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We prove a metric space scaling limit for a critical random graph with
independent and identically distributed degrees having power-law tail be-
haviour with exponent α + 1, where α ∈ (1,2). The limiting components are
constructed from random R-trees encoded by the excursions above its run-
ning infimum of a process whose law is locally absolutely continuous with
respect to that of a spectrally positive α-stable Lévy process. These spanning
R-trees are measure-changed α-stable trees. In each such R-tree, we make
a random number of vertex identifications, whose locations are determined
by an auxiliary Poisson process. This generalises results, which were already
known in the case where the degree distribution has a finite third moment
(a model which lies in the same universality class as the Erdős–Rényi ran-
dom graph) and where the role of the α-stable Lévy process is played by a
Brownian motion.
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1. Introduction.

1.1. Overview. In recent years, a wide variety of random graph models have been intro-
duced and studied. Many of these models undergo a phase transition of the following type:
below some threshold, the connected components are microscopic in size (in the sense that
they each contain a negligible proportion of the vertices) and possess few cycles, whereas
above the threshold, there is a component, which occupies a positive fraction of the vertices
and contains many cycles, and all other components are again microscopic. We are particu-
larly interested in the behaviour exactly at the point of the phase transition, and in a precise
description of the sizes and geometric properties of the components, which is typically much
more delicate than in the sub- and supercritical cases. We will first give a brief overview of
the setting in which we are interested, and of our main results, deferring a more detailed ac-
count with proper definitions, as well as a summary of the pre-existing literature, to the next
section.

We consider a uniform random graph on n vertices with a given degree sequence,
where the degrees themselves are independent and identically distributed random variables,
D1, . . . ,Dn. (If

∑n
i=1 Di is odd, we replace Dn by Dn + 1.) For simplicity, we impose the

condition that P(D1 ≥ 1) = 1, so that there are no isolated vertices. We also assume that
P(D1 = 2) < 1 (otherwise we have a random 2-regular graph, which contains many cycles of
macroscropic size [10]) and that var(D1) < ∞ (otherwise the graph behaves very differently;
see [30]). The phase transition then occurs when the parameter θ := E[D1(D1 − 1)]/E[D1]
passes through 1: if θ < 1 then the proportion of vertices in the largest component tends to
0 in probability as n → ∞, whereas if θ > 1, this proportion instead converges to a strictly
positive constant, again in probability as n → ∞.

At the critical point θ = 1, there is a sequence of components whose sizes are comparable
(rather than a single giant component, as in the supercritical case) and which, even after
rescaling, retain some randomness in the limit. The sizes and geometric properties of these
components depend on the tail of the distribution of D1. In particular:

• if E[D3
1] < ∞ then the largest components have sizes on the order of n2/3 and diameters

on the order of n1/3;
• if P(D1 = k) ∼ ck−(α+2) for some constant c > 0 and α ∈ (1,2), then the largest compo-

nents have sizes on the order of nα/(α+1) and diameters on the order of n(α−1)/(α+1).

(It will be convenient to refer to the first of these as the “α = 2 case.”)
These scaling properties are either proved or conjectured to be universal, that is to hold

for whole families of random graph models with similar asymptotic degree distributions. We
will discuss the issue of universality in some detail below.

1.2. Our results. Let us now state our scaling limit theorem. Let Gn
1,G

n
2, . . . be the

(vertex-sets of the) components of the critical random graph, listed in decreasing order of
size, with ties broken arbitrarily. We think of these as measured metric spaces, by endowing
Gn

i with the graph distance, dn
i , and the counting measure on its vertices, μn

i . Formally, each
is an element of the Polish space of isometry-equivalence classes of measured metric spaces
endowed with the Gromov–Hausdorff–Prokhorov distance, which we will define properly
below.
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THEOREM 1.1. Fix α ∈ (1,2]. Then under the conditions above, there exists a sequence
of random compact measured metric spaces (G1, d1,μ1), (G2, d2,μ2), . . . (whose law de-
pends on α) such that, as n → ∞,((

Gn
i , n

−(α−1)/(α+1)dn
i , n−α/(α+1)μn

i

)
, i ≥ 1

) d−→ (
(Gi , di,μi), i ≥ 1

)
in the sense of the product Gromov–Hausdorff–Prokhorov topology.

The same result also holds for a multigraph with the same degree sequence generated
according to the configuration model (see Section 2.1 for more details).

In the terminology of [3], (Gi , di) is a random R-graph for each i ≥ 1. For reasons which
will shortly become clear, we refer to the whole limiting object as the α-stable graph if
α ∈ (1,2) or the Brownian graph (instances of which have already occurred several times in
the literature) if α = 2.

This theorem, in particular, implies the scaling properties mentioned above. The α = 2 case
may be deduced from a more general theorem due to Bhamidi and Sen [20], proved by dif-
ferent methods. For α ∈ (1,2), Bhamidi, Dhara, van der Hofstad and Sen [18] considered the
setting of critical percolation on a supercritical uniform random graph with given degree se-
quence, having similar tail behaviour to ours, and proved a scaling limit theorem in the sense
of the product Gromov-weak topology. (This has recently been improved to a convergence in
the product Gromov–Hausdorff–Prokhorov topology for degree sequences satisfying certain
conditions in [19].) We will describe the results of [18] in more detail below and will, for the
moment, simply observe that there are situations which are covered by both theorems, and
where the limit objects must therefore be the same, but where this is certainly not obvious
from their respective constructions.

One of the most striking aspects of our results is the characterisation of the limit spaces
which we are able to give, which is completely new for α ∈ (1,2), and generalises one which
was already known for α = 2. In order to give this characterisation, we must first introduce
some stochastic processes which play a key role.

Let μ = E[D1]. For α ∈ (1,2), let L be a spectrally positive α-stable Lévy process with
Laplace transform

E
[
exp(−λLt)

] = exp
(

c�(2 − α)

μα(α − 1)
λαt

)
, λ ≥ 0, t ≥ 0,

where c > 0 is the constant such that P(D1 = k) ∼ ck−(α+2). Such a process can be thought
of as encoding a forest of continuum trees; the standard way to do this goes via a (somewhat
complicated) functional of L called the height process H (we will define this properly below).
Let

Cα = c�(2 − α)

α(α − 1)
.

We will create a new pair (L̃, H̃ ) of processes via change of measure as follows: for suitable
test functions f : D([0, t],R)2 →R, let

(1)

E
[
f (L̃u, H̃u,0 ≤ u ≤ t)

]
= E

[
exp

(
− 1

μ

∫ t

0
s dLs − Cαtα+1

(α + 1)μα+1

)
f (Lu,Hu,0 ≤ u ≤ t)

]
.

For α = 2, letting μ = E[D1] and β = E[D1(D1 − 1)(D1 − 2)], we instead take

Lt =
√

β

μ
Bt and Ht = 2

√
μ

β

(
Bt − inf

0≤s≤t
Bs

)
,
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where B is a standard Brownian motion (in the Brownian setting, the associated height pro-
cess has the same distribution as a reflected Brownian motion, up to a scaling constant). In
this case, define

(2) E
[
f (L̃u, H̃u,0 ≤ u ≤ t)

] = E

[
exp

(
− 1

μ

∫ t

0
s dLs − βt3

6μ3

)
f (Lu,Hu,0 ≤ u ≤ t)

]
.

In either case, let

Rt = L̃t − inf
0≤s≤t

L̃s, t ≥ 0.

Now write (ζi, i ≥ 1) for the ordered sequence of lengths of excursions of R above 0.
These excursions give rise to spanning R-trees for the limiting components. For i ≥ 1, let ε̃i :
[0, ζi] →R+ be the ith longest excursion of R (with its argument translated in the natural way
to [0, ζi]). For i ≥ 1, let h̃i : [0, ζi] → R+ be the corresponding (continuous) excursion of H

above 0 (which has the same length as ε̃i ). Let (T̃1, d̃1, μ̃1), (T̃2, d̃2, μ̃2), . . . be the measured
R-trees encoded by h̃1, h̃2, . . . , respectively, and write pi for the canonical projection from
[0, ζi] to T̃i , for i ≥ 1. Conditionally on R, now consider a Poisson point process on R+ ×R+
of intensity 1

μ
1{x≤Rt } dt dx. (Equivalently, we can think of this as a Poisson point process of

intensity 1/μ in the area under the graph of R.) The points tell us how to identify vertices in
the R-trees in order to create cycles. For i ≥ 1, suppose that a number Mi ≥ 0 of points fall
within the ith longest excursion ε̃i . Given ε̃i , we then have Mi ∼ Poisson( 1

μ

∫ ∞
0 ε̃i (u) du). If

Mi ≥ 1, write

(si,1, xi,1), (si,2, xi,2), . . . , (si,Mi
, xi,Mi

)

for the points themselves (with their first coordinates translated to the interval [0, ζi]). For
i ≥ 1 and 1 ≤ k ≤ Mi , let

ti,k = inf
{
t ≥ si,k : ε̃i (t) ≤ xi,k

}
.

Now for i ≥ 1, let (Gi , di,μi) be the measured metric space obtained from (T̃i , d̃i , μ̃i) by
making no change if Mi = 0 or, if Mi ≥ 1, by identifying the Mi pairs of points(

pi(si,1),pi(ti,1)
)
, . . . ,

(
pi(si,Mi

),pi(ti,Mi
)
)
.

(Formally, this is done by taking the quotient metric space in a standard way, which is de-
scribed in detail, e.g., just before Lemma 21 of [2].)

Conditionally on the ordered lengths ζ1, ζ2, . . . of the excursions and numbers M1,M2, . . .

of Poisson points, we may give an attractive alternative description of the excursions encoding
the spanning forests of the α-stable and Brownian graphs. These are closely related to the
canonical family of random R-trees encompassing the Brownian continuum random tree [4–
6] and α-stable trees [35, 36], which are the scaling limits of critical Galton–Watson trees
conditioned to have size n with offspring distribution in the domain of attraction of a Normal
or α-stable distribution, respectively.

First, consider α ∈ (1,2), and let e be a normalised (i.e., length 1) excursion of the stable
process L, and let h be the associated normalised excursion of the height process, which
would encode an α-stable tree. Now for m ∈ Z+, define tilted excursions ẽ(m) and h̃(m) via

(3) E
[
g
(̃
e(m), h̃(m))] = E[g(e,h)(

∫ 1
0 e(u) du)m]

E[(∫ 1
0 e(u) du)m] ,

for suitable test functions g : D([0,1],R+) × C([0,1],R+) → R. Let (T̃ (m), d̃(m), μ̃(m)) be
the R-tree (T̃ (m), d̃(m)) encoded by h̃(m), along with its natural mass measure μ̃(m). Write
p̃(m) for the projection [0,1] → T̃ (m). If m ≥ 1, now sample m pairs of points in the tree
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as follows. First, pick (s1, x1), . . . , (sm, xm) independently and uniformly from the area be-
low the excursion ẽ(m) and above the x-axis according to the normalised Lebesgue measure.
Define ti = inf{t ≥ si : ẽ(m)(t) ≤ xi}. Finally, identify p̃(m)(si) and p̃(m)(ti) for 1 ≤ i ≤ m in
order to obtain (G(m), d(m),μ(m)). Set (G(0), d(0),μ(0)) = (T̃ (0), d̃(0), μ̃(0)).

