cuts required to isolate that vertex. In [44] and [45],
Meir and Moon focussed on cutting down two particular classes of random trees: uniform random trees, and random
recursive trees. In both cases, these models possess a useful self-similarity property: the tree containing the vertex
labelled 1 after the first cut is, conditioned on its size, again a tree chosen uniformly from the class in question.

This work spawned a line of research focussing primarily on the number of cuts, Nn, required to isolate the root
in various models of random trees; see, for example, [26,33,40–42,49]. Janson [42] considered the case where Tn is
a Galton–Watson tree with critical offspring distribution of finite variance σ 2, conditioned to have n vertices. (This
includes the case where Tn is a uniform random tree, since this is equivalent, up to a random labelling, to taking
the offspring distribution to be Poisson(1).) It is well known that the scaling limit of Tn in this case is the Brownian
continuum random tree T [5–7]. Janson made the striking observation that Nn/(σ

√
n) converges in law to a Rayleigh

distribution. The same limit holds for the rescaled distance between two uniformly chosen vertices in Tn, and is the
law of the distance between two uniformly chosen points in the Brownian continuum random tree. It was later shown
[3,15,17] that this common limit can be understood by using the cuts to couple Tn with a new tree T ′

n in such a way
that the number of cuts needed to isolate the vertex labelled 1 in Tn is the same as the distance between two uniformly-
chosen vertices in T ′

n, and where T ′
n also converges to the Brownian continuum random tree when suitably rescaled. If

Tn is a uniform random tree, this can, in fact, be done in such a way that Tn and T ′
n have exactly the same distribution

for each n, using a construction called the Markov chainsaw [3]. The Markov chainsaw takes the sequence of subtrees
which are severed from the subtree containing the root, and glues them along a path; one obtains a tree T ′

n which has
the same distribution as Tn along with two marked points (the extremities of the new path) which are uniform random
vertices of T ′

n. An analogous construction can be performed in the continuum.

1.2. Fragmentation and cut-trees

In this paper, we will focus on a construction which tracks the whole fragmentation, not just the cuts which affect the
component of the root. Consider a discrete tree Tn repeatedly cut at uniformly chosen edges. The cut-tree Cn of Tn
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Fig. 1. Left: A discrete tree T with vertex labels from {a, b, c, d, e, f, g}. Edges are marked with the time at which they are cut. Center: The
resulting cut tree C. Each internal vertex corresponds to a cut, and is labelled by the block of the fragmentation process which is split by that cut.
Right: Cuts correspond to edges in T ; here each internal vertex of C is labelled by the pair of endpoints of the corresponding edge.

represents the genealogy of this fragmentation process. In this setting, Cn is a binary tree with n − 1 internal vertices
and n leaves, where the leaves correspond to the vertices of Tn and the internal vertices to the non-singleton blocks
(that is, the collections of labels of the subtrees) appearing at some stage of the fragmentation. The tree Cn is rooted at
a vertex corresponding to [n] := {1,2, . . . , n}, and the two children of the root are the two blocks into which the first
cut splits [n]. More generally, for a non-singleton block B ⊂ [n], the two children of B are the two blocks into which
the next cut to arrive splits B . This is depicted in Figure 1.

The cut-tree was introduced by Bertoin in [15], where he considered the case in which Tn is a uniform random
tree with n vertices (although the name “cut-tree” was first coined subsequently in [17]). The idea of using a tree
to track the genealogy of a discrete fragmentation process also notably appears earlier in [38]. In [17], Bertoin and
Miermont took Tn to be a Galton–Watson tree with critical offspring distribution of finite variance σ 2, conditioned
to have n vertices. Bertoin and Miermont proved the following remarkable result. View Tn (resp. Cn) as a measured
metric space by taking σn−1/2 (resp. σ−1n−1/2) times the graph distance as the metric, and in both cases endowing
the vertices with the uniform probability measure. Then the pair (Tn,Cn) converges in distribution as n → ∞ (in
the Gromov–Prokhorov sense) to a pair of dependent Brownian continuum random trees (T ,C). The second CRT is
obtained from the first by a continuum analogue of the discrete cut-tree construction discussed above; we will describe
this in detail (and in greater generality) below, once we have introduced the necessary notation.

Cut-trees have been considered for other models of random discrete trees, notably for random recursive trees in [13,
16]. In that setting, the tree Tn itself (when endowed with the graph distance) does not possess an interesting scaling
limit, but the corresponding cut-tree Cn, thought of as a metric space using the graph distance divided by n/ logn, and
endowed with the uniform probability measure on its leaves, converges in the Gromov–Hausdorff–Prokhorov sense to
the unit interval endowed with the Lebesgue measure [16]. (We observe that there are minor variations in the way that
discrete cut-trees are defined in the existing literature. We will gloss over these differences since our primary interest
is in the continuous case, where there is no ambiguity of definition.)

The fragmentation of the Brownian continuum random tree via Poisson cutting was generalised to a fragmentation
process of the α-stable trees Tα , α ∈ (1,2), by Miermont in [47]. The stable trees are the scaling limits of Galton–
Watson trees Tn with critical offspring distribution in the domain of attraction of an α-stable law, conditioned to
have total progeny n. The heavy-tailed nature of the offspring distribution is reflected in the limit by the fact that the
branchpoints (or nodes) of the tree all have infinite degree almost surely. Despite this, the nodes can be given a notion
of size (which is made precise using a local time). In order to obtain a self-similar fragmentation, it is necessary now
for the cuts to occur at the nodes of Tα rather than along the skeleton. This is achieved by using a Poisson process
whose intensity at a particular node is proportional to the “size” of that node. The cut-tree Cα corresponding to this
fragmentation was introduced and studied in [25]. Again, it is the case that if Tn is a conditioned critical Galton–
Watson tree with offspring distribution in the domain of attraction of an α-stable law, and if Cn is the corresponding
discrete cut-tree (suitably adapted to take into account of cutting at vertices rather than edges), then (Tn,Cn) suitably
rescaled converges (in the Gromov–Prokhorov sense) to the pair (Tα,Cα), where Tα and Cα are (dependent) α-stable
trees. In the sequel, we will often think of and refer to the Brownian CRT as the 2-stable tree.

Broutin and Wang [19] generalised the Brownian cut-tree in a different direction, to the inhomogeneous continuum
random trees (ICRT’s) of Aldous and Pitman [11]. (These are the scaling limits of the so-called p-trees [10,22].)
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Cutting an ICRT according to the points of a Poisson process, whose intensity measure is now a linear combination of
the length measure on the skeleton and a measure on the nodes, again yields a sort of fragmentation process (although
no longer, in general, a self-similar or even Markovian one). Broutin and Wang established that (a particular version
of) the cut-tree of a p-tree is again a p-tree. They also showed that the cut-tree of a (discrete) p-tree converges to the
continuum cut-tree of the scaling limit ICRT. Moreover, the cut-tree of an ICRT again has the same law as the original
tree.

Abraham and Delmas [1], working in the continuum, proved an analogue of the Markov chainsaw result for the
Lévy trees of Duquesne and Le Gall [27], which form the general family of scaling limits of conditioned Galton–
Watson trees. In particular, they showed that there is a measure λ such that if one cuts the tree in a Poisson manner
with intensity λ ⊗ dt and glues the trees which get separated from the component containing the root along a line-
segment then, working under the excursion measure, one again obtains a Lévy tree with the same “law” as the original
tree. We understand that the cut-tree of a Lévy tree is the subject of work in progress by Broutin and Wang.

1.3. A general framework, and reconstruction

In this paper, we work directly in the continuum, and establish a general framework for the study of the cut-tree of
an R-tree T , where the cutting occurs according to a Poisson random measure on T × [0,∞) of intensity λ ⊗ dt ,
and where λ is any measure on T satisfying certain natural conditions. This encompasses all of the examples which
have previously been studied. In this general setting, we establish conditions under which it is possible to make sense
of a unique cut-tree C. Under a compactness assumption, we are also able to define the push-forwards of probability
measures on T to the cut-tree C, by studying the push-forwards of empirical measures in T .

Our main result concerns the problem of reconstruction, that is, recovering the original tree T from its cut-tree C.
In the Brownian CRT setting, the paper [3] describes a partial cut-tree, in which only cuts of the component containing
a root vertex are considered, and describes how to reconstruct T in distribution from this partial cut-tree. This result
is generalised by Broutin and Wang in [19] to a partial reconstruction result for cut-trees of ICRTs, and in [20] to
complete reconstruction in the case of the Brownian CRT. More precisely, in [20] they describe what they call a
“shuffling” operation on trees. Writing s(T ) for the shuffling of the tree T , they show that the pair (s(T ), T ) has the
same law as the pair (T ,C), where C is the cut-tree of T . Thus, the shuffling operation is a distributional inverse of
the cut-tree operation, for Brownian CRTs. However, the question of whether the original tree can be recovered almost
surely was left open. One of the contributions of this paper is to establish that, indeed, α-stable trees can almost surely
be reconstructed from their cut-trees, for all α ∈ (1,2].

To state our theorems formally requires some technical set-up, which we defer to the next section. It is, however,
instructive to consider the discrete reconstruction problem, since what we do in the continuum will be analogous and
the discrete version is rather easier to visualise. We will focus on the situation where we cut at edges, so that the
cut-tree is defined as at the start of Section 1.2. Then the extra information which is required in order to reconstruct
Tn from Cn is precisely the set of labels of the edges in the original tree.

Earlier we thought of an internal vertex of Cn as representing a non-singleton block B of the fragmentation, where
B contains all of the vertices labelling the leaves in the subtree above that internal vertex. We may equally think
of such an internal vertex as corresponding to the edge {i, j} which is cut and causes B to fragment, and from this
perspective it is natural to mark this vertex with the pair {i, j}. In the discrete setting, such markings provide enough
information to recover Tn; indeed, they fully specify the edge set of Tn, so reconstruction is trivial! However, this does
not generalise to the R-tree setting. A natural question, and one which we partly answer in this paper, is whether an
analogue of “labelling by cut-edges” can be defined for the cut-trees of R-trees; and, if so, whether such a labelling
contains enough information to allow reconstruction, as in the discrete setting. In the next paragraph, we sketch the
reconstruction procedure whose continuum analogue we develop in the sequel.

Suppose that we wish to recover the path between two vertices i and j . Then we may do so as follows. The subtrees
containing i and j were separated by a cut which is represented in Cn by the most recent common ancestor (MRCA)
of i and j ; call this node i ∧ j . The internal node i ∧ j is marked with two labels, k and �, where the vertex k lies
in the subtree above i ∧ j containing i and the vertex � lies in the subtree above i ∧ j containing j . We call the pair
(k, �) a signpost for i and j . So we now know that {k, �} is an edge of Tn lying on the path between i and j . In order
to recover the rest of the path, we need to determine the path between i and k and the path between � and j . We do
this by repeating the same procedure in the subtree above i ∧ j containing i and k and in the subtree above i ∧ j
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containing j and �. So, for example, we find the MRCA of i and k, i ∧ k, and consider its marks, which tell us about
the edge which was cut resulting in the separation of i and k into different subtrees. We continue this recursively in
each subtree, stopping in a particular subtree only when both of the marks on the MRCA are those of vertices already
observed on the path. We will call a routing the collection of signposts used in this process. Although somewhat
cumbersome in the discrete setting, this procedure turns out to generalise nicely to the continuum, whereas the notion
of edges does not.