Something very similar works in the Brownian case. Here, we take e to be a normalised
Brownian excursion (which is, in particular, continuous); in this context, h = 2e, so there is
no need to consider two different excursions. The function 2e encodes the Brownian con-
tinuum random tree (in the normalisation adopted by Aldous [4]). Again define ẽ(m) as at
(3) and let (T̃ (m), d̃(m), μ̃(m)) be the measured R-tree encoded by 2̃e(m), and write p̃(m) for
the projection [0,1] → T̃ (m). If m ≥ 1, now sample m pairs of points in the tree as follows.
First, pick (s1, x1), . . . , (sm, xm) independently and uniformly from the area below the ex-
cursion ẽ(m) and above the x-axis according to the normalised Lebesgue measure. Define
ti = inf{t ≥ si : ẽ(m)(t) ≤ xi}. Finally, identify p̃(m)(si) and p̃(m)(ti) for 1 ≤ i ≤ m in order to
obtain (G(m), d(m),μ(m)). Set (G(0), d(0),μ(0)) = (T̃ (0), d̃(0), μ̃(0)).

THEOREM 1.2. Conditionally on the lengths ζ1, ζ2, . . . of the excursions and the num-
bers M1,M2, . . . of points, the measured R-graphs (G1, d1,μ1), (G2, d2,μ2), . . . are inde-
pendent with

(Gi , di,μi)
d= (

G(Mi), ζ
(α−1)/α
i d(Mi), ζiμ

(Mi)
)

for each i ≥ 1.

This shows that, in order to understand further the geometric properties of our limit object,
a key role will be played by the family of random R-graphs ((G(m), d(m),μ(m)),m ≥ 0).
These are studied in depth for α ∈ (1,2) in the companion paper [39]; the Brownian case was
the subject of the earlier paper [1]. From the absolute continuity relation (3), for any α ∈ (1,2]
it is straightforward to see that (G(m), d(m),μ(m)) has Hausdorff dimension α/(α − 1) almost
surely, since this is true of the appropriate Brownian/α-stable tree and one cannot change the
fractal dimension by making finitely many vertex-identifications.

The branch-points of the α-stable tree are almost surely all infinitary (i.e., removing any
of them breaks the tree into infinitely many connected components), and this property is
inherited, via absolute continuity, by (T̃ (m), d̃(m)) for α ∈ (1,2). It follows from the properties
of the excursion e(m) (see [39] for an in-depth discussion) that the vertex identifications in
(T̃ (m), d̃(m)) are almost surely all from a leaf to a branch-point of infinite degree. In contrast,
in the α = 2 case, the vertex identifications are almost surely all from a leaf to a point of
degree 2 (see [1, 2]).

In [1, 39], it is further shown that one may explicitly determine the law of the kernel
of G(m) (that is, the multigraph with edge lengths which encodes its cycle structure), and
that G(m) may be constructed by gluing together randomly rescaled Brownian/stable trees.
Finally, it is shown in [1, 39] that G(m) possesses a line-breaking construction, that is, a
recursive construction which starts from the kernel and successively glues on line-segments
of random lengths to random points, obtaining a convergent sequence of approximations to
the final R-graph.

2. Background. In this section, we give some background material on our random graph
model, and discuss the previously known results on its critical behaviour. We also give a brief
account of the scaling limit theory for Galton–Watson trees. We then give an overview of the
proof of Theorem 1.1. This is followed by a brief summary of some related literature, and
some open problems. Finally, at the end of this section, we give a plan of the rest of the paper.

For a sequence of random variables (An)n≥0 and a sequence (an)n≥0 of real numbers, we
write An = OP(an) to mean that (An/an)n≥0 is tight. We write An = 	P(an) to mean that

An = OP(an) and A−1
n = OP(a

−1
n ). We write An = oP(an) to mean An/an

p→ 0 as n → ∞.
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2.1. The configuration model. We wish to sample a graph uniformly at random from
among the graphs with the given degrees D1,D2, . . . ,Dn. There is a standard method for
doing this, which originated (in varying degrees of generality) in the work of Bender and
Canfield [12], Bollobás [26] and Wormald [62], called the configuration model. (We refer the
reader to the recent book of van der Hofstad [61] for a full account of the configuration model
and for proofs of the results quoted below.) We begin by first describing the setting where
the vertex degrees are deterministic. More precisely, suppose that we have vertices labelled
1,2, . . . , n where vertex i has degree di , for 1 ≤ i ≤ n. Suppose that di ≥ 1 for all 1 ≤ i ≤ n

and that
∑n

i=1 di is even. To vertex i, attach di stubs or half-edges. Label the
∑n

i=1 di half-
edges in some arbitrary way, and then choose a pairing of them, uniformly at random. Join
the paired half-edges together to make full edges, and then forget the labelling of the half-
edges. In general, this procedure yields a multigraph (i.e., with self-loops, or multiple edges).
However, if there exist one or more simple graphs with the given degree sequence (i.e., if the
degree sequence is graphical) then, conditionally on the event that the configuration model
yields a simple graph, that graph is uniform among the possibilities.

We are concerned with the setting where the degrees themselves are independent and iden-
tically distributed random variables D1,D2, . . . ,Dn. An immediate issue is that we cannot
guarantee that

∑n
i=1 Di is even. We get around this problem by always assuming that if∑n

i=1 Di is odd, then we in fact give vertex n degree Dn + 1. For the regime and prop-
erties in which we are interested, this makes only a negligible difference, and we will ig-
nore it in the sequel. Write ν = (νk)k≥1 for the probability mass function of D1, that is,
νk = P(D1 = k), k ≥ 1. Let Mn(ν) be the multigraph resulting from the configuration model
with these degrees. It remains to resolve the issue that the degree sequence may, in prin-
ciple, be nongraphical. However, it is possible to show that if D1 has finite variance and
θ = θ(ν) = E[D1(D1 − 1)]/E[D1] then

lim
n→∞P

(
Mn(ν) is simple

) = exp
(−θ/2 − θ2/4

)
,

and the right-hand side is strictly positive (see, for instance, Proposition 7.13 of [61]). Let
Gn(ν) be a graph with the distribution of Mn(ν) conditioned to be simple; this is our uniform
random graph with i.i.d. ν-distributed degrees, and is the main object of study in this paper.

If νk ∼ ck−(α+2) for some α ∈ (1,2) as k → ∞, we will have that max1≤i≤n Di =
	P(n

1/(α+1)). We will see in the sequel that vertices of degree 	(n1/(α+1)) play an im-
portant role in the structure of the graph, and “show up” in the scaling limit as vertices of
infinite degree (often known as hubs). However, since α > 1, with high probability we will
not observe edges directly joining two vertices of degree 	(n1/(α+1)) and, indeed, the ver-
tices of highest degree will be typically well separated. If E[D3

1] < ∞, on the other hand,
then max1≤i≤n Di = oP(n

1/3) and there are no hubs in the limit.
An important property of the configuration model is that the pairing of the edges may be

generated in a progressive manner. This makes possible the use of an exploration process in
order to capture properties of the (multi)graph. We do this in a depth-first manner, condition-
ally on the vertex-degrees, and making use of the arbitrary labelling we gave the half-edges,
as follows. Start from a vertex v chosen with probability proportional to its degree Dv . We
will maintain a stack, namely an ordered list of half-edges, which we have seen but not yet
explored. Put the Dv half-edges attached to v onto this stack, in increasing order of label,
so that the lowest labelled half-edge is on top of the stack. At every subsequent step, if the
stack is nonempty, take the top half-edge and sample its pair uniformly at random from those
available (i.e., the others on the stack and those which we have not yet observed in our ex-
ploration). If the pair half-edge belongs to a vertex w, which has not yet been observed (i.e.,
if the pair half-edge does not lie in the stack), remove the paired half-edges from the system,
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and add the remaining Dw − 1 half-edges attached to w to the top of the stack, again in in-
creasing order of label. If ever the stack becomes empty, select a new vertex with probability
proportional to its degree, and put all of its half-edges onto the stack. Repeat until the whole
graph has been exhausted. Notice that the stack is empty at the end of a step if and only if
we have reached the end of a component, and that in each step except the one at the start of
a component, we pair two half-edges. Let Rn(k) be the size of the stack at step k. Then, for
example, we may read off the numbers of edges in the successive components as the lengths
minus 1 of the excursions above 0 of the process (Rn(k), k ≥ 0). It turns out that this process,
as we shall explain below, in fact encodes much more information about the multigraph.

Write |G| for the size of the vertex set of a graph G. For a connected graph G, write s(G)

for its surplus, that is how many more edges it has than any of its spanning trees (which
necessarily have |G| − 1 edges). Write Gn

1,G
n
2, . . . for the connected components of Gn(ν),

in decreasing order of size, with ties broken arbitrarily. Similarly, write Mn
1 ,Mn

2 , . . . for the
ordered connected components of Mn(ν).

2.2. The phase transition and critical behaviour of the component sizes. As we have
already mentioned, Gn(ν) undergoes a phase transition in its component sizes depending on
its parameters [43, 52, 53]. Indeed, if θ(ν) ≤ 1, then the largest connected component Gn

1 of
Gn(ν) is such that |Gn

1|/n
p→ 0. On the other hand, if θ(ν) > 1 then |Gn

1|/n
p→ ρ(ν), where

ρ(ν) is some strictly positive constant. These results also hold for Mn(ν). To give an idea of
why the quantity θ(ν) is important, imagine performing the depth-first exploration outlined
above, but ignoring any edges which create cycles. Then it is not hard to see that, at each
step, which is not the start of a component, the degree of the vertex to which the half-edge
on the top of the stack connects (as long as it does not connect to something on the stack and
thus create a cycle) is a size-biased pick from among the remaining possibilities. So, at least
close to the beginning, the exploration process should look approximately like a branching
process with offspring distribution given by D∗ − 1, where P(D∗ = k) = kνk/E[D1]. But
then θ(ν) = E[D∗ − 1], and so the critical point for the approximating branching process is
indeed θ(ν) = 1. Our interest is in this precisely critical case, and a significant part of this
paper is devoted to making the heuristic argument just outlined precise.

The following theorem, due to Joseph [44], summarises some of the possible behaviours
for the component sizes in the case θ(ν) = 1. A version of part (i) was proved independently
by Riordan [57] (see below for further discussion). Let

�2↓ =
{
(x1, x2, . . .) ∈RN : x1 ≥ x2 ≥ · · · ≥ 0,

∑
i≥1

x2
i < ∞

}
.

THEOREM 2.1. (i) Suppose that P(D1 = 2) < 1, E[D1] = μ and E[D1(D1 − 1)(D1 −
2)] = β . Let B be a standard Brownian motion, and let

(4) L̃t =
√

β

μ
Bt − β

2μ2 t2, t ≥ 0 and Rt = L̃t − inf
0≤s≤t

L̃s, t ≥ 0.

Then

n−2/3(∣∣Gn
1

∣∣, ∣∣Gn
2

∣∣, . . .) d−→ (ζ1, ζ2, . . .)

as n → ∞ in �2↓, where (ζ1, ζ2, . . .) are the lengths of the excursions above 0 of the process
(Rt )t≥0. The same result holds with (|Gn

1|, |Gn
2|, . . .) replaced by (|Mn

1 |, |Mn
2 |, . . .).

(ii) Suppose that limk→∞ kα+2P(D1 = k) = c for some constant c > 0 and some α ∈
(1,2), and that E[D1] = μ. Let X be the process with independent increments whose law is
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specified by its Laplace transform

E
[
exp(−λXt)

] = exp
(∫ t

0
ds

∫ ∞
0

dx
(
e−λx − 1 + λx

) c

μ

1

xα+1 e−xs/μ

)
, λ ≥ 0, t ≥ 0,

and let

(5) L̃t = Xt − c�(2 − α)

α(α − 1)μα
tα, t ≥ 0 and Rt = L̃t − inf

0≤s≤t
L̃s, t ≥ 0.

Then

n−α/(α+1)(∣∣Mn
1

∣∣, ∣∣Mn
2

∣∣, . . .) d−→ (ζ1, ζ2, . . .)

as n → ∞ in �2↓, where (ζ1, ζ2, . . .) are the lengths of the excursions above 0 of the process
(Rt )t≥0.

The sequences (ζ1, ζ2, . . .) appearing in Theorem 2.1 must, of course, have the same dis-
tributions as the lengths of the excursions above 0 of the processes (Rt , t ≥ 0) from the
Introduction. Indeed, the processes L̃ defined in (4) and (5) have the same distributions as
those defined at (2) and (1), respectively. We prove this in Proposition 3.2 below.

Joseph [44] conjectures that Theorem 2.1(ii) should also hold with Mn(ν) replaced by
Gn(ν). We show in the sequel (Section 5.3) that this is indeed true (this has been proved
independently by Dhara, van der Hofstad, van Leeuwaarden and Sen [32]). In consequence,
all of our scaling limit results hold interchangeably for Gn(ν) and Mn(ν).

The common structure exhibited by the two parts of Theorem 2.1 is no coincidence. In
both cases, the proof proceeds via an exploration of the graph similar to the one described
earlier. As outlined above, locally, the components resemble critical branching processes.
Since the components have small surplus, the lengths of the excursions of the stack-size
process above 0 approximately encode the component sizes. Moreover, the stack-size process
behaves approximately like a reflected random walk. A weak convergence result for the stack-
size process then yields the convergence of the component sizes.

Riordan [57], in fact, proves a more refined version of Theorem 2.1(i), but under the
(nonoptimal) assumption that the degrees are bounded. First, his results are stated for a
uniform random graph with a given n-dependent deterministic degree sequence (d

(n)
i )i≥1,

where the moment conditions on D1 are replaced by appropriate convergence results for the
moments of the degree of a uniformly chosen vertex. In particular, he is able to consider
the components anywhere in the critical window, rather than precisely at θ = 1. (We refer the
reader to [57] for the details.) Second, he takes account also of the surplus of each component.
Jointly with the convergence of the rescaled component sizes, he shows that(

s
(
Gn

1
)
, s

(
Gn

2
)
, . . .

) d−→ (M1,M2, . . .)

for a nontrivial random sequence (M1,M2, . . .) ∈ ZN+. The sequence (M1,M2, . . .) is again
obtained using the process R in (4): on top of the graph of the random function R, superpose
a Poisson point process of intensity 1/μ in the plane. Then Mi is the number of points falling
in the area beneath the excursion ε̃i and above the x-axis, for i ≥ 1.

The first result of this kind was proved by Aldous [7] for the Erdős–Rényi random graph,
G(n,p) at its critical point. More precisely, consider the graph GER

n obtained by taking n

vertices and connecting any pair of them by an edge independently with probability p = 1/n.
Write G

ER,n
1 ,G

ER,n
2 , . . . for the components listed in decreasing order of size. Define L̃ and

R as in (4) with β = μ = 1, let ζ1, ζ2, . . . be the lengths of the excursions of R and let
M1,M2, . . . be the numbers of points of a Poisson process of intensity 1 falling in each
excursion.
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THEOREM 2.2 (Aldous [7]). As n → ∞,(
n−2/3(∣∣GER,n

1

∣∣, ∣∣GER,n
2

∣∣, . . .), (
s
(
G

ER,n
1

)
, s

(
G

ER,n
1

)
, . . .

)) d−→ (
(ζ1, ζ2, . . .), (M1,M2, . . .)

)
,

where the convergence is in �2↓ for the component sizes and in the sense of the product topol-
ogy for the surpluses.

The limit is the same as in Theorem 2.1(i) in the case β = μ = 1. This should be in-
tuitively unsurprising, since the vertex degrees in the Erdős–Rényi random graph approx-
imately behave like i.i.d. Poisson(1) random variables, for which Theorem 2.1 would ap-
ply with β = μ = 1. (Aldous’ theorem, in fact, treats the whole critical window, i.e.,
G(n,1/n + λn−4/3) for λ ∈ R. The effect is to introduce an extra drift of λt into the pro-
cess L̃; we omit the very similar details for the sake of brevity.)

2.3. Branching processes and their metric space scaling limits. As alluded to above, the
components of our critical random graphs behave approximately like critical branching pro-
cess trees. It will be useful to spend a little time now exploring what happens in the true
branching process setting, since what we do later will be analogous. Suppose that we take a
sequence of i.i.d. Galton–Watson trees, with offspring distribution represented by some non-
negative random variable Y with E[Y ] = 1 and P(Y = 1) < 1. (This entails that each of the
trees has finite size almost surely.) We use the standard encoding of this forest in terms of its
Łukasiewicz path or depth-first walk, given by S(0) = 0 and S(k) = ∑k

i=1(Yi − 1) for k ≥ 1
(see Le Gall [46] or Duquesne and Le Gall [36] for more details). Here, as usual, we explore
the vertices of the forest in depth-first order, and Yi is the number of children of the ith ver-
tex that we visit; these get added to the stack to await processing. The stack-size process is
essentially a reflected version of S, given by (1 + S(k) − min0≤j≤k S(j))k≥0. It is straight-
forward to see that the individual trees correspond to excursions above the running minimum
of (S(k))k≥0; it is technically easier to work with the depth-first walk than with the stack-size
process, since S it is an unreflected random walk. An even more convenient encoding of the
forest is given by the height process, which tracks the generation of the successive vertices
listed in depth-first order. (It is, however, considerably harder to understand its distribution.)
In terms of the depth-first walk, the height process (G(n))n≥0 is defined by G(0) = 0 and

(6) G(n) := #
{
j ∈ {0,1, . . . , n − 1} : S(j) = min

j≤k≤n
S(k)

}
.

The different trees now correspond to excursions above 0 of G.
The following generalised functional central limit theorem indicates some of the possible

scaling limits for S in this setting (see, e.g., Theorem 3.7.2 of Durrett [37]).

THEOREM 2.3. (i) Suppose that E[Y ] = σ 2 < ∞. Then

n−1/2(
S
(
nt�), t ≥ 0

) d−→ σ(Bt , t ≥ 0)

as n → ∞, in D(R+,R), where B is a standard Brownian motion.
(ii) Suppose that limk→∞ kα+1P(Y = k) = c for some constant c > 0 and some α ∈ (1,2).

Then

n−1/α(
S
(
nt�), t ≥ 0

) d−→ (Lt , t ≥ 0)

as n → ∞, in D(R+,R), where L is a spectrally positive α-stable Lévy process, with Laplace
transform

E
[
exp(−λLt)

] = exp
(

c�(2 − α)

α(α − 1)
λαt

)
, λ ≥ 0, t ≥ 0.
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We now turn to the behaviour of the height process. In the Brownian case, this turns out to
be asymptotically the same as that of the reflected depth-first walk, up to a scaling constant.
In the stable case, however, matters are a little more complicated. Consider the α-stable Lévy
process L. Chapter 1 of Duquesne and Le Gall [36] shows that it is possible to make sense
of a corresponding continuous height process, defined as follows. First, for 0 ≤ s ≤ t , let
L̂

(t)
s = Lt −L(t−s)− and let M̂

(t)
s = sup0≤r≤s L̂

(t)
r . Then define Ht to be the local time at level

0 of the process L̂(t) − M̂(t). We may choose the normalization in such a way that

(7) Ht = lim
ε↓0

1

ε

∫ t

0
1{M̂(t)

s −L̂
(t)
s ≤ε} ds

in probability. Theorem 1.4.3 of [36] shows that H has continuous sample paths with prob-
ability 1, and so we may (and will) work with a continuous version in the sequel. Corol-
lary 2.5.1 of [36] entails the following joint convergences.

THEOREM 2.4 (Duquesne and Le Gall [36]). (i) Suppose that E[Y ] = σ 2 < ∞. Then(
n−1/2S

(
nt�), n−1/2G
(
nt�), t ≥ 0

) d−→
(
σBt ,

2

σ

(
Bt − inf

0≤s≤t
Bs

)
, t ≥ 0

)
,

as n → ∞ in D(R+,R2).
(ii) Suppose that limk→∞ kα+1P(Y = k) = c for some constant c > 0 and some α ∈ (1,2).

Then we have (
n−1/αS

(
nt�), n−(α−1)/αG
(
nt�), t ≥ 0

) d−→ (Lt ,Ht , t ≥ 0)

as n → ∞ in D(R+,R2).

There is also a conditional version of Theorem 2.4 for the depth-first walk Sn and height
process Gn of a single Galton–Watson tree, conditioned to have total progeny n. (Let us
assume that P(Y = k) > 0 for all k ≥ 0, so that the event of having total progeny n has
positive probability for all n; this is not really necessary, but will facilitate the statement of
the theorem.)

THEOREM 2.5. (i) (Marckert and Mokkadem [48]). Suppose that E[Y ] = σ 2 < ∞. Then(
n−1/2Sn(
nt�), n−1/2Gn(
nt�),0 ≤ t ≤ 1

) d−→
(
σe(t),

2

σ
e(t),0 ≤ t ≤ 1

)
,

as n → ∞ in D([0,1],R2), where e is a standard Brownian excursion.
(ii) (Duquesne [35]). Suppose that limk→∞ kα+1P(Y = k) = c for some constant c > 0

and some α ∈ (1,2). Then we have(
n−1/αSn(
nt�), n−(α−1)/αGn(
nt�), t ≥ 0

) d−→ (
e(t),h(t),0 ≤ t ≤ 1

)
as n → ∞ in D([0,1],R2), where e is a normalised excursion of L and h is the correspond-
ing normalised excursion of H .