1.4. Stable trees as fixed points

This work may be viewed in part as a contribution to the literature on transformations with stable trees as a fixed point.
The articles [31,32] were perhaps the first to explicitly take this perspective; motivated by problems from phyloge-
netics and algorithmic computational biology, they introduce cutting and regrafting operations on CRTs, and show
that these operations have the Brownian CRT as fixed points. The main results of [3,19,25] state that the Brownian,
inhomogeneous, and α-stable trees, respectively, are all fixed points of suitable cut-tree operations. We also mention
the quite recent work of Albenque and the third author [4], which describes a CRT transformation for which the Brow-
nian CRT is the unique fixed point, and furthermore shows that the fixed point is attractive. It would be interesting to
establish analogous results for cut-tree operations.

1.5. Outline

We conclude this rather lengthy introduction with an outline of the remainder of the paper. Section 2 formally in-
troduces some of the basic objects and random variables of study, including R-trees and their marked and measured
versions, and the α-stable trees. Section 3 presents our general construction of cut-trees of measured R-trees, and of
the routing information which we use for reconstruction.

In Section 4 we specialise our attention to stable trees, and show that almost sure reconstruction is possible in this
case. In Section 4.2 we establish a fixed-point identity for size-biased Mittag–Leffler random variables. We use this
identity in Section 4.3, together with an endogeny result and a somewhat subtle martingale argument, to show that it
is possible to almost surely reconstruct distances between two random points. We extend the reconstruction from two
points to all points in Section 4.4.

Finally, Section 5 contains some more speculative remarks, and presents several questions and avenues for future
research.

2. Trees and metric spaces

Fix a measurable space (S,S) and a finite measure μ on (S,S). We write X ∼ μ if X is an S-valued random variable
with law μ/μ(S). For R ∈ S , we write μR = μ(R)−1μ|R for the restriction of μ to R, rescaled to form a probability
measure.

2.1. R-Trees

We begin by recalling some standard definitions. For a metric space (M,d) and S ⊂ M , we write (S, d) as shorthand
for the metric space (S, d|S×S).

Definition 1. A metric space (T , d) is an R-tree if, for every u,v ∈ T :

• there exists a unique isometry fu,v from [0, d(u, v)] into T such that fu,v(0) = u and fu,v(d(u, v)) = v;
• for any continuous injective map f : [0,1] → T , such that f (0) = u and f (1) = v, we have

f
([0,1]) = fu,v

([
0, d(u, v)

]) := �u,v�.

A rooted R-tree is an R-tree (T , d,ρ) with a distinguished point ρ called the root.
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Note that we do not require R-trees to be compact.
Let T = (T , d) be an R-tree. The degree deg(x) of x ∈ T is the number of connected components of T \ {x}.

An element x ∈ T is a leaf if it has degree 1; we write leaf(T) for the set of leaves of T . An element x ∈ T is a
branchpoint if it has degree at least 3; we write br(T) for the set of branchpoints of T . For x, y ∈ T , write �x, y� for
�x, y� \ {x, y}. The skeleton of T, denoted skel(T), is the set

⋃
x,y∈T �x, y� of vertices with degree at least two. We

observe that the metric d gives rise to a length measure λd , supported by skel(T), which is the unique σ -finite measure
such that λd(�u,v�) = d(u, v).

A common way to encode a compact rooted R-tree is via an excursion, that is, a continuous function h : [0,1] →
R+ such that h(0) = h(1) = 0 and h(x) > 0 for x ∈ (0,1). For x, y ∈ [0,1], let

d(x, y) = h(x) + h(y) − 2 min
x∧y≤z≤x∨y

h(z),

and define an equivalence relation ∼ by declaring x ∼ y if d(x, y) = 0. Let T = [0,1]/ ∼. Then it can be checked
that (T , d) is an R-tree which may be naturally rooted at the equivalence class ρ of 0, and endowed with the measure
μ which is the push-forward of the Lebesgue measure on [0,1] onto T .

A rooted R-tree T = (T , d,ρ) comes with a genealogical order � such that x � y if and only if x ∈ �ρ,y�; we say
that x is an ancestor of y. (The symbol ≺ then has the obvious meaning.) The most recent common ancestor x ∧ y

of x, y ∈ T is the point of {z : z � x, z � y} which maximises d(ρ, z). For z ∈ T , write Tz = {x ∈ T : x ∧ z = z}, and
Tz = (Tz, d, z) for the subtree above z. Next, for y ∈ Tz write T

y
z = {x ∈ T : z /∈ �x, y�} ∪ {z} and Ty

z = (T
y
z , d, z) for

the subtree rooted at z containing y.
A measured R-tree is a triple (T , d,μ), where (T , d) is an R-tree and μ is a Borel probability measure on T .

A pointed R-tree is a triple (T , d, s), where s is a finite or infinite sequence of elements of T . We combine adjectives
in the natural way; thus, for example, a rooted measured pointed R-tree is a quintuple (T , d,ρ,μ, s).

2.2. Random R-trees

The topological prerequisites for the study of random R-trees have been addressed by several authors [2,21,31,32,34,
36,37,48]. Many of the aforementioned papers study random metric spaces more generally, but the theory specialises
nicely to the setting of R-trees, which is all we require in the current work. In this section we summarise the definitions
and results which we require.

For the rest of the paper we restrict our attention to complete, locally compact R-trees. Fix rooted measured pointed
R-trees T = (T , d,ρ,μ, s) and T′ = (T ′, d ′, ρ′,μ′, s′). We say T and T′ are isometric if there exists a metric space
isometry φ : T → T ′ which sends ρ to ρ′, μ to μ′, and s to s′. More precisely, s and s′ must have the same cardinality,
and φ must satisfy the following:

• φ(ρ) = ρ′;
• μ′ is the pushforward of μ under φ;
• writing sk and s′

k for the k’th elements of s and s′, respectively, then φ(sk) = s′
k for all k.

We define isometry for less adjective-heavy R-trees by relaxing the constraints on φ correspondingly. For example,
measured R-trees (T , d,μ) and (T ′, d ′,μ′) are isometric if there exists a metric space isometry φ : T → T ′ which
sends μ to μ′.

Let T be the set of isometry equivalence classes of (complete, locally compact) rooted measured R-trees. Endowing
T with the Gromov–Hausdorff–Prokhorov (GHP) distance turns T into a Polish space [2], which allows us to consider
T-valued random variables.

The GHP convergence theory for rooted measured pointed R-trees with a finite number of marked points is de-
scribed in Section 6 of [48]. In order to apply this theory in the current setting, two comments are in order. First, the
theory is described for compact, rather than locally compact spaces. However, the development proceeds identically
for locally compact spaces, so we omit the details. Second, in the present paper, we will in fact have a countably
infinite number of marks. We briefly comment on the additional, rather standard, topological considerations. For each
1 ≤ n ≤ ∞, fix Tn = (Tn, dn,μn) ∈ T and let sn = (sn,i , i ≥ 1) be a sequence of elements of Tn. We say the sequence
of marked spaces (Tn, dn,μn, sn) converges to (T∞, d∞,μ∞, s∞) if, for each m ∈ N, (Tn, dn,μn, (sn,i , i ≤ m)) con-
verges to (T∞, d∞,μ∞, (s∞,i , i ≤ m)) in the sense described in [48].
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We conclude by noting a sufficient condition for two R-trees to have the same law. Let T = (T , d,ρ,μ) and
T′ = (T ′, d ′, ρ′,μ′) be T-valued random variables such that μ and μ′ both almost surely have full support. Conditional
on T, let (Ui)i∈N be a sequence of i.i.d. points of T with common law μ and, conditional on T′, let (U ′

i )i∈N be a
sequence of i.i.d. points of T ′ with common law μ′. (See Section 6.5 of [48] for a treatment of the measurability
issues involved in randomly sampling from a random metric space.) Letting U0 = ρ and U ′

0 = ρ′, if

(
d(Ui,Uj )

)
i,j≥0

(d)= (
d ′(U ′

i ,U
′
j

))
i,j≥0,

then T and T′ are identically distributed (see [37], Theorem 3 1
2 .5).

2.3. The stable trees

Let (Xt , t ≥ 0) be a spectrally positive α-stable Lévy process with Laplace exponent E[exp(−λXt)] = exp(tλα).
A stable tree of index α ∈ (1,2] is a random measured R-tree T = (T , dT ,μ) encoded by an excursion of X of
length 1. This normalisation of the stable tree agrees with that used by Duquesne and Le Gall [28]; see Section 3.3 of
that work.

Equivalently, T is the scaling limit of large conditioned Galton-Watson trees whose offspring distribution is critical
and lies in the domain of attraction of an α-stable law. As the scaling limit of a sequence of rooted random trees,
T is naturally equipped with a root ρ. (The root ρ also arises as the equivalence class of 0 in the coding of T by
the continuous height function associated with a length-1 excursion of (Xt , t ≥ 0) as discussed in Section 2.1.) The
following theorem says that the root acts as a sample from the mass measure μ.

Theorem 2. Let (T , dT , ρ,μ) be a rooted stable tree of index α ∈ (1,2]. Let r be sampled from T according to μ.
Then (T , dT , r,μ) has the same (unconditional) distribution as (T , dT , ρ,μ).

This follows from Aldous [5] for α = 2 and Proposition 4.8 of Duquesne and Le Gall [28] for α ∈ (1,2).
The stable tree of index α = 2 corresponds to the Brownian continuum random tree encoded by (

√
2e(t))0≤t≤1,

where e denotes a normalised Brownian excursion. A significant difference between the Brownian CRT and the stable
trees of index α ∈ (1,2) is the fact that the Brownian CRT is almost surely binary (i.e. deg(b) = 3 almost surely for
all branchpoints b), whereas a stable tree of index α ∈ (1,2) almost surely has only branchpoints of infinite degree. In
the latter case, the “size” of a branchpoint b ∈ br(T) can be described by the almost sure limit

A(b) = lim
ε→0+

1

ε
μ

{
v ∈ T : b ∈ �ρ,v�, dT (b, v) < ε

}
,

whose existence was proved in [47] (see also [28]). It is useful to define a measure 	 on T , as follows. If α = 2 then
	 is twice the length measure on skel(T), and if α ∈ (1,2) then 	 = ∑

b∈br(T ) A(b) · δb .
The next theorem concerns the self-similarity of the stable trees, and will play an important role in Section 4. Let

x, y, z be independent points of T with common law μ, and let b be the common branchpoint of x, y, z (i.e. the unique
element of �x, y� ∩ �x, z� ∩ �y, z�). Recall that T x

b is the subtree rooted at b containing x, and write Tx and Ty for the
measured R-trees induced by (T x

b ,μ(T x
b )−1+1/α · d, b,μT x

b
) and (T

y
b ,μ(T

y
b )−1+1/α · d, b,μT

y
b
) respectively.

Theorem 3.

1. The trees Tx and Ty are independent α-stable trees, independent of the vector (μ(T x
b ),μ(T

y
b )).