We now describe briefly how a limiting height process excursion may be used to define a
limit R-tree (and the reader to the survey paper of Le Gall [46] for more details). Suppose
first that h : [0, ζh] → R+ is any continuous function such that h(0) = h(ζh) = 0. Define a
pseudo-metric on [0,1] via

dh(x, y) = h(x) + h(y) − 2 min
x∧y≤z≤x∨y

h(z), x, y ∈ [0, ζh].
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Define an equivalence relation ∼ on [0, ζh] by declaring x ∼ y if dh(x, y) = 0. Now let
Th = [0, ζh]/∼ and endow it with the distance dh in order to obtain a metric space. This
metric space is compact: one can easily check that it is a Hausdorff space, and that it is
sequentially compact. Then (Th, dh) is the R-tree encoded by h. Write ph : [0, ζh] → Th

for the canonical projection. We may additionally endow (Th, dh) with a natural “uniform”
measure μh having total mass ζh, obtained as the push-forward of the Lebesgue measure on
[0, ζh] onto the tree. Write M for the space of compact metric spaces each endowed with
a finite (nonnegative) Borel measure, up to measure-preserving isometry. We equip M with
the Gromov–Hausdorff–Prokhorov distance dGHP, defined as follows. (See Section 2.1 of [3]
for more details and proofs of the results claimed below, as well as further references to the
literature.) Let (X,d,μ) and (X′, d ′,μ′) be elements of M. We say that C is a correspon-
dence between X and X′ if C ⊆ X × X′ and, whenever x ∈ X, there exists x′ ∈ X′ such that
(x, x′) ∈ C and vice versa. The distortion of the correspondence C is

dist(C) := sup
{∣∣d(x1, x2) − d ′(x′

1, x
′
2
)∣∣ : (

x1, x
′
1
)
,
(
x2, x

′
2
) ∈ C

}
.

Write C(X,X′) for the set of correspondences between X and X′. Write M(X,X′) for the set
of nonnegative Borel measures on X ×X′. Write p and p′ for the canonical projections from
X × X′ to X and X′, respectively. We define the discrepancy of π ∈ M(X,X′) with respect
to μ and μ′ to be

disc
(
π;μ,μ′) = ‖μ − p∗π‖ + ∥∥μ′ − p′∗π

∥∥,
where ‖ν‖ is the total variation of the signed measure ν. We define the Gromov–Hausdorff–
Prokhorov distance by

dGHP
(
(X,d,μ),

(
X′, d ′,μ′)) := inf

C∈C(X,X′),π∈M(X,X′)

{
1

2
dist(C) ∨ disc

(
π;μ,μ′) ∨ π

(
Cc)}.

Then (M,dGHP) is a Polish space. We observe a very useful upper bound for the Gromov–
Hausdorff–Prokhorov distance between R-trees encoded by continuous excursions:

(8)

dGHP
(
(Th, dh,μh), (Tg, dg,μg)

)
≤ 2 max

{
sup

0≤x≤ζh∧ζg

∣∣h(x) − g(x)
∣∣, sup

ζh∧ζg<x≤ζh

h(x) + sup
ζh∧ζg<x≤ζg

g(x),
1

2
|ζh − ζg|

}
,

The random R-trees encoded by 2e for α = 2 and h for α ∈ (1,2) are known as the Brownian
continuum random tree, for which we will write (T (2), d(2)) (with mass measure μ(2)), and
the α-stable tree, for which we will write (T (α), d(α)) (with mass measure μ(α)), respectively.
(Note that because of our choice of Laplace exponent, this is a constant multiple of the usual
α-stable tree.) We note the important point that, for any α ∈ (1,2], the mass measure μ(α) is
concentrated on the leaves of T (α).

Let Tn be our Galton–Watson tree conditioned to have size n. The natural way to take a
scaling limit of the tree itself is to consider it as a metric space using the graph distance dn.
Create a (probability) measure μn by assigning mass 1/n to each vertex of Tn. An important
consequence of Theorem 2.5 and the bound (8) is the following.

THEOREM 2.6. (i) Suppose that E[Y ] = σ 2 < ∞. Then(
Tn,

σ√
n
dn,μn

)
d−→ (

T (2), d(2),μ(2)),
as n → ∞ for the Gromov–Hausdorff–Prokhorov topology.
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(ii) Suppose that limk→∞ kα+1P(Y = k) = c for some constant c > 0 and some α ∈ (1,2).
Then (

Tn,n
−(α−1)/αdn,μn

) d−→ (
T (α), d(α),μ(α)),

as n → ∞ for the Gromov–Hausdorff–Prokhorov topology.

Returning now to the setting of Theorem 2.4, the excursions of the limiting height process
can heuristically be thought of as defining a forest of random R-trees. (Since there is neither
a shortest nor a longest excursion, there is no sensible way to list these trees. For definiteness,
let us instead think of restricting to an interval [0, t] in time, for which there is a longest
excursion, and then list the trees in decreasing order of size.) Using the scaling properties of
the underlying Lévy processes, these consist of randomly rescaled copies of the Brownian
continuum random tree in case (i) or α-stable trees in case (ii), respectively. We refer to these
as the Brownian and stable forests.

2.4. Our method. Our approach to proving Theorem 1.1 is as follows. First, we show
that the law of the depth-first walk of the graph is (up to a small error) absolutely continu-
ous with respect to that of a centred random walk, which is in the domain of attraction of
the spectrally positive α-stable Lévy process L. This enables us to give an alternative (and
perhaps more “conceptual”) proof of Theorem 2.1. We also show that the convergence of the
depth-first walk can be boosted to a joint convergence with the corresponding height process.
The joint convergence of this pair of coding functions in the setting of a sequence of i.i.d.
Galton–Watson trees, Theorem 2.4, is a highly nontrivial result. The corresponding result
in our setting, however, follows relatively straightforwardly from Theorem 2.4 via absolute
continuity and some integrability lemmas.

The height process is the key ingredient in proving a metric space convergence for these
graphs, and allows us to show the convergence of a spanning forest of our graph. In order to
obtain the full metric space convergence, we must also control the edges, which form cycles.
We call these back-edges. We prove that the number of back-edges edges in the “large com-
ponents” is a tight quantity. This first allows us to resolve Conjecture 8.5 of Joseph [44], by
showing that all of the above results extend to the case where the multigraph is conditioned
to be simple. Second, we are able to capture the full graph structure by tracking also the loca-
tions of these back-edges in the spanning forest. We finally show that all of these quantities
can be passed through to the limit in such a way that we get convergence to the stable graph.

2.5. Related work on scaling limits of critical random graphs, universality and open prob-
lems. This paper is a contribution to a now extensive literature on scaling limits of critical
random graphs. In this section, we will place our work in context by giving a summary of
related results.

As mentioned above, the first critical random graph to be studied from the perspective of
scaling limits was the Erdős–Rényi random graph, in the work of Aldous [7], who considered
both component sizes and surpluses. Addario-Berry, Broutin and Goldschmidt [1, 2] built on
Aldous’ work in order to prove convergence to the β = μ = 1 Brownian graph, in the sense
of an �4 version of the Gromov–Hausdorff distance. (It is straightforward to improve this to a
convergence in an �4 version of the Gromov–Hausdorff–Prokhorov distance, which appears
as Theorem 4.1 of Addario-Berry, Broutin, Goldschmidt and Miermont [3].)

Several models have been proved to lie in the same universality class as the Erdős–Rényi
random graph, which is roughly characterised by the property that the degree of a uniformly
chosen vertex converges to a limit with finite third moment. Already in [7], Aldous had, in
fact, also considered another model: a rank-one inhomogeneous random graph in which, for
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each n ≥ 1, we are given a sequence of weights w(n) = (w
(n)
1 ,w

(n)
2 , . . . ,w

(n)
n ) and each pair

of vertices {i, j} is connected independently with probability 1 − exp(−q(n)w
(n)
i w

(n)
j ), for

1 ≤ i, j ≤ n. Such graphs may be constructed dynamically by assigning an exponential clock
to each potential edge and including the edge when the clock rings. It is straightforward to
see that, in consequence, the component sizes then evolve according to the multiplicative
coalescent. In his Proposition 4, Aldous gave conditions on sequences (w(n), q(n))n≥1 for
which one gets convergence of the rescaled component weights to the same limit as for the
component sizes in the Erdős–Rényi case. These results were generalised by Bhamidi, van der
Hofstad and van Leeuwaarden [23] (following on from work of van der Hofstad [60]) to give
convergence of the rescaled component sizes in the Norros–Reittu model [55] (for which q(n)

above is replaced by 1/
∑n

i=1 w
(n)
i ) to the sequence (ζ1, ζ2, . . .) appearing in Theorem 2.1(i),

with a general β and μ. The convergence of the component sizes was also treated in a similar
setting but with i.i.d. vertex weights by Turova [59].

Nachmias and Peres [54] proved the convergence of the rescaled component sizes for
critical percolation on a random d-regular graph, for d ≥ 3, to the excursion lengths of the
reflected Brownian motion with parabolic drift for appropriate β and μ. As we have already
detailed above, Riordan [57] and Joseph [44] proved analogous results for the critical con-
figuration model with asymptotic degree distribution possessing finite third moment, with
Riordan treating the surpluses as well as the component sizes. Dhara, van der Hofstad, van
Leeuwaarden and Sen [31] improved these results to give the scaling limit of the sizes and
the surpluses under a minimal set of conditions on the (deterministic) vertex degrees, which
essentially amount to the convergence in distribution of the degree of a uniform vertex, along
with the convergence of its third moment. In a somewhat different direction, Bhamidi, Bud-
hiraja and Wang [16] considered critical random graphs generated by Achlioptas processes
[25] with bounded size rules. They again proved convergence of the rescaled component
sizes, along with the surpluses, as a process evolving in the critical window, building on re-
sults for the barely subcritical regime proved in [17]. Federico [38] has recently proved a
scaling limit for the component sizes of the random intersection graph, which is related to
that of the Erdős–Rényi model.

Turning now to the metric structure, very general results concerning the domain of at-
traction of the Brownian graph have been proved by Bhamidi, Broutin, Sen and Wang [15],
building on earlier work for the Norros–Reittu model by Bhamidi, Sen and Wang [21]. In par-
ticular, [15] gives a set of sufficient conditions under which one obtains convergence in the
Gromov–Hausdorff–Prokhorov sense to the Brownian graph. It is also demonstrated in that
paper that these conditions are fulfilled for certain critical inhomogeneous random graphs (of
the stochastic block model variety), and for critical percolation on a supercritical configura-
tion model with finite third-moment degree distribution. A crucial role is played by dynam-
ical constructions of the graphs in question, and by the idea that some pertinent statistic of
the evolving graph may be well approximated by the multiplicative coalescent. Bhamidi and
Sen [20] later proved convergence to the Brownian graph for the critical configuration model
(rather than for percolation on the supercritical case) in the Gromov–Hausdorff–Prokhorov
sense, under the same set of minimal conditions as in [31], and used it to deduce geometric
properties of the vacant set left by a random walk on various models of graph.

We have mentioned a few examples of critical percolation on graphs for which the resulting
cluster sizes lie in the universality class of the Brownian graph. This is expected to be true in
much greater generality: for a wide variety of finite base graphs, which are sufficiently “high
dimensional,” although the percolation critical point will be model-dependent, the behaviour
in the vicinity of that critical point should essentially be the same as in the mean-field case of
percolation on the complete graph, that is, the Erdős–Rényi model. We refer the reader to the
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book of Heydenreich and van der Hofstad [40] for an in-depth discussion of this universality
conjecture.

The results of the present paper primarily concern cases where the degree of a uniformly
chosen vertex has infinite third moment and a power-law tail with exponent α + 1 ∈ (2,3),
and in this context the picture is more complicated. As in the Brownian case, it is to be ex-
pected that, as long as the degree of a uniformly chosen vertex has the right properties, we
should get the same scaling limit irrespective of precisely which model we consider. It is
technically more straightforward to consider rank-one inhomogeneous random graphs than
the configuration model. In the context of component sizes, this was first done by Aldous and
Limic [8] for the rank-one model treated by Aldous in [7] but with appropriately altered con-
ditions on the weight sequence. These different conditions correspond to different extremal
entrance laws for the multiplicative coalescent. Aldous and Limic obtained the analogue of
Theorem 2.1 for the component weights, where the limit is now given by the ordered lengths
of the excursions above the running infimum of the thinned Lévy process,

(9)
(
κBt + λt + ∑

i≥1

ϑi(1{Ei≤t} − ϑit)

)
t≥0

,

where Ei ∼ Exp(ϑi) for each i ≥ 1, κ ≥ 0, λ ∈ R and ϑ1 ≥ ϑ2 ≥ · · · ≥ 0 is a sequence
such that

∑
i≥1 ϑ3

i < ∞ and, if κ = 0, also
∑

i≥1 ϑ2
i = ∞. This was extended in the κ = 0

case by Bhamidi, van der Hofstad and van Leeuwaarden [24] to give the convergence of the
component sizes for the Norros–Reittu model with a specific weight sequence. Heuristically,
the choice of entrance law for the multiplicative coalescent is determined by the properties
of the barely subcritical graph. For the configuration model, the first work in the power-law
setting was that of Joseph [44] detailed above for the case of i.i.d. degrees. The convergence of
the sizes and surpluses for much more general (deterministic) degree sequences were treated
by Dhara, van der Hofstad, van Leeuwaarden and Sen [32], with the possible scaling limits
being driven by the same κ = 0 thinned Lévy processes as in the Norros–Reittu model.

A significant challenge in obtaining a metric space convergence in the power-law setting
is that one often does not have direct access to a scaling limit result for the height process
of the spanning forest discovered by a depth-first exploration. (That we have such a result in
the case of i.i.d. degrees is of considerable help to us.) The first metric space scaling limit
in the power-law setting was obtained by Bhamidi, van der Hofstad and Sen [22] for the
Norros–Reittu model with the specific weight sequence used in [24]. Here, the convergence
is in the product Gromov–Hausdorff–Prokhorov sense, and the limit object is constructed by
making vertex identifications in tilted inhomogeneous continuum random trees (of the sort
introduced by Aldous and Pitman in [9]).

Broutin, Duquesne and Wang [27, 28] use a very different approach in order to prove a
unified metric space scaling limit for the Norros–Reittu model with very general weight se-
quences. They are able to treat situations where the scaling limit of the depth-first walk is a
thinned Lévy process for any κ ≥ 0, λ ∈ R and sequence (ϑ1, ϑ2, . . .), recovering the gener-
ality of Aldous and Limic’s paper [8]. They embed spanning subtrees of the components of
the graph inside a forest of Galton–Watson trees, and exploit the convergence of this (bigger)
forest on rescaling to the sequence of R-trees encoded by a Lévy process (as in Duquesne and
Le Gall [36]), whose height process also converges. This enables them to obtain the conver-
gence of the height process of the true spanning forest in the Gromov–Hausdorff–Prokhorov
sense; the surplus edges can also be tracked, in order to obtain a product Gromov–Hausdorff–
Prokhorov convergence of the whole ordered sequence of graph components.

Let us finally turn to the work of Bhamidi, Dhara, van der Hofstad and Sen [18], who
proved a metric space scaling limit analogous to that of [22] for critical percolation on a
supercritical configuration model. Among the settings studied so far, theirs is the closest to



THE STABLE GRAPH 15

ours, although the technical content is rather different. Their work relies on a connection to
the multiplicative coalescent that, in particular, requires the careful analysis of susceptibility
functions in the barely subcritical regime; we do not need to study the latter at all. We will
describe their setting precisely, in order to provide a comparison with Theorem 1.1. They take
a (deterministic) degree sequence dn

1,d
n
2, . . . ,d

n
n such that

∑n
i=1 d

n
i is even and, if Dn is the

degree of a typical vertex, then:

(i) n−1/(α+1)dn
i → ϑi as n → ∞ for each i ≥ 1, where ϑ1 ≥ ϑ2 ≥ · · · ≥ 0 is such that∑

i≥1 ϑ3
i < ∞ but

∑
i≥1 ϑ2

i = ∞;

(ii) Dn
d−→ D as n → ∞, along with the convergence of its first two moments, for some

random variable D with P(D = 1) > 0, E[D] = μ and E[D(D− 1)]/E[D] = θ > 1, and

lim
K→∞ lim sup

n→∞
n−3/(α+1)

∑
i≥K+1

(
dn
i

)3 = 0.

Let θn = E[Dn(Dn − 1)]/E[Dn] (which, by (ii), converges to θ > 1). They then perform
percolation at parameter

pn(λ) = 1

θn

+ λn−(α−1)/(α+1),

for some λ ∈ R, which yields a graph in the critical window. In this setting, their Theo-
rem 2.2 is the precise analogue of our Theorem 1.1 but with the convergence in the product
Gromov-weak topology and with the limit object ((Gi , di,μi), i ≥ 1) constructed by making
vertex identifications in the tilted inhomogeneous continuum random trees mentioned above.
Subsequent to the first version of our paper, this convergence has been improved to a prod-
uct Gromov–Hausdorff–Prokhorov convergence under an extra technical condition in [19].
A precise description of the limit object would be too lengthy to undertake here, but it is
instructive to compare the scaling limit of the depth-first walk in the two settings. For us, this
is the measure-changed stable Lévy process L̃; for Bhamidi, Dhara, van der Hofstad and Sen
it is the thinned Lévy process in (9) with κ = 0. To make the connection between the results,
suppose now we take D such that P(D = 1) > 0, E[D] = μ, E[D(D − 1)]/E[D] = θ > 1
and P(D = k) ∼ ck−α−2. Let dn

1, . . . ,d
n
n be an ordered sample of i.i.d. random variables

D1, . . . ,Dn with the same distribution as D. Then conditions (i) and (ii) above are satisfied
almost surely for some sequence of random variables ϑ1, ϑ2, . . . (see Section 2.2 of [32]).
Perform percolation at parameter p = 1/θ to obtain new degrees D1,D2, . . . ,Dn, which are
mildly dependent but whose ordered version behaves very similar to the order statistics of
a i.i.d. sample, which satisfy the conditions of our theorem. (In particular, using results of
Janson [42], such mild dependence can be shown to have a negligible effect on the properties
of the graph.) Then it should be the case that Bhamidi, Dhara, van der Hofstad and Sen’s limit
object is the same as the stable graph. In particular, the process defined at (9) with κ = 0 and
λ = 0 should, for this particular random sequence (ϑ1, ϑ2, . . .), have the same law as L̃. Sim-
ilarly, if it is the case that the scaling limit is the same as for the analogous inhomogeneous
random graph setting, then our limit object should also coincide with a particular annealed
version of that of Broutin, Duquesne and Wang [27, 28].

It is perhaps worth emphasising that, in contrast to the bulk of the other papers cited
here, the multiplicative coalescent (and its relationship to percolation) appears nowhere in
our proofs, and is conceptually absent from our approach.

Let us now give a list of open problems and conjectures arising from our work.

(i) Prove that the stable graph is, indeed, an annealed version of the limit object from
[18] or [27, 28].
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(ii) The convergence in our main theorem occurs with respect to the product Gromov–
Hausdorff–Prokhorov topology. For sequences A = (A1,A2, . . .) and B = (B1,B2, . . .) of
compact measured metric spaces, we may obtain stronger topologies using the distances

(10) distp(A,B) =
(∑

i≥1

dGHP(Ai,Bi)
p

)1/p

for p ≥ 1. For the Erdős–Rényi random graph, the analogous convergence to the Brownian
graph holds in the sense of dist4. We conjecture that it should be possible to improve our
main result for α ∈ (1,2] to a convergence in the sense of dist2α/(α−1).

(iii) One reason for wanting to prove such a result is that it would imply the convergence
in distribution of the diameter of the whole graph (i.e., the largest distance between any two
vertices in the same component). In order to prove convergence in dist2α/(α−1), we would
need bounds on the component diameters in terms of powers of their sizes for the whole
graph (we can do this for the parts explored up to time O(nα/(α+1)) using the methods of this
paper, but that is not sufficient). A finer understanding of the barely subcritical regime for the
configuration model would presumably help to resolve this issue.

(iv) As shown in Proposition A.2, the measure change used in this paper makes sense for a
large family of spectrally positive Lévy processes (see Section A.1 for the precise conditions).
Any such Lévy process may be intuitively thought of as encoding a forest of continuum trees,
although the analogue of Theorem 2.4 holds only with the imposition of extra regularity con-
ditions (see Theorem 2.3.1 of [36]). Is it possible to find a sequence of degree distributions
(νn)n≥1, depending now on n and such that the regularity conditions are satisfied, so that if
we take D

(n)
1 , . . . ,D

(n)
n to be i.i.d. random variables with distribution νn then we get conver-

gence of our discrete measure change to its continuum analogue? Or does the self-similarity
inherent in the Brownian and stable settings play a key role? If a generalisation to the Lévy
case is possible, what is the connection to thinned Lévy processes, or to the approach of
Broutin, Duquesne and Wang [27, 28]?

For simplicity, we have restricted our attention in this paper to the case where θ(ν) = 1.
The critical window is obtained by considering the situation where the degrees Dn

1 , . . . ,Dn
n

are i.i.d. but now with some n-dependent degree distribution νn, such that E[Dn
1 ] → μ for

some μ as n → ∞, θ(νn) = 1 + λn−(α−1)/(α+1) and P(Dn
1 = k) ∼ ck−α−2 as k → ∞, for

some fixed λ ∈ R. An extension of our approach to this regime has very recently been made
by Donderwinkel [33].