2. Conditionally on Tx (resp. Ty ), the point x (resp. y) is sampled from T x (resp. T y ) according to its rescaled mass
measure.

Proof. See Theorem 2 of Aldous [8] for the case α = 2 and Corollary 10 of Haas, Pitman and Winkel [39] for
α ∈ (1,2). �

We refer the reader to [27,28,46,47] for more on the theory of stable trees.



1356 L. Addario-Berry, D. Dieuleveut and C. Goldschmidt

3. The cut-tree of an R-tree: General theory

3.1. Defining branch lengths for the cut-tree

Throughout Section 3 we let T = (T , dT ,μ) be an R-tree with μ(T ) = μ(leaf(T )) = 1. We further fix a σ -finite Borel
measure λ on T with λ(leaf(T)) = 0 and such that λ(�x, y�) < ∞ for all x, y ∈ T ; this implies that λ is σ -finite. Let
P = ((pi, ti), i ∈ I ) be a Poisson point process on T × [0,∞) with intensity measure λ ⊗ dt .

We view each point pi as a cut, which arrives at time ti . For all t ≥ 0 and x ∈ T \ {pi : ti ≤ t}, let T (x, t) be the
connected component of T \{pi : ti ≤ t} containing x, and let T(x, t) be the corresponding R-tree. For x ∈ {pi : ti ≤ t},
let T (x, t) be the subtree of T containing only the point x.

For points x, y ∈ T , let

t (x, y) = inf
{
t : ∃(p, t) ∈ P with p ∈ �x, y�

};
if t (x, y) is finite then let (p(x, y), t (x, y)) be the point of P which first separates x and y. Next, for S ⊂ T , let
t (S) = inf{t (x, y) : x, y ∈ S} be the first time a cut hits S, and write t (x) = t ({x}) = t (x, x) for the first time x is hit.

Next, for t ≥ 0, we define

�(x, t) =
∫ t∧t (x)

0
μ

(
T (x, s)

)
ds,

and �(x) = �(x, t (x)). Then, for x, y ∈ T , let

D(x,y) =
∫ t (x)

t (x,y)

μ
(
T (x, s)

)
ds +

∫ t (y)

t (x,y)

μ
(
T (y, s)

)
ds.

If t (x, y) = ∞ this means that D(x,y) = 0. Note that if �(x) < ∞ and �(y) < ∞ then

D(x,y) = �(x) + �(y) − 2�
(
x, t (x, y)

) = �(x) + �(y) − 2�
(
y, t (x, y)

)
.

Proposition 4. D is a pseudo-metric (possibly taking infinite values).

Proof. Clearly D(x,y) = D(y,x), so it suffices to verify that D satisfies the triangle inequality. Fix x, y, z ∈ T ; we
aim to show that D(x, z) ≤ D(x,y) + D(y, z). If D(x,y) = ∞ or D(y, z) = ∞ then there is nothing to prove, so we
assume these quantities are finite. We have t (x, z) ≥ min(t (x, y), t (y, z)), so we henceforth assume without loss of
generality that t (x, z) ≥ t (x, y) and t (y, z) ≥ t (x, y).

If t (x, y) = ∞ then t (y, z) = t (x, z) = ∞ and so D(x,y) = D(y, z) = D(x, z) = 0. If t (x, y) < ∞, using the fact
that T (y, s) = T (z, s) for s ∈ [t (x, y), t (y, z)), we get

D(x,y) + D(y, z) ≥
∫ t (x)

t (x,y)

μ
(
T (x, s)

)
ds +

∫ t (y)

t (x,y)

μ
(
T (y, s)

)
ds +

∫ t (z)

t (y,z)

μ
(
T (z, s)

)
ds

≥
∫ t (x)

t (x,z)

μ
(
T (x, s)

)
ds +

∫ t (y,z)

t (x,y)

μ
(
T (z, s)

)
ds +

∫ t (z)

t (y,z)

μ
(
T (z, s)

)
ds

≥
∫ t (x)

t (x,z)

μ
(
T (x, s)

)
ds +

∫ t (z)

t (x,z)

μ
(
T (z, s)

)
ds = D(x, z),

as required. �

Note that t (x, y) is exponentially distributed with parameter λ(�x, y�) < ∞. Thus t (x, y) is a.s. finite and so
D(x,y) is a.s. positive. However, it is possible that D(x,y) = 0 for some pairs x, y with x �= y.

Now fix a sequence u = (ui, i ≥ 1) of distinct points of T . The next proposition describes a tree encoding the
genealogical structure that P , viewed as a cutting (or fragmentation) process, induces on the elements of u.
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Fig. 2. Left: the subtree of T spanned by vertices u1, . . . , u5. Cuts on this subtree arrive at times t1 < t2 < t3. Right: the resulting genealogical tree
F with leaves 1, . . . ,5. The figure indicates the correspondence between cuts and branchpoints of F .

Proposition 5. Suppose that almost surely �(ui) < ∞ for all i ≥ 1. Then almost surely, up to isometry-equivalence
there is a unique R-tree C◦ = C◦(T,P,u) := (C◦, d◦, ρ) containing points {ρ} ∪ N and satisfying the following
properties.

1. The points C◦ of C◦ satisfy C◦ = ⋃
i∈N�ρ, i�.

2. For all i, j ∈ N, d◦(ρ, i) = �(ui) and d◦(i, j) = D(ui, uj ).

Proof. First, the integrability condition �(ui) < ∞ for all i ≥ 1 implies that, almost surely, d◦(i, j) < ∞ for all
i, j ∈N∪ {ρ}. For n ∈N we write [n] = {1, . . . , n}.

We next show that for any metric � on N ∪ {ρ}, up to isometry there is at most one R-tree containing N whose
restriction to N is isometric to (N,�). Indeed, suppose R = (R,dR) and R′ = (R′, dR′) are two such trees. Then for
all n ∈ N, the subtrees of R and R′ induced by

⋃
i,j∈[n]∪{ρ}�i, j � are easily seen to be isometric. Further, any isometry

between them induces an isometry of the subtrees spanned by
⋃

i,j∈[k]∪{ρ}�i, j �, for any k < n. We may thus take a
projective limit to obtain an isometry between R and R′.

It remains to prove existence, which in fact follows in much the same way once we verify that the distances specified
by D are “tree-like”. More precisely, suppose that for each n ∈ N, there exists an R-tree Rn = (Rn, dn) containing
[n] ∪ {ρ} such that D(i, j) = dn(i, j) for all i, j ∈ [n] ∪ {ρ} and such that Rn = ⋃

i≤n�ρ, i�. Then a projective limit
of the sequence Rn has the required properties.

Finally, for any t ≥ 0, the collection of cuts {pi : ti ≤ t} induces a partition of [n]: for j, k ∈ [n], j and k lie in
the same part at time t if t (uj , uk) > t . This partition-valued process has an evident genealogical structure, and so
describes a rooted discrete tree F with leaves [n]. In this picture, ρ is simply the root of F . Note that ρ has degree
one; see Figure 2.

To each internal node v of F , let L(v) be the set of leaves which are descendants of v. For each edge vw of F ,
with v an internal node and w a child of v, give vw length

∫ t ({uj ,j∈L(w)})

t ({uj ,j∈L(v)})
μ

(
T (ui, s)

)
ds,

where i is any element of L(v). Finally, the child of ρ is the unique internal node v with L(v) = [n]; let the edge ρv

have length

∫ t ({uj ,j∈[n]})

0
μ

(
T (ui, s)

)
ds,

where i ∈ [n] is arbitrary. The resulting R-tree has the correct distance between any pair a, b ∈ [n] ∪ {ρ}, and is
spanned by the paths between such pairs. (The only subtlety to note is that some branch lengths in this tree may be
zero, if there exist points among {ui, i ≤ [n]} which are cut.) This completes the proof of existence. �
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It deserves emphasis that the elements of N are random points of the random tree C◦: it is not possible to recover
their locations from C◦ alone. In fact an analogue of the preceding proposition also holds in the setting where �(ui)

may be infinite for some i. Though we do not require this case in the current work, its elaboration introduces several
ideas we do use, so we now describe it. For t ≥ 0, let

Dt(x, y) = �(x, t) + �(y, t) − 2�
(
x, t ∧ t (x, y)

)
.

This is almost surely finite for any fixed x, y ∈ T , and Dt(x, y) ↑ D(x,y) as t → ∞. Following the proof of Propo-
sition 5 shows that there is a unique (up to isometry-equivalence) R-tree Ct = (Ct , dt , ρ) satisfying the obvious
modifications of conditions (1) and (2).

The trees Ct = (Ct , dt , ρ) are increasing in the sense that for t < t ′, Ct may be realised as a subtree of Ct ′ . We may
therefore define C◦ as the increasing limit of the process (Ct , t ≥ 0). This definition agrees with that of Proposition 5
when �(ui) is almost surely finite for all i ∈ N. It additionally endows skel(C◦) with a labelling by “arrival time”: for
x ∈ skel(C◦), let α(x) = inf{t : x ∈ Ct }.

To see that this is a measurable quantity, first note that for fixed j ∈ N, the geodesic �ρ, j � is isometric to the line
segment [0, �(uj )). The function m : [0,∞) → [0,1) given by m(s) = μ(T (uj , s)) is clearly measurable. Thus, for
x ∈ �ρ, j �, let

α(x) = inf

{
t :

∫ t

0
m(s)ds ≥ d◦(ρ, x)

}
= inf

{
t : �(uj , t) ≥ d◦(ρ, x)

}
. (1)

It is easily seen that these labellings are consistent in that the label α(x) does not depend on the choice of j with
x ∈ �ρ, j �.

Write (C,d,ρ) for the completion of C◦ = (C◦, d◦, ρ). Note that the elements of N are points of C◦ and thus of
(C,d,ρ). For n ∈ N, let C(n) = (C(n), d,ρ) be the subtree of C◦ spanned by {ρ} ∪ [n], so having points

⋃
j≤n�ρ, j �.

This is essentially the tree Rn from within the proof of Proposition 5.

3.2. Measures on the cut-tree

We next define, for each n ∈N, a measure νn on (C,d,ρ) whose support is C(n). Let

Pn = {
(p, t) ∈P : ∃j ≤ n such that T (uj , t) �= T (uj , t−)

}
.

This is the set of points whose cuts fall within a subtree containing some point {uj , j ≤ n}. For s ≥ 0, let Pn(s) =
{(p, t) ∈ Pn : t ≤ s}. We likewise define P(s) = {(p, t) ∈P : t ≤ s}.

For a set S ⊂ T , we say a connected component T ′ of T \ S is trivial if |T ′| = 1; otherwise it is nontrivial. For the
remainder of Section 3 we assume that the fragmentation induced by P conserves mass in that almost surely, for all
s > 0

∑
T ′ a nontrivial component
of T \ {p : (p, t) ∈P(s)}

μ
(
T ′) = 1. (2)

Note that the preceding summation is over a countable collection of components, since any nontrivial component
contains an interval of positive length. We also assume for the remainder of the section that λ(�x, y�) > 0 for all
distinct x, y ∈ T .

Denote the set of nontrivial connected components of T \ {p : (p, t) ∈ Pn} by {Ti : i ∈ In}.

Proposition 6. Almost surely no component of {Ti, i ∈ In} contains an element of {uj , j ≤ n}.
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Proof. Fix a countable set S ⊂ T \ {uj , j ≤ n} with the property that for all distinct x, y ∈ T , |S ∩ �x, y�| > 0. Then
for all i ∈ In and j ≤ n,

P{uj ∈ Ti} ≤
∑
s∈S

P
{

�uj , s� ⊂ Ti

}

≤
∑
s∈S

P
{
t
(

�uj , s�
) = ∞} = 0,

since λ(�uj , s�) > 0 for all s ∈ S. �

For each i ∈ In, let

σi = inf
{
s ≥ 0 : Ti is a nontrivial connected component of T \ {

p : (p, t) ∈ Pn(s)
}}

be the creation time of Ti . Let

mi = min
{
j ≤ n : uj and Ti lie in the same component of T \ {

p : (p, t) ∈Pn(σi−)
}}

be the index of the last point from {uj , j ≤ n} to separate from Ti , breaking ties by taking the smallest such. Then let
xi be the unique point of C(n) on �ρ,mi � satisfying α(xi) = σi .

Proposition 7. Suppose that μ(T (uj , s)) → 0 as s → ∞ for all j ≥ 1, almost surely. Then for all n ≥ 1, almost
surely∑

i∈In

μ(Ti) = 1.

Proof. For s > 0, write {Ti,s, i ∈ In,s} for the set of nontrivial components of T \ {p : (p, t) ∈Pn(s)}. Each nontrivial
component of T \ {p : (p, t) ∈ P(s)} is contained within an element of {Ti,s, i ∈ In,s}; together with (2), this implies∑

i∈In,s
μ(Ti,s) = 1.

Now note that the only components of {Ti,s, i ∈ In,s} which are not components of {Ti, i ∈ In} are those containing
points from {uj , j ≤ n}. Therefore,∑

i∈In

μ(Ti) ≥
∑
i∈In,s

μ(Ti,s) −
∑
j≤n

μ
(
T (uj , s)

)

= 1 −
∑
j≤n

μ
(
T (uj , s)

)
.

The final sum tends to zero as s → ∞ by assumption. �

Now define a measure νn on (C,d,ρ) with support C(n) by

νn =
∑
i∈In

μ(Ti)δxi
.

We may view the tree Ti as “frozen” at time σi and attached to C(n) at point xi . With this perspective, νn is obtained
by projecting the masses of the frozen subtrees onto their attachment points in C(n). We do not explicitly need this
construction, however, so do not formalise it. The preceding proposition gives a sufficient condition for νn to be a
probability measure almost surely.

Proposition 8. If (C,d,ρ) is compact then νn is almost surely a Cauchy sequence in the space of Borel measures on
C, so has a weak limit ν.
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Proof. Fix m > n and write νn = ∑
i∈In

μ(Ti)δxi
as above. Note that Pn is increasing in n, so we may view {Tj , j ∈

Im} as a “refinement” of {Ti, i ∈ In} in the sense that each tree Ti in the latter set is split by the cuts associated
with points of Pm \ Pn into a collection of trees {Ti,j , j ∈ Ji} which all lie in the former. Furthermore, we exhaust
{Tj , j ∈ Im} in this manner, in that Im = ⋃

i∈In
Ji . Finally, the compactness of C implies that �(uj ) < ∞ for all j ≥ 1,

so μ(T (uj , s)) → 0 as s → ∞. By Proposition 7, it follows that
∑

i∈In
μ(Ti) = 1 for all n, from which it is clear that

we also have μ(Ti) = ∑
j∈Ji

μ(Ti,j ).
We write

νm =
∑
i∈In

∑
j∈Ji

μ(Ti,j )δxi,j

where, by analogy with the above, xi,j is the point of attachment of Ti,j to C(m). Now note that xi,j ∈ Cxi
by

construction. (Recall that Cxi
is the subtree of C rooted at xi .) Since the fragmentation conserves mass, it follows that

for all i ∈ In,

μ(Ti) =
∑

xi,j ∈Cxi

μ(Ti,j ).

We may thus obtain νn from νm by projecting all mass of νm onto the closest point of C(n). Writing dP and dH

for the Prokhorov and Hausdorff distances respectively, it follows that dP (νn, νm) ≤ dH (C(n),C(m)). Since C(m)

contains C(n) and is increasing in m, this implies that dP (νn, νm) ≤ dH (C(n),C), and the final quantity tends to zero
as n → ∞ by compactness. �

In the case when (C,d,ρ) is compact, we write C = (C,d,ρ, ν), and call C = C(T,P,u) the cut-tree of (T,P,u),
or sometimes simply the cut-tree of T.

The tree T comes endowed with measure μ. If it happens that

μ = lim
n→∞

1

n

∑
j≤n

δuj
,

then we say that μ is the empirical measure of the sequence u. In particular, if the elements of u are i.i.d. with law μ

then this holds by the Glivenko–Cantelli theorem.

Proposition 9. If μ is the empirical measure of u and (C,d,ρ) is compact then almost surely ν is the empirical
measure of N⊂ C, i.e.

ν = lim
n→∞

1

n

∑
j≤n

δj .

Proof. For n < m and for i ∈ In let

μ̂n,m(Ti) = 1

m − n
#{n < j ≤ m : uj ∈ Ti}.

Since μ is the empirical measure of u, for fixed n we have

lim
m→∞ μ̂n,m(Ti) = lim

m→∞
1

m
#{1 ≤ j ≤ m : uj ∈ Ti} = μ(Ti).

Now let νn,m = ∑
i∈In

μ̂n,m(Ti)δxi
. Since

∑
i∈In

μ̂n,m(Ti) = ∑
i∈In

μ(Ti) = 1, it follows that

νn = lim
m→∞νn,m.
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Finally, writing

ν̂n,m = 1

m − n

∑
n<j≤m

δj ,

we have

lim
n→∞ sup

m>n
dP (ν̂n,m, νn,m) ≤ lim

n→∞dH

(
C(n),C

) = 0,

the last equality holding by compactness. This yields

lim
n→∞νn = lim

n→∞ lim
m→∞νn,m = lim

n→∞ lim
m→∞ ν̂n,m = lim

m→∞
1

m

∑
1≤j≤m

δj ,

as required. �

3.3. Images in C of points of T

In this subsection we make the following assumptions on T, the intensity measure λ⊗ dt and the sequence u of points
of T .

1. Almost surely, �(ui) < ∞ for all i ≥ 1. (By Proposition 5 we may then define C◦(T,P,u) and its completion
(C,d,ρ).)

2. The cut-tree (C,d,ρ) is compact.
3. The set {ui : i ≥ 1} is dense in T .

For k ∈N it is natural to associate the point uk ∈ T with the point k ∈ C; we call k an image of uk . We now define the
image (or images) in C of a fixed point x ∈ T .

First suppose that x is not one of the cut points pi ; this holds a.s. precisely if λ({x}) = 0. Fix a sequence (ik, k ≥ 1)

such that uik → x as k → ∞. We aim to prove that (ik, k ≥ 1) is convergent when viewed as a sequence of points
of C.

We first prove that a particular subsequence (jk, k ≥ 1) is convergent; the subsequence is defined as follows. Let
j1 = i1. Recalling that t (x, y) is the first separation time of x and y, for k ≥ 1 let

jk+1 = min
{
i� : � ≥ 1, ui� ∈ T

(
x, t (x,ujk

)
)}

.

In words, ujk+1 is the first point in the sequence which is remains in the same component as x just after ujk
separates

from x. The subtree of C spanned by {ρ} ∪ {jk, k ≥ 1} consists of a single path P , hanging from which there is a
distinct branch leading to each of the jk . The branches are attached in the order given by the sequence. Note that the
full subtree of C hanging from the path and containing jk is simply C

jk

jk∧jk+1
.

One endpoint of the path P is ρ; call the other x′. The point x′ will be the image of x in C. By the definition of
P , the sequence of branchpoints (jk ∧ jk+1, k ≥ 1) must converge to x′. Since C is compact, it must also hold that
(jk, k ≥ 1) converges to x′.

Turning now to the full sequence, observe that since ui� → x as � → ∞, for any k ≥ 1, only finitely many points

of the sequence (ui� , � ≥ 1) lie within the subtree C
jk

jk∧jk+1
. Finally, compactness implies that the diameters of these

subtrees tend to zero with k; it follows that i� → x′ as � → ∞.
It is immediate from the construction that

d
(
ρ,x ′) = �(x) =

∫ ∞

0
μ

(
T (x, s)

)
ds < ∞.

Likewise, for all k ≥ 1, d(x′, k) = �(x) + �(uk) − 2�(x, t (x,uk)). This is important as, letting u′ = (x,u1, u2, . . .), it
implies that we may view C◦(T,P,u′) as a subtree of (C,d,ρ). With this perspective, (C,d,ρ) is also the completion
of C◦(T,P,u′).
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Next suppose x is one of the cut points, so (x, t (x)) ∈ P . In this case, x has multiple images in C. There is
one image which is a branchpoint, which is easily described as follows. Let ui and uj be distinct points such that
t (ui, uj ) = t (x). Then the required image in C is i ∧ j .

Additionally, there is an image of x corresponding to each connected component of T \ {x}. We next describe how
to find the image of x corresponding to a fixed such component T̂ . The idea is to view the cut-tree process as acting
on T̂ , starting at time t (x), and thereby identify the image of x. The key point is that the cut-tree behaves nicely under
restriction, in a sense we now explain. Let

P̂ = {
(p, t) ∈ P : p ∈ T

(
x, t (x)−) ∩ T̂ , t > t (x)

}
.

The set T (x, t (x)−) ∩ T̂ is the subtree separated at time t (x) which is contained in T̂ , and P̂ is the set of Poisson
points falling in this subtree after time t (x).

Next, let v be the set of points ui ∈ T (x, t (x)−) ∩ T̂ ; for concreteness we list these in increasing order of index as
v = (vi, i ≥ 1). Let T ′ = {x} ∪ (T (x, t (x)−) ∩ T̂ ), and let T′ = (T ′, dT ′) be the subtree of T induced by T ′.

Let P ′ = {(p, t − t (x)) : (p, t) ∈ P̂}, and observe that P ′ is a Poisson process on T ′ ×[0,∞) with intensity measure
λ|T ′\{x} ⊗ dt . The completion of the tree C◦(T′,P ′,v) is now isometric to a subtree C′ of (C,d,ρ). Furthermore,
this isometry is uniquely specified by requiring that the images of the points of v agree with the images of the
corresponding elements of the sequence u. Since x is not hit by P ′, it also has an image x′ in C◦(T′,P ′,v), which we
view as contained in C◦(T,P,u) using the isometry just described.

It is important that x′ depends on the choice of a component T̂ of T \ {x}. When we need to make this dependence
explicit we will write x′(T̂ ).

3.4. Routing

In this subsection we let (C,d,ρ) be a rooted R-tree. As this notation may suggest, we will apply the following
constructions to a cut-tree; however, the quantities make sense more generally. While reading the following definitions,
the reader may find it helpful to refer to the description of reconstruction in the discrete setting given in Section 1.3
for intuition. Also, Figure 3 provides a visual aid.