2.6. Plan of the rest of the paper. In Section 3, we study the process L̃, which gives rise
to the stable graph. In particular, we establish the local absolute continuity relation between L̃

and L, and present some results in excursion theory. The section concludes with the proof of
Theorem 1.2. In Section 4, we study a forest, which is closely related to Mn(ν). We show that
the absolute continuity relation (1), (2) may be seen as the limit of a discrete measure change
between the degrees in the order we observe them when we explore this forest in a depth-first
manner and an i.i.d. sequence of random variables whose law is the size-biased version of
ν. The main result of this section is Theorem 4.1, which gives the joint convergence of the
depth-first walk and height process of the discrete forest to their continuum counterparts. In
Section 5, we explore the multigraph Mn(ν) in a depth-first manner, and record its structure
via coding functions close to those of the forest in Section 4, and show their convergence in
law. We also deal with the occurrence of the back-edges, and prove that Mn(ν) and Gn(ν)

cannot have different scaling limits. We must then extract the individual components of the
graph in decreasing order of size, and prove that their individual coding functions converge.
We adapt an approach of Aldous [7] using size-biased point processes; this is perhaps the
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most technical part of the paper. Section 5 culminates in the proof of Theorem 1.1. The Ap-
pendix contains various technical results. In particular, in Section A.1 we give a formulation
of the measure change in (1) and (2) for a general class of Lévy processes, which may be of
independent interest. In Section A.4, we show the natural result that a single component of
Gn(ν) or Mn(ν) conditioned to have size 
xnα/(α+1)� has a component of the α-stable graph
of size x as its scaling limit.

3. The limit object: The stable graph.

3.1. An absolute continuity relation for spectrally positive α-stable Lévy processes. We
begin by discussing the coding function R discovered by Joseph [44], which was defined in
(5). Fix α ∈ (1,2), μ ∈ (1,2) and c > 0. Recall that L is the spectrally positive α-stable Lévy
process having Lévy measure π(dx) = c

μ
x−(α+1) dx. This process has Laplace transform

E
[
exp(−λLt)

] = exp
(
t�(λ)

)
, λ ≥ 0, t ≥ 0,

where

�(λ) =
∫ ∞

0

c

μ
x−(α+1) dx

(
e−λx − 1 + λx

) = Cα

μ
λα,

with

Cα = c�(2 − α)

α(α − 1)
.

Recall also that X is the unique process with independent increments such that

E
[
exp(−λXt)

] = exp
(∫ t

0
ds

∫ ∞
0

dx
(
e−λx − 1 + λx

) c

μ

1

xα+1 e−xs/μ

)
, λ ≥ 0, t ≥ 0.

Let

At = −Cα

tα

μα

and define

L̃t = Xt + At .

We observe that X is a martingale and A is a finite-variation process, so this is, in fact, the
Doob–Meyer decomposition of the process L̃.

PROPOSITION 3.1. We have

L̃t → −∞ a.s.

as t → ∞.

PROOF. Lemma B.3 of Joseph [44] gives the convergence in probability; we adapt his
argument. Since At is deterministic and tends to −∞, it will be sufficient to prove that

lim sup
t→∞

t−αXt = 0 a.s.

Consider a Poisson point process on R+ ×R+ of intensity

c

μ
x−(α+1)e−xs/μ ds dx,
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with points {(s,�s)}. Let X(1) be the martingale arising from compensating the jumps of
magnitude at most 1, formally defined as the ε → 0 limit of the family {X(1,ε), ε > 0} of
processes given by

X
(1,ε)
t = ∑

s≤t

�s1{ε<�s<1)} −
∫ t

0
ds

∫ 1

ε
dx

c

μ
x−αe−xs/μ,

and let

X
(2)
t = ∑

s≤t

�s1{�s≥1} −
∫ t

0
ds

∫ ∞
1

dx
c

μ
x−αe−xs/μ.

Then Xt = X
(1)
t + X

(2)
t . By Doob’s L2-inequality, we have

E
[(

sup
0≤s≤t

∣∣X(1)
s

∣∣)2]
≤ 4E

[(
X

(1)
t

)2] = 4
∫ t

0
ds

∫ 1

0
dx

c

μ
x−(α−1)e−xs/μ.

For every s > 0,∫ 1

0
dx

c

μ
x−(α−1)e−xs/μ = sα−2

∫ s/μ

0

c

μα−1 u−(α−1)e−u du ≤ c�(2 − α)

μα−1 sα−2,

and so

E
[(

sup
0≤s≤t

∣∣X(1)
s

∣∣)2]
≤ Ctα−1

for some constant C > 0. Hence, applying Markov’s inequality, we get

P
(

sup
n−1<s≤n

∣∣X(1)
s

∣∣ > n(α+1)/2
)

≤ C

n2 .

As this is summable in n, the Borel–Cantelli lemma gives that

P
(

sup
n−1<s≤n

∣∣X(1)
s

∣∣ > n(α+1)/2 i.o.
)

= 0.

Since α > 1, it follows that

lim sup
t→∞

t−αX
(1)
t = 0 a.s.

Turning now to X(2), for all t ≥ 0 we have the straightforward bound

sup
t≥0

X(2)
s ≤ ∑

s≥0

�s1{�s≥1}.

The right-hand side has expectation∫ ∞
0

ds

∫ ∞
1

dx
c

μ
x−αe−xs/μ = c

∫ ∞
1

dx x−(α+1)
∫ ∞

0
ds

x

μ
e−xs/μ = c

∫ ∞
1

x−(α+1) dx = c

α
.

Since the jumps are all nonnegative, this computation also entails that

inf
t≥0

X
(2)
t ≥ − c

α
.

Hence by Markov’s inequality, we have for all n ≥ 1

P
(

sup
n−1<s≤n

∣∣X(2)
s

∣∣ > n(α+1)/2
)

≤ c

αn(α+1)/2 .
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As for X(1), the Borel–Cantelli lemma gives that

lim sup
t→∞

t−αX
(2)
t = 0 a.s.

The result follows. �

The main purpose of this section is to expand considerably our understanding of the pro-
cesses L̃ and R. Our first new result says that the law of the process L̃ is absolutely continuous
with respect to the law of the Lévy process L on compact time intervals.

PROPOSITION 3.2. For every t ≥ 0, we have the following absolute continuity relation:
for every nonnegative integrable functional f :D([0, t],R) →R+,

E
[
f (L̃s,0 ≤ s ≤ t)

] = E

[
exp

(
− 1

μ

∫ t

0
s dLs − Cα

tα+1

(α + 1)μα+1

)
f (Ls,0 ≤ s ≤ t)

]
.

This proposition is a consequence of a more general change of measure for spectrally
positive Lévy processes, Proposition A.2, which is proved in the Appendix below.

In the Brownian case, we instead have Lt =
√

β
μ
Bt , where B is a standard Brownian mo-

tion,

(11) L̃t =
√

β

μ
Bt − β

2μ2 t2,

and Proposition A.2 gives

E
[
f (L̃s,0 ≤ s ≤ t)

] = E

[
exp

(
− 1

μ

∫ t

0
s dLs − β

6μ3 t3
)
f (Ls,0 ≤ s ≤ t)

]
.

In order to harmonise notation, let us define C2 := β/2, so that Proposition 3.2 is valid as
stated for all α ∈ (1,2].

REMARK 3.3. The absolute continuity cannot be extended to t = ∞: the process
(Lt , t ≥ 0) is recurrent whereas, by Proposition 3.1 for α ∈ (1,2) or (11) for α = 2, we
have L̃t → −∞ a.s. as t → ∞. (In particular, (exp(− 1

μ

∫ t
0 s dLs − Cα

tα+1

(α+1)μα+1 ), t ≥ 0) is a
martingale, which is not uniformly integrable.)

Recall that H is the height process which corresponds to L. Then for any α ∈ (1,2], we
may define a pair (L̃, H̃ ) of processes via change of measure as follows: for suitable test
functions f : D([0, t],R)2 →R,

E
[
f (L̃u, H̃u,0 ≤ u ≤ t)

] = E

[
exp

(
− 1

μ

∫ t

0
s dLs − Cαtα+1

(α + 1)μα+1

)
f (Lu,Hu,0 ≤ u ≤ t)

]
.

3.2. Excursion theory. We begin with some notation. Write D+(R+,R+) for the space
of càdlàg functions f : R+ → R+ with only positive jumps. We write E for the space of
excursions, that is,

E = {
ε ∈ D+(R+,R+) : ∃t > 0 s.t. ε(s) > 0 for s ∈ (0, t) and ε(s) = 0 for s ≥ t

}
.

For ε ∈ E , let ζ(ε) be the lifetime of ε, that is the smallest t such that ε(s) = 0 for s ≥ t . Let
E∗ = E ∪ {∂}, where the extra state, ∂ , represents the empty excursion, with ζ(∂) = 0.
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Let It = inf0≤s≤t Ls . It is standard that the process −I acts as a local time at 0 for the
reflected Lévy process (Lt − inf0≤s≤t Ls, t ≥ 0) (see Chapter VII of Bertoin [14] or Sec-
tion 1.1.2 of Duquesne and Le Gall [36]). Indeed, we may decompose the path of the reflected
process into excursions above 0. Now write

σ� = inf{t ≥ 0 : It < −�},
so that (σ�, � ≥ 0) is the inverse local time. We observe that σ� is a stopping time for the
(usual augmentation of the) natural filtration of (Lt )t≥0. For � ≥ 0, write

ε(�) =
{
(� + Lσ�−+u,0 ≤ u ≤ σ� − σ�−) if σ� − σ�− > 0,

∂ otherwise.

Then the following theorem is standard (see Theorem VII.1.1 of Bertoin [14], converting
from the spectrally negative case, or Miermont [50] for a convenient reference).

THEOREM 3.4. (a) The inverse local time process (σ�, � ≥ 0) is a stable subordinator of
index 1/α and, more specifically, with Lévy measure

μ1/α

C
1/α
α α�(1 − 1/α)

x−1−1/α dx.

(b) There exists a σ -finite measure N on E such that the point measure on R+ × E given
by

(12)
∑

s≥0:σs−σs−>0

δ(s,ε(s))

is a Poisson random measure of intensity d� ⊗ N(de). Moreover, the excursion measure N

satisfies

N
(
ζ(e) ∈ dx

) = μ1/α

C
1/α
α α�(1 − 1/α)

x−1−1/α dx.

Consider the excursions occurring before time σ�. With probability 1, only finitely many
of these are longer than η in duration for any η > 0. So, in particular, they may be listed in
decreasing order of length as (ε

(�)
i , i ≥ 1).