Given v,w ∈ C, a signpost for v and w is a pair (v1,w1) with v1 ∈ Cv
v∧w and w1 ∈ Cw

v∧w . Let B = {∅} ∪⋃
n∈N{0,1}n, and view B as indexing the vertices of a complete infinite binary tree with root ∅. If b ∈ {0,1}n write

|b| = n. For b, b′ ∈ B , if b is a prefix of b′ we write b ≤ b′. This agrees with the genealogical order when B is viewed
as a tree.

A routing for v and w is a collection (rb, b ∈ B \ {∅}) with the following properties. First, r0 = v and r1 = w. Next,
for all n ≥ 1, for all b ∈ {0,1}n we have rb0 = rb; and for all b ∈ {0,1}n−1, (rb01, rb11) is a signpost for (rb0, rb1).

Now fix a set N ⊂ C such that
⋃

i∈N �ρ, i� = C. For each pair (i, j) of distinct elements of N let rij = (r
ij
b , b ∈

B \ {∅}) be a routing for i and j . We say the collection (rij , i, j ∈ N, i �= j) of routings is consistent if the following
three properties hold. In words, the first says that rji is always obtained from rij by swapping the subtrees at the root
of B . The second says that sub-routings are themselves routings for the appropriate pairs. The third says that for any
branchpoint x of C and any y, z ∈ Cx , if the subtrees C

y
x and Cz

x are the same then all signposts at x in directions y

and z are also the same.

1. For any distinct i, j ∈ N , for all b ∈ B , r
ij

0b = r
ji

1b .

2. For any distinct i, j ∈ N , distinct k, l ∈ N and b ∈ B , if (k, l) = (r
ij

b0, r
ij

b1) then rkl
a = r

ij
ba for all a ∈ B \ {∅}.

3. For any distinct i, j ∈ N and distinct k, l ∈ N , if i ∧ j = k ∧ l and Ci
i∧j = Ck

k∧l then rkl
01 = r

ij

01.

Suppose (rij , i, j ∈ N, i �= j) is consistent. Then, for each x ∈ br(C) and each subtree C′ = C
y
x above x, fix i, j ∈ N

with i ∧ j = x and Ci
i∧j = C′, and let f (x,C′) = r

ij

01. The consistency conditions guarantee that the value of f (x,C′)
does not depend on i and j satisfying these properties.

Conversely, suppose that we are given the data f (x,C′) for all such pairs (x,C′). Then we may reconstruct the
collection of routings by setting r

ij

01 = f (x,C′) for all pairs i, j ∈ N with i ∧ j = x and Ci
i∧j = C′; the consistency

conditions then uniquely determine all other routing data.
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Fig. 3. Part of a routing for a pair v,w of points of C. The pair (r01, r11) is a signpost for (v,w). For each b ∈ {0,1}2, we must have rb0 = rb , and
rb1 must lie within the grey subtree labelled with b.

3.5. Routing in cut-trees

Now suppose that (C,d,ρ) is constructed as in Section 3.3, so (C,d,ρ) is the completion of C◦ = C◦(T,P,u) for a
suitable triple (T,P,u) with the property that �(ui) < ∞ a.s. for all i ∈ N. Recall that we are treating N as a collection
of random points of C. We assume that λ(�x, y�) > 0 for all distinct x, y ∈ T .

For any distinct i, j ∈ N ⊂ C, the cut-tree construction described above then yields a routing Rij = (R
ij
b , b ∈

B \ {∅}), built as follows. In reading the description, Figures 4 and 5 should be useful. In both figures, the superscripts
ij are ommitted for readability.

First, let R
ij

0 = i and R
ij

1 = j . Also let p
ij

0 = ui and p
ij

1 = uj . It will later be convenient to set T
ij
∅

= T .

Suppose inductively that (R
ij
b ,0 < |b| ≤ n) and (p

ij
b ,0 < |b| ≤ n) are already defined. Fix b ∈ {0,1}n−1 and let

(p, t) be the first Poisson point separating p
ij

b0 and p
ij

b1. In earlier notation, we have (p, t) = (p(p
ij

b0,p
ij

b1), t (p
ij

b0,p
ij

b1)).

Such a point almost surely exists since λ(�p
ij

b0,p
ij

b1 �) > 0 by assumption.

Let T
ij

b0 and T
ij

b1 be the components of T \ {pk : (pk, tk) ∈ P, tk ≤ t} containing p
ij

b0 and p
ij

b1, respectively. In earlier

notation, T
ij

b0 = T (p
ij

b0, t) and T
ij

b1 = T (p
ij

b1, t).

Recall that p′(T ij

b0) and p′(T ij

b1) are the images of p in C corresponding to components T
ij

b0 and T
ij

b1. Then set

R
ij

b00 = R
ij

b0 and R
ij

b01 = p′(T ij

b0), and set R
ij

b10 = R
ij

b1 and R
ij

b11 = p′(T ij

b1). Finally, set p
ij

b00 = p
ij

b0, p
ij

b10 = p
ij

b1 and

p
ij

b01 = p = p
ij

b11.

Observe that with the above definitions, for all b ∈ B \ {∅}, Rij
b is an image of p

ij
b in C. However, it need not be the

unique such image, and indeed it is typically not. It is worth recording that the points (p
ij
b , |b| = n) are all elements

of �ui, uj � (with repetition). It follows from our recursive labelling convention that

dT (ui, uj ) =
∑
|b|=n

dT

(
p

ij

b0,p
ij

b1

)
, (3)

which will be useful in the next section.
We write R = (Rij , i, j ∈ N, i �= j) for the collection of such routings, or R(T,P,u) when we need such depen-

dence to be explicit.
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Fig. 4. Top: The tree T with points ui and uj marked. Middle: the first cut point p and the trees T0 and T1. Bottom: x and y are the first cuts to
separate ui and uj from p, respectively.

Proposition 10. For all distinct i, j ∈ N, Rij is a routing for i and j . Furthermore, R is a consistent collection of
routings.

Proof. The first statement is by construction. Consistency is immediate from the fact that, in the notation just pre-

ceding the proposition, for any i′, j ′, b′ with R
i′j ′
b′0 = R

ij

b0 and R
i′j ′
b′1 = R

ij

b1 we will have R
i′j ′
b′00 = R

ij

b0, R
i′j ′
b′10 = R

ij

b1,

R
i′j ′
b′01 = p′(T ij

b0) and R
i′j ′
b′11 = p′(T ij

b1). �

We view the triple (C,N,R) as the image of (T,P,u) under the cut-tree transformation. It should be understood
as a random metric measure space with a countable infinity of marked points, in the sense discussed at the end of
Section 2.1. The marks are the points N together with the points (R

ij
b , b ∈ B \ {∅}, i, j ∈ N, i �= j). Since this is a

countable collection, we may re-index it by the natural numbers according to some arbitrary but fixed rule. We will
describe a convenient such rule in the course of proving Proposition 12, below.

4. The case of stable trees

Throughout Section 4, we fix α ∈ (1,2] and let T = (T , dT ,μ) be an α-stable tree. We further let U = (Ui, i ∈ N) be an
i.i.d. sequence of samples from μ, and let P be a Poisson process on T ×[0,∞) with intensity measure 	⊗dt , where
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Fig. 5. Top left: The images in C of ui and uj , and the path between them. Top right: The images R01 and R11 of p = p01 = p11. Bottom: The
images of x = p001 = p011 and of y = p111 = p101.

	 is as defined in Section 2.3. For s ≥ 0, let F(s) = (F1(s),F2(s), . . .) be the sequence of μ-masses of the nontrivial
connected components of T \ {p : (p, t) ∈ P, t ≤ s}, listed in decreasing order. Then, as discussed in the introduction,
(F (s), s ≥ 0) is a self-similar fragmentation process [9,47]. We observe, in particular, that defining (F (s), s ≥ 0) as
above for any α ∈ (1,2], by Lemma 10 of [9] and Lemma 8(iii) of [47], for each s ≥ 0, we have

∑
i≥1 Fi(s) = 1

almost surely, so that the fragmentation process conserves mass.
We let C = C(T,P,U) be the cut-tree, and as usual write C = (C,d,ρ, ν). The following result, which is due to

Bertoin and Miermont [17] in the case α = 2 and to Dieuleveut [25] in the case α ∈ (1,2), states that the cut-tree of a
stable tree is again a stable tree.

Theorem 11. Let U0 ∼ μ be a random point of T independent of the points in U. Then we have

(
dT (Ui,Uj ), i, j ∈ {0} ∪N

) d= (
d(i, j), i, j ∈ {ρ} ∪N

)
.

In particular, Theorem 11 implies that the assumption of Proposition 5 holds, so C is well-defined. The theorem
then implies that C has the same distribution as (T , dT ,U0,μ). Since C is an α-stable tree, it is compact.

In T, the points (Ui, i ∈ {0} ∪ N) are i.i.d samples from the mass measure. Also, almost surely 	(�x, y�) > 0 for
all distinct x, y ∈ T , which places us in the setting of Section 3.2. Thus, by Proposition 9, ν is the empirical measure
of N in C, so (C, {ρ} ∪N) is distributed as an α-stable tree together with a sequence of i.i.d. samples from ν.

As just noted, 	 a.s. charges every interval of positive length, which allows us the collection R = (Rij , i, j ∈ N, i �=
j) of routings described in Section 3.5 to be defined. By Proposition 10, R is consistent.

4.1. Routings in stable trees

For each x ∈ br(C) and y ∈ Cx , let Z
y
x be the common value of all the random variables R

ij

01 for which Ci
i∧j = C

y
x ,

where as before C
y
x is the subtree above x containing y. We emphasise that there is redundancy in our notation for the
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Fig. 6. The routing variables Z
y
x for x ∈ {u,v,w} and y ∈ {1, . . . ,5}. The redundancy in the notation is witnessed by the fact that Z2

u = Z3
u and

Z4
u = Z5

u .

set of routing variables Z = {Zy
x : x ∈ br(C), y ∈ Cx} since there are multiple ways of specifying the same tree C

y
x .

However, each random variable appears only once; see Figure 6.

Proposition 12. The law of (C,N,Z) is as follows.

1. C is a stable tree endowed with its mass measure.
2. The elements of {ρ} ∪N are i.i.d. with law ν.
3. For each x ∈ br(C) and y ∈ Cx , Z

y
x ∼ νC

y
x
. Moreover, these random variables are conditionally independent given

(C, {ρ} ∪N).

Note that since R is consistent, it is completely determined by Z. The preceding proposition therefore fully specifies
the joint law of the triple (C,N,R). Observe that (3) implies that the only dependence between the Z

y
x and {ρ} ∪N is

via the labelling of subtrees.

Proof of Proposition 12. The first two statements are contained in Theorem 11. Next, for S ⊂N write Z(S) = {Zi
i∧j :

i, j ∈ S, i �= j}. To prove the third statement, it suffices to verify that the triple (C,N,Z(S))) has the appropriate law
for all finite subsets S of N. In doing so we may assume without loss of generality that S = [k] for some k ≥ 1.