Since L is self-similar, it is possible to make sense of normalised versions of N, that is,
N(x)(·) = N(·|ζ(e) = x), which are probability measures. (Again see Miermont [50] for more
details.) For example, the law of e under N(x) is the same as the law of((

x/ζ(e)
)1/αe

(
ζ(e)s/x

)
,0 ≤ s ≤ x

)
under N(·|ζ(e) > η) for any fixed η > 0. In particular, we have that under N(x), the rescaled
excursion (x−1/αe(xu),0 ≤ u ≤ 1) has the same law as e under N(1). It follows that the
excursions ε(s) appearing in (12) may be thought of in two parts: as their lengths ζ(ε(s)) =
σs − σs− and their normalised “shapes” e(s) := (ζ(ε(s))−1/αε(s)(ζ(ε(s))u),0 ≤ u ≤ 1) where,
crucially, the collection of shapes (e(s), s ≥ 0) is independent of the collection of excursion
lengths (ζ(ε(s)), s ≥ 0). We will write EN(x) for the expectation with respect to N(x).

We observe that the excursions of the Lévy process L above its running infimum and
the excursions of the height process H are in one-to-one correspondence and have the same
lengths. In particular, we can make sense of an excursion of the height process h derived
from e, under N or its conditioned versions. The scaling relation for the height process is
that under N(x) the rescaled excursion (x−(α−1)/αh(xu),0 ≤ u ≤ 1) has the same law as h
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under N(1). The usual stable tree is encoded by (a scalar multiple of) a height process with
the distribution of h under N(1).

Much of this structure can be transferred into our setting, by absolute continuity. Recall
that

Rt = L̃t − inf
0≤s≤t

L̃s, t ≥ 0.

We will make use of the following properties.

LEMMA 3.5. The following statements hold almost surely:

(i) For each ε > 0, R has only finitely many excursions of length greater than or equal
to ε.

(ii) The set {t : Rt = 0} has Lebesgue measure 0.
(iii) If (l1, r1) and (l2, r2) are excursion intervals of R and l1 < l2, then L̃l1 > L̃l2 .
(iv) For a ≥ 0, let Ba = {b > a : L̃b− = infa≤s≤b L̃s}. Then Ba does not intersect the set

of jump times of L̃.

PROOF. Part (i) is a consequence of Lemma B.3 of Joseph [44]. For parts (ii), (iii) and
(iv), we first argue that the claimed properties are almost surely true for the Lévy process L

and then use absolute continuity to deduce them for L̃.
The analogues of both (ii) and (iii) are standard for L (see, e.g., Chapter VII of

Bertoin [14]; indeed, these properties are necessary for Theorem 3.4 to work). It follows
by absolute continuity that P(Leb({s ≤ t : Rs = 0}) = 0) = 1 and

P
(
L̃l1 > L̃l2 for all (l1, r1), (l2, r2) excursion intervals of R with l1 < l2 ≤ t

) = 1,

for fixed t > 0. But then (ii) and (iii) follow by monotone convergence.
By the stationarity and independence of increments of L, it is sufficient to prove (iv) for

a = 0. But this then follows from Corollary 1 of Rogers [58]. In particular, if we let J be the
set of jump-times of L̃, by absolute continuity we get P(Ba ∩ [0, t] ∩ J �= ∅) = 0 for any
t > 0. By monotone convergence again, we obtain P(Ba ∩J �= ∅) = 0. �

Let Ĩt = inf0≤s≤t L̃s . As for the reflected stable process, we have that −Ĩ acts as a local
time at 0 for R. We write (σ̃�, � ≥ 0) with σ̃� = inf{t > 0 : Ĩt < −�} for the inverse local time,
(̃ε(�), � ≥ 0) for the collection of excursions above 0, indexed by local time (with ε̃(�) = ∂

if σ̃� − σ̃�− = 0), and (̃e(�), � ≥ 0) for their shapes. In order to understand the laws of these
quantities, we first need to prove two preliminary results, Lemma 3.6 and Proposition 3.7.

LEMMA 3.6. Let α ∈ (1,2]. Then for any θ > 0,

EN(1)

[
exp

(
θ

∫ 1

0
e(t) dt

)]
< ∞.

PROOF. This is well known in the α = 2 case; see, for example, Section 13 of Jan-
son [41]. For α ∈ (1,2), observe that∫ 1

0
e(t) dt ≤ sup

t∈[0,1]
e(t).

By Theorem 9 of Kortchemski [45] (see also the discussion at the top of the 12th page),
for any δ ∈ (0, α

α−1), there exist constants C1,C2 > 0 such that

N(1)
(

sup
t∈[0,1]

e(t) ≥ u
)

≤ C1 exp
(−C2u

δ),
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for every u ≥ 0. (Note that since Kortchemski works with the Lévy process having Laplace
exponent λα , his normalised excursions are a constant scaling factor different from ours. But
this changes the bound only by a constant.) Since we may take δ > 1, the result follows. �

For t ≥ 0, write

�(t) := exp
(
− 1

μ

∫ t

0
s dLs − Cαtα+1

(α + 1)μα+1

)
.

In Lemma A.1 in the Appendix, we show that � is a particular instance of a family of expo-
nential martingales for spectrally positive Lévy processes.

PROPOSITION 3.7. Let α ∈ (1,2]. For any � ≥ 0, we have that (�(t ∧ σ�), t ≥ 0) is a
uniformly integrable martingale, and thus, E[�(σ�)] = 1.

PROOF. By Lemma A.1 with θ = 1
μ

, γ = δ = 0 and π(dx) = c
μ
x−(α+1) dx, the process

(�(t), t ≥ 0) is a nonnegative martingale of mean 1. Since for any � ≥ 0, σ� is a stopping
time for L and since � has right-continuous trajectories, (�(t ∧ σ�), t ≥ 0) is a martingale
with respect to the natural filtration of L. So, by the almost sure martingale convergence
theorem, we must have �(t ∧σ�) → �(σ�) almost surely as t → ∞. Then (�(t ∧σ�), t ≥ 0)

is uniformly integrable if and only if this convergence also holds in L1. By Fatou’s lemma,
we get E[�(σ�)] ≤ 1, so that �(σ�) is integrable. Now, for any t > 0,

E
[∣∣�(σ�) − �(t ∧ σ�)

∣∣] = E
[∣∣�(σ�) − �(t)

∣∣1{σ�>t}
] ≤ E

[
�(σ�)1{σ�>t}

] +E
[
�(t)1{σ�>t}

]
.

Observe that by the definition of the measure-changed process, we have E[�(t)1{σ�>t}] =
P(σ̃� > t). So,

E
[∣∣�(σ�) − �(t ∧ σ�)

∣∣] ≤ P(σ̃� > t) +E
[
�(σ�)1{σ�>t}

]
.

Since �(σ�) is integrable (and hence uniformly integrable) and since σ� < ∞ almost surely,
we have limt→∞E[�(σ�)1{σ�>t}] = 0. By Proposition 3.1, we have that L̃t → −∞ almost
surely as t → ∞, and so σ̃� < ∞ almost surely. So, limt→∞P(σ̃� > t) = 0 and we get

E
[∣∣�(σ�) − �(t ∧ σ�)

∣∣] → 0

as t → ∞. Hence, (�(t ∧ σ�), t ≥ 0) is uniformly integrable and, in particular, we may
deduce that E[�(σ�)] = 1. �

We are now in a position to characterise the joint law of (σ̃s,0 ≤ s ≤ �) and (̃ε(s), s ≤
�). We will find it convenient to list the excursions occurring before local time � has been
accumulated in decreasing order of length, as (̃ε

(�)
i , i ≥ 1). Proposition 3.7 implies that we

may use the Radon–Nikodym derivative �(t) to change measure at the random times σ�. As
earlier, we write (ε

(�)
i , i ≥ 1) for the excursions of L occurring before time σ� in decreasing

order of length. For an excursion ε ∈ E∗ = E ∪ {∂}, write a(ε) = ∫ ζ(ε)
0 ε(u) du for its area.

PROPOSITION 3.8. For suitable test functions f and g1, g2, g3, . . . , and any n ≥ 1, we
have

E

[
f (σ̃s,0 ≤ s ≤ �)

n∏
i=1

gi

(̃
ε
(�)
i

)]

= E

[
exp

(
1

μ

∫ �

0
σr dr − Cασα+1

�

(α + 1)μα+1

)
f (σs,0 ≤ s ≤ �)

×E

[
exp

(
1

μ

∑
j>n

a
(
ε
(�)
j

)) ∣∣∣ ζ
(
ε
(�)
k

)
, k > n

] n∏
i=1

E

[
exp

(
1

μ
a
(
ε
(�)
i

))
gi

(
ε
(�)
i

) ∣∣∣ ζ
(
ε
(�)
i

)]]
.
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In particular, the excursions (̃ε
(�)
i , i ≥ 1) are conditionally independent given their lengths.

Moreover, for any i ≥ 1 and any suitable test function g,

E
[
g
(̃
ε
(�)
i

) | ζ (̃
ε
(�)
i

) = x
] = EN(x)[exp( 1

μ

∫ x
0 e(t) dt)g(e)]

EN(x)[exp( 1
μ

∫ x
0 e(t) dt)]

= EN(1)[exp(x1+1/α

μ

∫ 1
0 e(t) dt)g(x1/αe(·/x))]

EN(1)[exp(x1+1/α

μ

∫ 1
0 e(t) dt)] .

PROOF. By integration by parts and writing Ls = Is + (Ls − Is), noting that Lσ�
= −�,

we get

− 1

μ

∫ σ�

0
s dLs = �σ�

μ
+ 1

μ

∫ σ�

0
Ls ds = �σ�

μ
+ 1

μ

∫ σ�

0
Is ds + 1

μ

∫ σ�

0
(Ls − Is) ds.

Changing variable in the middle term, and using the fact that Iσs = −s, we obtain

�σ�

μ
+ 1

μ

∫ �

0
Iσs dσs + 1

μ

∫ σ�

0
(Ls − Is) ds = �σ�

μ
− 1

μ

∫ �

0
s dσs + 1

μ

∫ σ�

0
(Ls − Is) ds.

Another integration by parts yields that this is equal to

1

μ

∫ �

0
σs ds + 1

μ

∫ σ�

0
(Ls − Is) ds.

Finally, we can integrate the excursions of L − I separately to obtain that this is equal to

1

μ

∫ �

0
σs ds + 1

μ

∑
s≤�

a
(
ε(s)).

Hence,

(13) �(σ�) = exp
(

1

μ

∫ �

0
σr dr + 1

μ

∑
s≤�

a
(
ε(s)) − Cα

σα+1
�

(α + 1)μα+1

)
.

Now,

E

[
f (σ̃s,0 ≤ s ≤ �)

n∏
i=1

gi

(̃
ε
(�)
i

)]

= E

[
exp

(
1

μ

∫ �

0
σr dr + 1

μ

∑
s≤�

a
(
ε(s)) − Cα

σα+1
�

(α + 1)μα+1

)
f (σs,0 ≤ s ≤ �)

n∏
i=1

gi

(
ε
(�)
i

)]

= E

[
exp

(
1

μ

∫ �

0
σr dr − Cα

σα+1
�

(α + 1)μα+1

)
f (σs,0 ≤ s ≤ �)

×E

[
exp

(
1

μ

∑
s≤�

a
(
ε(s))) n∏

i=1

gi

(
ε
(�)
i

) ∣∣∣∣ (σs,0 ≤ s ≤ �)

]]
.