We argue by induction on k, but first introduce a small amount of notation. For k ≥ 2, list the elements of Z([k])
without repetition as Z

y(1)

x(1)
, . . . ,Z

y(m)

x(m)
. (So, for example, in Figure 6, with k = 5 we have m = 7 and we may

take (x(1), y(1)) = (u,1), (x(2), y(2)) = (u,2), (x(3), y(3)) = (u,4), (x(4), y(4)) = (v,2), (x(5), y(5)) = (v,3),
(x(6), y(6)) = (w,4) and (x(7), y(7)) = (w,5).) We omit the dependence on k from our notation.

We will show by induction that given (C, {ρ} ∪ N), for all 1 ≤ i ≤ m, Z
y(i)

x(i) has law ν
C

y(i)

x(i)

and, moreover, the

random variables Z
y(i)

x(i) are conditionally independent. This identifies the law of the Z
y
x .

The case k = 1 is immediate as Z([1]) is empty, and the joint law of the points in {ρ} ∪N is given by Theorem 11.
We hereafter assume k ≥ 2.

Let b be the nearest branchpoint to ρ in
⋃

i∈[k]�ρ, i�. List the elements of {Ci
b, i ∈ [k]} without repetition as

Cb(1), . . . ,Cb(�), with Cb(j) = (Cb(j), d, b). Note that 2 ≤ � ≤ k, so that for each 1 ≤ j ≤ � the subtree Cb(j)

contains kj ≤ k − 1 elements of [k]. We list the points of N lying in Cb(j) in increasing order as Nj = (n(j,m),m ≥
1). Observe that the sets Nj ∩ [k], with 1 ≤ j ≤ �, partition [k].
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There is a unique point (p, t) of P which first separates Un(1,1) from Un(2,1) in T . In the notation of Section 3.1,
this is the point (p, t) = (p(Un(1,1),Un(2,1)), t (Un(1,1),Un(2,1))). Note that this is also the first separator of any Un(i,1)

and Un(j,1) for distinct i and j .
Since Un(i,1) is a.s. not a cut point, T (Un(i,1), t) is a.s. the connected component of T \ {pj : tj ≤ t} containing

Un(i,1). Since this does not contain the point p we let T ∗(Un(i,1)) = T (Un(i,1), t) ∪ {p} and T∗(Un(i,1)) be the subtree
of T induced by T ∗(Un(i,1)).

In [47], Miermont showed that T∗(Un(i,1)) is a stable tree of mass μ(T ∗(Un(i,1))); see, in particular, the proof of his
Lemma 9. Furthermore, writing P∗(Un(i,1)) = {(pj , tj − t) : pj ∈ T (Un(i,1), t)}, then P∗(Un(i,1)) is a Poisson process
with intensity measure λ|T ∗(Un(i,1)) ⊗ dt . The pairs ((T∗(Un(i,1)),P∗(Un(i,1))), i ∈ [�]) only depend on each other via
the vector of masses (μ(T ∗(Un(i,1))), i ∈ [�]). Finally, for each i ∈ [�], the points Ui = (Uj : j ∈ Ni ) are precisely
those Uj lying in T ∗(Un(i,1)), and are i.i.d. with law μT ∗(Un(i,1)). By Theorem 2, p also has law μT ∗(Un(i,1)).

For each 1 ≤ i ≤ �, the tree Cb(i), which is rooted at b, is obtained as the cut-tree of (T∗(Un(i,1)),P∗(Un(i,1)),Ui ).
It follows that Cb(i) is a stable tree of mass ν(Cb(i)) = μ(T ∗(Un(i,1))). The facts from the preceding paragraph also
imply that the trees (Ci

b, i ∈ [�]) are conditionally independent given their masses. Furthermore, the elements of Ni

are precisely the images in Cb(i) of the points in Ui , and Z
n(i,1)
b is the image of p. These facts are special cases of the

observation about cut-trees of subtrees described at the end of Section 3.3. Finally, note that we may also view Cb(i)

as the cut-tree of (T∗(Un(i,1)),P∗(Un(i,1)), {p} ∪ Ui ), as described near the start of Section 3.3.
Now apply the inductive hypothesis to(

Cb(i),
(
b,Z

n(i,1)
b , n(i,1), n(i,2), . . .

)
,Z

(
Ni ∩ [k]) \ {

Z
n(i,1)
b

})
,

for each i ∈ [�]. This is permitted since b, Z
n(i,1)
b , and Ni have the correct conditional joint law, and since |Ni ∩ [k]| =

ki < k.
We obtain by induction that Z

n(1,1)
b , . . . ,Z

n(�,1)
b are conditionally independent, with Z

n(i,1)
b ∼ νCb(i). We emphasise

that this is because Z
n(i,1)
b is the image of a uniform point in T ∗(Un(i,1)); in the induction Z

n(i,1)
b is no longer playing

the role of a routing variable.
We further obtain that for each 1 ≤ i ≤ �, the elements of Z(Ni ∩ [k]) \ {Zn(i,1)

b } have the correct conditional joint

law and are independent of Z
n(i,1)
b . Here we are again using the difference in roles between Z

n(i,1)
b and the other

elements of Z(Ni ∩ [k]). Finally, the subtrees Cb(i) are conditionally independent given their masses, which yields
the requisite conditional independence of the collections Z(Ni ∩ [k]) for 1 ≤ i ≤ �. Since

Z
([k]) =

�⋃
i=1

Z
(
Ni ∩ [k]),

this fully identifies the conditional joint law of the random variables Z
y(1)

x(1), . . . ,Z
y(m)

x(m) which comprise Z([k]), and so
completes the proof. �

4.2. Distributional identities for stable trees

We recall the definitions of some distributions that play a role in the sequel. Write �n = {(x1, . . . , xn) ∈ R
n+ :∑n

i=1 xi = 1}. A �n-valued random vector X = (X1, . . . ,Xn) has the Dirichlet distribution Dir(θ1, . . . , θn) if its
density with respect to Lebesgue measure on �n is

�(
∑n

i=1 θi)∏n
i=1 �(θi)

n∏
i=1

x
θi−1
i .

A non-negative random variable Y has the Mittag–Leffler distribution with parameter β ∈ (0,1), denoted ML(β),
if it satisfies

E
[
Yp

] = �(p + 1)

�(pβ + 1)
, (4)



1368 L. Addario-Berry, D. Dieuleveut and C. Goldschmidt

for p ≥ −1. This equation determines the law of Y (see [50, p. 10] and [18, p. 391]). Write gβ for the density of
ML(β) with respect to Lebesgue measure. Write M̂L(β) for the size-biased distribution, which has density

ĝβ(r) := �(β + 1)rgβ(r), r ≥ 0.

Our proofs exploit the following characterization of the size-biased Mittag–Leffler distribution,

Lemma 13. Fix β ∈ [1/2,1), and let M , M1 and M2 be independent and identically distributed non-negative random
variables with

E[M] = 2�(β + 1)

�(2β + 1)
.

Let (X1,X2,X3) ∼ Dir(β,β,1 − β) be independent of M1 and M2. Then M solves the recursive distributional equa-
tion

X
β

1 M1 + X
β

2 M2
(d)= M, (5)

if and only if M ∼ M̂L(β).

Let x, y, z be independent points of T with common law μ, and let b be the common branchpoint of x, y, z (i.e.
the unique element of �x, y� ∩ �x, z� ∩ �y, z�). Recall from Section 2.1 that T x

b is the subtree of T rooted at b and
containing x.

Theorem 14.

1. The random variable α · d(x, y) is M̂L(1 − 1
α
)-distributed.

2. The vector (μ(T x
b ),μ(T

y
b ),μ(T \ (T x

b ∪ T
y
b ))) is Dir(1 − 1

α
,1 − 1

α
, 1

α
)-distributed.

Proof. For the first assertion, see Theorem 3.3.3 of [27]. The second follows from Corollary 10 of [39] after using
distributional identities established in [35], and is explicitly noted as [35, (4.1)]. When α = 2, the law of the distance
between two uniform points was earlier proved to follow the Rayleigh distribution, by Aldous [7]. This is in agreement
with the current result, up to a choice of normalization, since if Z is standard Rayleigh then the law of

√
2Z is

M̂L(1/2); see Section 1.1 of [35]. �

We can now proceed to the proof of Lemma 13.

Proof of Lemma 13. Write β = 1 − 1/α; then α ∈ (1,2]. Consider again the α-stable tree T with x, y, z independent
points sampled according to the law μ. Let M = α · d(x, y), M1 = αμ(T x

b )−β · d(x, b), M2 = αμ(T
y
b )−β · d(y, b),

X1 = μ(T x
b ), X2 = μ(T

y
b ) and X3 = μ(T z

b ). Then M = X
β

1 M1 + X
β

2 M2. Moreover, by Theorems 3 and 14,
M is M̂L(β)-distributed, and M1,M2 are independent M̂L(β) random variables, independent of (X1,X2,X3) ∼
Dir(β,β,1 − β). It follows that M̂L(β) satisfies the RDE (5).

For the converse, we use that the left-hand side of (5) is an instance of the smoothing transform applied to the law
of M . The fixed points of the smoothing transform have been completely characterised by Durrett and Liggett [30].
Indeed, the space of fixed points is determined by the analytical properties of the function ν :R+ → R defined (in our
setting) by

ν(s) = log
(
E

[
X

βs

1 1X1>0 + X
βs

2 1X2>0
])

,

for s ≥ 0. Since X1 and X2 are marginally both distributed as Beta(β,1), it is easily checked that X
β

1
(d)= X

β

2
(d)= U ,

where U is uniform on [0,1]. Hence,

ν(s) = log
(
2E

[
Us

]) = log(2) − log(s + 1), s ≥ 0,
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for any α ∈ (1,2]. Observe that ν has its unique zero in (0,1] at s = 1, and that ν′(1) = −1/2 < 0. In this case, [30,
Theorem 2(a)] entails that (5) has a unique distributional solution, up to multiplication by a non-negative constant; we
have already identified this solution as the M̂L(β) distribution. �

4.3. Reconstructing the distance between a pair of points in T

Recall that C = (C,d,ρ, ν) is the cut-tree of T, that the points of N are i.i.d. with law ν and that R is the collection of
routings for the elements of N. For the remainder of Section 4.3 we fix distinct i, j ∈ N and recall that the routing for
i and j is denoted Rij .

Recall that for distinct nodes y and z of C, the subtree of C above z containing y is denoted by C
y
z . Now fix

b ∈ B \ {∅}, and let b′ be the sibling of b in B; so if b = b̂0 then b′ = b̂1 and vice versa. Then let Mb = ν(C
Rb

Rb∧Rb′ ).

In Figure 3, for example, M00 is the mass of the shaded subtree labelled 00, and likewise for M01, M10 and M11. It is
crucial in what follows that, in the notation of Section 3.5, we also have Mb = μ(T

ij
b ) since C

Rb

Rb∧Rb′ is the cut-tree of

T
ij
b . We also set M∅ = ν(C) = 1 = μ(T ).

It is convenient to write

(�b0,�b1,1 − �b0 − �b1) = 1

Mb

(Mb0,Mb1,Mb − Mb0 − Mb1).

We will repeatedly use that for all b ∈ B ,

(�b0,�b1,1 − �b0 − �b1) ∼ Dir

(
1 − 1

α
,1 − 1

α
,

1

α

)
,

and that the vectors {(�b0,�b1,1 − �b0 − �b1), b ∈ B} are mutually independent; these properties follow from
Theorems 3 and 14, and Proposition 12.

Next, for n ≥ 0, let

Yn = Yn(i, j) =
∑
|b|=n

M
1−1/α
b . (6)

Proposition 15. As n → ∞, Yn
a.s.→ Y where the limit Y = Y(i, j) satisfies

2�(2 − 1
α
)

�(3 − 2
α
)

Y ∼ M̂L(1 − 1/α).

Proof. Let Gn = σ((Mb, |b| ≤ n)), and let G∞ = σ((Mb, b ∈ B)) = σ(
⋃

n Gn).

Explicit calculation (as in the proof of Lemma 13) shows that �
1−1/α

b0 and �
1−1/α

b1 are both uniformly distributed
on [0,1], so

E[Yn+1 | Gn] =
∑
|b|=n

M
1−1/α
b · E

[
�

1−1/α

b0 + �
1−1/α

b1 | Gn

] = Yn

and so (Yn) is a (Gn)-martingale. Since Yn ≥ 0 for all n, it follows that Yn
a.s.→ Y for some random variable Y by

the martingale convergence theorem; it remains to show that Y has the correct distribution. For this we use a second
martingale argument together with a result of [12].

Fix n ∈N and let (Z
(n)
b : |b| = n) be i.i.d. M̂L(1 − 1

α
). Then for b ∈ B with |b| = m < n, define Z

(n)
b inductively by

Z
(n)
b = �

1−1/α

b0 Z
(n)
b0 + �

1−1/α

b1 Z
(n)
b1 .

By Lemma 13, Z
(n)
b ∼ M̂L(1 − 1

α
) for all b with |b| ≤ n. Furthermore, the families (Z

(n)
b , |b| ≤ n) are consistent in n,

in that(
Z

(n)
b , |b| ≤ n − 1

) ∼ (
Z

(n−1)
b , |b| ≤ n − 1

)
,
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and so have a projective limit by Kolmogorov’s extension theorem. Let (Zb, b ∈ B) be such that (Zb, |b| ≤ n) ∼
(Z

(n)
b , |b| ≤ n) for all n; in particular, for all b we have Zb ∼ M̂L(1 − 1

α
), and

Zb = �
1−1/α

b0 Zb0 + �
1−1/α

b1 Zb1. (7)

The families (Zb, b ∈ B) and (�b, b ∈ B) together define a recursive tree process in the sense of [12]. This process
is easily seen to verify the conditions of Corollary 17 of [12] (briefly: E[�x

b] is decreasing in x and P{Z∅ = 0} = 0).
We conclude that the recursive tree process is endogenous, which means that for all b ∈ B , the random variable Zb is
measurable with respect to σ(�b′ , b < b′). In particular, Z∅ is integrable and G∞-measurable, and so the martingale
convergence theorem gives that

E[Z∅ | Gn] a.s.→ Z∅

as n → ∞.
Finally, by (7) and induction we have Z∅ = ∑

|b|=n M
1−1/α
b Zb for all n. Also, Zb is σ(�b′ , b < b′)-measurable,

so if |b| = n then Zb is independent of Gn. On the other hand, Mb is Gn-measurable and so

E[Z∅ | Gn] =
∑
|b|=n

M
1−1/α
b E[Zb] = 2�(2 − 1

α
)

�(3 − 2
α
)

· Yn,

where the last equality holds as Zb ∼ M̂L(1 − 1
α
). It follows that

2�(2− 1
α
)

�(3− 2
α
)

· Y = Z∅ almost surely. �

Let

δC(i, j) = 2α�(2 − 1
α
)

�(3 − 2
α
)

· Y(i, j). (8)

Observe that, by Lemma 13 and Theorem 14 (1), this has the same law as dT (Ui,Uj ). In Theorem 16 below, we will
show that the two quantities are, in fact, almost surely equal.

Next, for b ∈ B write

Yb
n = Yb

n (i, j) =
∑

|b′|=n,b≤b′
M

1−1/α

b′ .

A practically identical proof then shows that for all b ∈ B , Yb
n

a.s.→ Yb = Yb(i, j), for random variables (Y b, b ∈ B) all
a.s. satisfying Yb = Yb0 + Yb1. In this notation we have Y(i, j) = Y∅(i, j). In particular, this allows us to define

δC(i, i ∧ j) = 2α�(2 − 1
α
)

�(3 − 2
α
)

· Y 0(i, j), and δC(j, i ∧ j) = 2α�(2 − 1
α
)

�(3 − 2
α
)

· Y 1(i, j). (9)

The relation between the Yb then implies that δC(i, j) = δC(i, i ∧ j) + δC(j, i ∧ j)

4.4. Recovering (T,P,U) from (C,N,R)

Recall that a.s. for all distinct i, j ∈N, Rij is a routing for i and j by Proposition 10. For distinct i, j ∈ N, let δC(i, j),
δC(i, i ∧ j) and δC(j, i ∧ j) be defined as in (8) and (9). Note that i and j have law ν, so by Proposition 15, Y(i, j)

is well-defined and Y(i, j) · 2�(2 − 1
α
)/�(3 − 2

α
) is M̂L(1 − 1/α)-distributed.

Theorem 16. The following all hold almost surely.

1. dT (Ui,p(Ui,Uj )) = δC(i, i ∧ j) and dT (Uj ,p(Ui,Uj )) = δC(j, i ∧ j), and thus dT (Ui,Uj ) = δC(i, j).
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2. Let π(i, j) ∈ T be the unique element of �Ui,Uj � at distance δC(i, i ∧ j) from Ui , and let

τ(i, j) =
∫

�ρ,i∧j �

1

ν(Cz)
dz,

where the integral is with respect to the length measure on �ρ, i ∧ j �. Then(
t (Ui,Uj ),p(Ui,Uj )

) = (
τ(i, j),π(i, j)

)
.

Proof. For each b ∈ B , let

Db = dT (p
ij

b0,p
ij

b1)

M
1−1/α
b

.

The reader may wish to glance at Figure 4 to refresh the definitions of the points p
ij

b0 and p
ij

b1, and their relation to T
ij
b .

(When consulting that figure, it may be useful to take b = 11, say, for concreteness. Also recall that the superscripts
ij are ommitted from the figure for legibility.)

For each n ≥ 0, the trees (T
ij
b , |b| = n) are rescaled α-stable trees and are conditionally independent given their

masses. Moreover, the random variables (α−1Db, |b| = n) are i.i.d. and are M̂L(1 − 1/α)- distributed. These obser-
vations are consequences of Theorems 3 and 14.

Now note that, by (3), we have∑
|b|=n

DbM
1−1/α
b =

∑
|b|=n

dT

(
p

ij

b0,p
ij

b1

) = dT (Ui,Uj ),

for every n, and thus we trivially have

lim
n→∞

∑
|b|=n

DbM
1−1/α
b = dT (Ui,Uj ).

On the other hand, (Db, |b| = n) is independent of (Mb, b ∈ B), so with Gn = σ((Mb, |b| ≤ n)) as in Proposition 15,
we have

E
[
dT (Ui,Uj ) | Gn

] = E[D∅] ·
∑
|b|=n

M
1−1/α
b = E[D∅] · Yn(i, j).

Taking n to infinity, it follows that

E
[
dT (Ui,Uj ) | G∞

] a.s.= E[D∅] · Y(i, j).

In view of (8) and the subsequent observation, it follows that

E[D∅] = 2α�(2 − 1
α
)

�(3 − 2
α
)

.

Thus, dT (Ui,Uj )
d= E[D∅] · Y(i, j), which implies that dT (Ui,Uj ) is G∞-measurable (see [29], Exercise 5.1.12).

We thus have that dT (Ui,Uj )
a.s.= E[D∅] · Y(i, j). An essentially identical proof shows that dT (Ui,p(Ui,Uj ))

a.s.=
E[D∅] ·Y(i, i ∧ j) and that dT (Uj ,p(Ui,Uj ))

a.s.= E[D∅] ·Y(j, i ∧ j). This establishes the first claim of the theorem.
In particular, this implies that π(i, j) and τ(i, j) are well-defined.

For the second claim, by definition we have α(i ∧ j) = t (Ui,Uj ), and (1) also gives

α(i ∧ j) = inf

{
t :

∫ t

0
μ

(
T (Ui, r)

)
dr ≥ d(ρ, i ∧ j)

}
.
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It is convenient to parameterise �ρ, i� by length; to this end, for γ ∈ [0, �(Ui)), write z(γ ) for the unique point
z ∈ �ρ, i� with d(ρ, z) = γ . Then for all such γ we have

∫ α(z(γ ))

0
μ

(
T (Ui, r)

)
dr = γ,

from which it follows that

α
(
z(γ )

) =
∫ γ

0

1

μ(T (Ui,α(z(y))))
dy.

Recall that we also have α(i ∧ j) = t (Ui,Uj ). The result will thus follow if we can show that μ(T (Ui,α(z))) = ν(Cz)

for z ∈ �ρ, i�, by taking γ = d(ρ, i ∧ j) so that z(γ ) = i ∧ j . We have

{j ∈ N : j ∈ Cz} = {
j ∈N : Uj ∈ T

(
Ui,α(z)

)}
.

We also have

μ
(
T

(
Ui,α(z)

)) = lim
n→∞

1

n
#
{
j ≤ n : Uj ∈ T

(
Ui,α(z)

)}
.

by the Glivenko–Cantelli theorem and

ν(Cz) = lim
n→∞

1

n
#{j ≤ n : j ∈ Cz}

by Proposition 9. This completes the proof. �

Corollary 17. The triple (T,U,P) is measurable with respect to the triple (C,N,R).

Proof. First, since U is a.s. dense in T, the collection of pairwise distances(
δC(i, j), i, j ∈ N

) = (
dT (Ui,Uj ), i, j ∈ N

)
uniquely reconstructs (T , dT ) up to metric space isometry, and further reconstructs the sequence U of points
of T . Next, since μ is the empirical measure of the collection U, this also reconstructs μ and thus reconstructs
T = (T , dT ,μ) up to measured metric space isometry.

Finally note that, almost surely, every point (p, t) ∈P separates some pair of points from the sequence U. In other
words, every element of P may be represented as (p, t) = (p(Ui,Uj ), t (Ui,Uj )) for some i, j ∈ N. It follows from
the second statement of Theorem 16 that, almost surely, we may reconstruct P from C and the routings R as

P = {(
π(i, j), τ (i, j)

) : i, j ∈ N, i �= j
}
. �

The proof of Corollary 17 describes a specific measurable map, which we now denote �, with the property that
�(C,N,R)

a.s.= (T,U,P). The map � is built using δC , the empirical measure, and the points (π(i, j), τ (i, j)). Denot-
ing the laws of the triples (C,N,R) and (T,U,P) by L and M, respectively, this immediately entails the following
corollary.

Corollary 18. Let (C′,N,R′) be any random variable with law L. Then �(C′,N,R′) has law M.

5. Questions and perspectives

Though there are now several important cases in which the cut-trees and their reconstructions are well-understood, it
remains to develop a fully general theory. The following list of questions provide some concrete avenues for research
along these lines.
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1. The results on empirical measures in Section 3.2 require compactness of the cut tree. In the case of α-stable trees
considered in this work, compactness follows from existing results in the literature. More generally, though it is
likely possible to prove compactness ad hoc for specific models, it would be interesting to develop general sufficient
conditions for compactness of the cut tree of an R-tree.

2. Are there cases other than those addressed by the current paper or by Broutin and Wang [19] where the cut tree has
the same law as the original tree?

3. What conditions on the law of (T,U,P) are sufficient to guarantee that the triple may almost surely be recon-
structed from (C,N,R)?

4. For a given triple (T,U,P) even if the cut tree C is not compact, it may be that in some cases the images of the
points in u define an “empirical measure” on C. When does this occur?

5. The distributional identities that this paper is about are “annealed” in that one averages over the realization of
the tree, the sampled points and the cuts. It would also be interesting to study the above properties (compactness,
sampled points dense etc) for a fixed tree.

In the case of α-stable trees, there are also interesting unanswered questions; here are two which we find worthy of
study, one quite concrete and the other rather vague.

6. What is the law of the cut-tree of an α-stable tree if the driving Poisson process is has intensity λ ⊗ dt , where λ

is the length measure? In other words, what happens if cuts fall uniformly on the skeleton rather than at branch
points?

7. The map � almost surely reconstructs (T,U,P) from (C,N,R). Is � stable under small perturbations of (C,N,R)?
To formalise such a statement, one would need to define a more robust reconstruction map F , presumably extending
the definition of �. Having found an appropriate generalisation, the question is then whether F has the property
that if (Ck,N,Rk)

a.s.→ (C,N,R) as k → ∞ then F(Ck,N,Rk)
a.s.→ F(C,N,R).

A stability statement such as the second one would allow one to deduce distributional information about a random
tree from information about its cut tree. The next and final section of the paper describes a concrete situation in which
this would be useful: a model of discrete random trees with a complicated law, but for which a tree obtained by the
discrete version of the reconstruction map has a simple and explicit description.

5.1. A stationary tree aggregation process

The discrete process of reconstruction described in Section 1.3 arises in a somewhat different setting, which provides
an additional motivation for its study. (This arose in discussions of the third author with Edward Crane, Nic Freeman,
James Martin, Bálint Tóth and Dominic Yeo.) We describe a rooted tree-valued process which grows until it becomes
infinite, and is then “burnt” back to the root. This is intended to model a mean-field forest fire process (see [24,51]),
viewed from the perspective of a particular vertex, but the precise details of this interpretation are unnecessary here.

Fix a probability distribution W on the set of rooted trees and consider a rooted tree-valued Markov process
(T0(t), ρ), which evolves as follows. Start from a single vertex T0(0) = ρ, the root. At any subsequent time t , given
that the current state is T0(t) = (T ,ρ), at rate given by the number of vertices of T , sample a rooted tree (T ′, r)
from W and an independent random vertex v from T and attach r to v by an edge, and root the resulting tree at ρ.
It is possible for the jump-times J1 < J2 < · · · of this process to accumulate (i.e. Jm → J∞ as m → ∞ for some
J∞ < ∞), in which case we kill it.

As long as E[J∞] < ∞, it is standard from renewal theory that one can create a stationary version of this pro-
cess by the following procedure. First generate a size-biased version J ∗∞ of J∞. Given that J ∗∞ = t , generate a path
((T

(t)
0 (s), ρ),0 ≤ s < t) which has the same law as ((T0(s), ρ),0 ≤ s < J∞) conditioned on J∞ = t . Then finally take

an independent uniform [0,1] random variable U and define T (s) = T
(t)

0 (Ut + s) for s < (1 −U)t . For s ≥ (1 −U)t ,
simply concatenate independent copies of ((T0(s), ρ),0 ≤ s < J∞) onto the end to yield a path ((T (s), ρ), s ≥ 0).

It turns out that there is a unique law W on the “environment” of rooted trees that we aggregate onto T (t) such
that E[J∞] < ∞ and also T (0) ∼W (since (T (t), t ≥ 0) is stationary, this is also the law of T (t) for any t > 0). This
law is awkward to describe fully, but it has the property that if (T ,ρ) ∼W then

P
{|T | = k

} = 2

k

(
2k − 2

k − 1

)
4−k.
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Moreover, conditionally on |T | = k, if v is picked uniformly from among the k vertices of T then (T , v) has the same
distribution as (T ,ρ) (i.e. T is invariant under random re-rooting).

Much easier to describe is the distribution of the genealogical tree G(t) associated with T (t) via the aggregation
process. This is an analogue of the cut-tree, where rather than thinking about edge-removal causing fragmentation we
have edge-addition causing coalescence. For this it is useful to imagine an enriched version of the above process, in
which the edges of the sampled trees are also marked with “arrival times”. The correct distribution for these marks
may be deduced from the construction of T (t).

The genealogical tree G(t) is a binary tree whose leaves correspond to vertices of T (t) and whose internal vertices
correspond to edges of T (t). The root of G(t) corresponds to the most recent edge to have appeared in T (t). The two
subtrees hanging off the internal vertex corresponding to an edge e are the genealogical trees of the two clusters which
were joined together by e.

The stationarity of T (t) induces stationarity for G(t) and, in particular, for all t , G(t) has the law of a critical
binary Galton–Watson tree. Indeed, for a given G with k − 1 internal nodes and k leaves, we have

P
{
G(t) = G

} =
(

1

2

)2k−1

and there are

1

k

(
2k − 2

k − 1

)

such trees G.
How does one obtain the tree T from its genealogical tree G? Once again we need to mark the internal vertices

of G with the labels of the edges to which they correspond, after which we perform the reconstruction precisely as
described in Section 1.3 for the cut-tree. Moreover, because of the re-rooting invariance of a tree sampled according to
W , it turns out that the two end-points of the edge marking a particular internal vertex of G are uniformly distributed
among the leaves of G in the two subtrees of G hanging off that internal vertex.

Conditional on having k leaves, G(t) converges in distribution in the Gromov–Hausdorff–Prokhorov sense to a
constant times the Brownian CRT, once its edge-lengths are rescaled by k−1/2 and it is endowed with the uniform
measure [43,52]. The law of the signposts in G(t) is uniform on the relevant subtrees, which is precisely the discrete
analogue of the law of the signposts in the Brownian CRT. It is then natural to conjecture that, conditional on |T (t)| =
k, a rescaled version of T (t) also converges in distribution to the Brownian CRT. There are at least two proofs of this
fact due to Edward Crane [23]; if an appropriately defined reconstruction map were known to be stable, this would
provide a computation-free proof of the same result.

Acknowledgements

C.G.’s research was supported in part by EPSRC grant EP/J019496/1 and in part by EPSRC fellowship EP/N004833/1.
L.A.B’s research was supported in part by an NSERC Discovery Grant and in part by the Leverhulme Trust Visiting
Professorship. We are very grateful to Edward Crane for sharing the results of [23] with us. We would like to warmly
thank the two referees for their careful reading of and insightful comments on an earlier version, which greatly
improved the paper.

References

[1] R. Abraham and J.-F. Delmas. The forest associated with the record process on a Lévy tree. Stochastic Process. Appl. 123 (9) (2013) 3497–
3517. MR3071387

[2] R. Abraham, J.-F. Delmas and P. Hoscheit. A note on the Gromov–Hausdorff–Prokhorov distance between (locally) compact metric measure
spaces. Electron. J. Probab. 18 (2013) 14, 21 pp. (electronic). MR3035742

[3] L. Addario-Berry, N. Broutin and C. Holmgren. Cutting down trees with a Markov chainsaw. Ann. Appl. Probab. 24 (6) (2014) 2297–2339.
MR3262504

http://www.ams.org/mathscinet-getitem?mr=3071387
http://www.ams.org/mathscinet-getitem?mr=3035742
http://www.ams.org/mathscinet-getitem?mr=3262504


Inverting the cut-tree transform 1375

[4] M. Albenque and C. Goldschmidt. The Brownian continuum random tree as the unique solution to a fixed point equation. Electron. Commun.
Probab. 20 (2015) 61, 14 pp. (electronic). MR3399812

[5] D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1) (1991) 1–28. MR1085326
[6] D. Aldous. The continuum random tree II: An overview. In Stochastic Analysis. Cambridge University Press, 1991. MR1166406
[7] D. Aldous. The continuum random tree III. Ann. Probab. 21 (1) (1993) 248–289. MR1207226
[8] D. Aldous. Recursive self-similarity for random trees, random triangulations and Brownian excursion. Ann. Probab. 22 (2) (1994) 527–545.

MR1288122
[9] D. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab. 26 (4) (1998) 1703–1726. MR1675063

[10] D. Aldous and J. Pitman. A family of random trees with random edge lengths. Random Structures Algorithms 15 (2) (1999) 176–195.
MR1704343

[11] D. Aldous and J. Pitman. Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent. Probab. Theory
Related Fields 118 (4) (2000) 455–482. MR1808372

[12] D. J. Aldous and A. Bandyopadhyay. A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 (2) (2005) 1047–1110.
MR2134098

[13] E. Baur and J. Bertoin. Cutting edges at random in large recursive trees. In Stochastic Analysis and Applications 2014 51–76. Springer Proc.
Math. Stat. 100. Springer, Cham, 2014. MR3332709

[14] J. Bertoin. Self-similar fragmentations. Ann. Inst. Henri Poincaré Probab. Stat. 38 (3) (2002) 319–340. MR1899456
[15] J. Bertoin. Fires on trees. Ann. Inst. Henri Poincaré Probab. Stat. 48 (4) (2012) 909–921. MR3052398
[16] J. Bertoin. The cut-tree of large recursive trees. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2) (2015) 478–488. MR3335011
[17] J. Bertoin and G. Miermont. The cut-tree of large Galton–Watson trees and the Brownian CRT. Ann. Appl. Probab. 23 (4) (2013) 1469–1493.

MR3098439
[18] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge

University Press, Cambridge, 1989. MR0898871
[19] N. Broutin and M. Wang. Cutting down p-trees and inhomogeneous continuum random trees. Bernoulli 23 (4A) (2017) 2380–2433.

MR3648034
[20] N. Broutin and M. Wang. Reversing the cut tree of the Brownian continuum random tree. Electron. J. Probab. 22 (2017) 80, 23 pp. (electronic).

MR3710800
[21] D. Burago, Y. Burago and S. Ivanov. A Course in Metric Geometry. Graduate Studies in Mathematics 33. American Mathematical Society,

Providence, RI, 2001. MR1835418
[22] M. Camarri and J. Pitman. Limit distributions and random trees derived from the birthday problem with unequal probabilities. Electron. J.

Probab. 5 (2000) 2, 18 pp. (electronic). MR1741774
[23] E. Crane. Steady state clusters and the Ráth–Tóth mean field forest fire model. Available at arXiv:1809.03462.
[24] E. Crane, N. Freeman and B. Tóth. Cluster growth in the dynamical Erdős–Rényi process with forest fires. Electron. J. Probab. 20 (2015)
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