As discussed below Theorem 3.4, the excursions of the stable Lévy process are conditionally
independent given their lengths, which yields the first expression in the statement of the
proposition. The final statement is an immediate consequence of the scaling property for
stable excursions; we observe that this change of measure for the excursions is well defined
by Lemma 3.6. �
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Lemma 3.5(i) implies that we can list all the excursions of R in decreasing order of length:
write (̃εi, i ≥ 1) for this list. Write (h̃i , i ≥ 1) for the corresponding height process excur-
sions.

PROPOSITION 3.9. The pairs of excursions (̃εi, h̃i , i ≥ 1) are conditionally independent
given their lengths (ζ (̃εi), i ≥ 1), with law specified by

E
[
g(̃εi, h̃i) | ζ (̃εi) = x

] = EN(x)[exp( 1
μ

∫ x
0 e(t) dt)g(e,h)]

EN(x)[exp( 1
μ

∫ x
0 e(t) dt)]

= EN(1)[exp(x1+1/α

μ

∫ 1
0 e(t) dt)g(x1/αe(·/x), x(α−1)/αh(·/x))]

EN(1)[exp(x1+1/α

μ

∫ 1
0 e(t) dt)] .

PROOF. The excursions of R occurring before local time � has been accumulated are a
strict subset of all the excursions that ever occur. By Lemma 3.5, we have that

sup
{
ζ(ε) : ε is an excursion of R starting after time t

} p→ 0

as t → ∞ and −Ĩt → ∞ as t → ∞. The latter implies that σ̃� < ∞ a.s., and since −Ĩt < ∞
for each t > 0, we also have σ̃� → ∞ as � → ∞. Hence,

sup
{
ζ(ε) : ε is an excursion of R starting after time σ̃�

} p→ 0

as � → ∞. It follows that (
ζ
(̃
ε
(�)
i

)
, i ≥ 1

) → (
ζ (̃εi), i ≥ 1

)
a.s.

in the product topology, as � → ∞. The result then follows from Proposition 3.8 since the
expressions there do not depend on the value of �. �

This enables us to give the proof of Theorem 1.2 assuming the definition of ((Gi , di,μi),

i ≥ 1) from L̃ given following Theorem 1.1.

PROOF OF THEOREM 1.2. With Proposition 3.9 in hand, it remains to deal with the
Poisson points, which give rise to the vertex identifications. We have straightforwardly that,
given ε̃i , the number Mi of points falling under the excursion is conditionally independent of
the other excursions and has a Poisson distribution with parameter 1

μ

∫ ∞
0 ε̃i (u) du. Moreover,

conditionally on the number of points, their locations are i.i.d. uniform random variables in
the area under the excursion. For any suitable test function g,

E
[
g(̃εi, h̃i)1{Mi=m} | ζ (̃εi) = x

]
= E

[
g(̃εi, h̃i) exp

(
− 1

μ

∫ ∞
0

ε̃i (u) du

)
1

m!
(

1

μ

∫ ∞
0

ε̃i (u) du

)m ∣∣∣ ζ (̃εi) = x

]

= EN(x)[exp( 1
μ

∫ x
0 e(t) dt)g(e,h) exp(− 1

μ

∫ x
0 e(t) dt) 1

m!(
1
μ

∫ x
0 e(t) dt)m]

EN(x)[exp( 1
μ

∫ x
0 e(t) dt)]

and so

E
[
g(̃εi, h̃i) | ζ (̃εi) = x,Mi = m

] = EN(x)[( 1
μ

∫ x
0 e(t) dt)mg(e,h)]

EN(x)[( 1
μ

∫ x
0 e(t) dt)m]

= EN(1)[(∫ 1
0 e(t) dt)mg(x1/αe(·/x), x(α−1)/αh(·/x))]

EN(1)[(∫ 1
0 e(t) dt)m] .

The claimed result follows. �
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4. Convergence of a discrete forest. The multigraph Mn(ν) contains cycles with prob-
ability tending to 1 as n → ∞. However, its components will turn out to be tree-like, in
that they each have a finite surplus, with probability 1. In this section, we study an idealised
version of the depth-first walk of the multigraph, ignoring cycles.

Let (D̂n
1 , D̂n

2 , . . . , D̂n
k ) be D1,D2, . . . ,Dn arranged in size-biased random order. More pre-

cisely, let � be a random permutation of {1,2, . . . , n} such that

P(� = σ |D1, . . . ,Dn) = Dσ(1)∑n
j=1 Dσ(j)

Dσ(2)∑n
j=2 Dσ(j)

· · · Dσ(n)

Dσ(n)

and define (
D̂n

1 , D̂n
2 , . . . , D̂n

n

) = (D�(1),D�(2), . . . ,D�(n)).

Now let S̃n(0) = 0 and, for k ≥ 1,

S̃n(k) =
k∑

i=1

(
D̂n

i − 2
)
.

Then S̃n is the depth-first walk of a forest of trees in which the ith vertex visited in depth-first
order has D̂n

i − 1 ≥ 0 children. Define the corresponding height process,

G̃n(k) = #
{
j ∈ {0,1, . . . , k − 1} : S̃n(j) = inf

j≤�≤k
S̃n(�)

}
.

The purpose of this section is to recover Theorem 8.1 of Joseph [44] and, indeed, to strengthen
it by adding the convergence of the height process to that of the depth-first walk. We will
prove the following.

THEOREM 4.1. We have(
n− 1

α+1 S̃n(⌊
n

α
α+1 t

⌋)
, n− α−1

α+1 G̃n(⌊
n

α
α+1 t

⌋)
, t ≥ 0

) d−→ (L̃t , H̃t , t ≥ 0)

as n → ∞ in D(R+,R)2.

In order to prove this theorem, we will begin by showing that there is an analogue in the
discrete setting of the change of measure used to define L̃.

Write Z1,Z2, . . . ,Zn for i.i.d. random variables with the size-biased degree distribution,
that is,

P(Z1 = k) = kνk

μ
, k ≥ 1.

Observe that μ ∈ (1,2) since, first, D1 ≥ 1 and, second, E[D2
1] = 2μ and we must have

var(D1) = μ(2 − μ) > 0. Then we have E[Z1] = 2, P(Z1 ≥ 1) = 1 and P(Z1 = k) ∼
c
μ
k−(α+1) as k → ∞ if α ∈ (1,2), or var(Z1) = β/μ if α = 2.

PROPOSITION 4.2. For any k1, k2, . . . , kn ≥ 1, we have

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
n = kn

) = k1νk1k2νk2 · · ·knνkn

n∏
i=1

(n − i + 1)∑n
j=i kj

.

Moreover, for 0 ≤ m ≤ n and k1, k2, . . . , km ≥ 1, let

φn
m(k1, k2, . . . , km) := E

[
m∏

i=1

(n − i + 1)μ∑m
j=i kj + �n−m

]
,
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where �n−m has the same law as Dm+1 + Dm+2 + · · · + Dn. Then for any suitable test
function g : Zm+ →R+,

(14) E
[
g
(
D̂n

1 , D̂n
2 , . . . , D̂n

m

)] = E
[
φn

m(Z1,Z2, . . . ,Zm)g(Z1,Z2, . . . ,Zm)
]
.

We have not found a precise reference for the contents of Proposition 4.2. The analogue
of (14) for continuous random variables is equation (1) of Barouch and Kaufman [11]; see
Proposition 1 of Pitman and Tran [56] for a proof. The proof of Proposition 4.2 is elementary
and may be found in the Appendix.

We now show that the Radon–Nikodym derivative in the change-of-measure formula con-
verges in distribution under appropriate conditions. Until the end of this section, we restrict
our attention to the case α ∈ (1,2); the proof for the Brownian case is similar but a little more
involved, so we defer it to Section A.3 in the Appendix.

PROPOSITION 4.3. Let

�(n,m) := φn
m(Z1,Z2, . . . ,Zm)

and recall that

�(t) = exp
(
− 1

μ

∫ t

0
s dLs − Cαtα+1

(α + 1)μα+1

)
.

Then for fixed t > 0, �(n, 
tn α
α+1 �) d−→ �(t) as n → ∞. Moreover, the sequence of random

variables (�(n, 
tn α
α+1 �))n≥1 is uniformly integrable.

In order to prove this, we will need some technical lemmas.
First, we consider the asymptotics of S(k) = ∑k

i=1(Zi − 2). The generalised functional
central limit theorem, Theorem 2.3(ii), entails that

(15) n−1/(α+1)(S(⌊
tnα/(α+1)⌋)

, t ≥ 0
) d−→ (Lt , t ≥ 0)

as n → ∞ in D(R+,R), where L is the spectrally positive α-stable Lévy process introduced
in the previous section. We will need to deal with functionals of S converging, which we will
do via the continuous mapping theorem (Theorem 3.2.4 of Durrett [37]). We give here the
details for the functional, which will arise most frequently in the sequel.

LEMMA 4.4. For any t ≥ 0,

1

n


tn α
α+1 �−1∑
k=0

S(k)
d−→

∫ t

0
Ls ds

as n → ∞.

PROOF. We have

1

n


tn α
α+1 �−1∑
k=0

S(k) = 1

n

∫ 
tn α
α+1 �

0
S
(
v�)dv =

∫ n
− α

α+1 
tn α
α+1 �

0
n− 1

α+1 S
(⌊

un
α

α+1
⌋)

du,

by changing variable. Then the convergence in law follows from the fact that
n− α

α+1 
tn α
α+1 � → t and the continuous mapping theorem. �
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LEMMA 4.5. Let L(λ) := E[exp(−λD1)]. Then as λ → 0,

(16) L(λ) = exp
(
−μλ + μ(2 − μ)

2
λ2 − Cαλα+1

(α + 1)
+ o

(
λα+1))

.

PROOF. First, observe that

L′′′(λ) = −E
[
D3

1 exp(−λD1)
] = −

∞∑
k=1

k3e−λkνk.

Since νk ∼ ck−(α+2), the right-hand side is finite and, by the Euler–Maclaurin formula,
asymptotically equivalent to∫ ∞

0
cx1−αe−λx dx = cλα−2�(2 − α),

as λ → 0. In other words,

L′′′(λ) = −cλα−2�(2 − α) + o
(
λα−2)

,

as λ → 0. We also have E[D1] = μ and E[D2
1] = 2μ. So, integrating three times, we obtain

L(λ) = 1 − μλ + μλ2 − c�(2 − α)

(α − 1)α(α + 1)
λα+1 + o

(
λα+1)

,

and it is straightforward to see that this implies

L(λ) = exp
(
−μλ + μ(2 − μ)

2
λ2 − Cαλα+1

(α + 1)
+ o

(
λα+1))

. �

LEMMA 4.6. For m = O(nα/(α+1)), we have

exp
(
m − (2 + μ)

2μ

m2

n

)[
L

(
m

nμ

)]n−m

= (
1 + o(1)

)
exp

(
− Cαmα+1

(α + 1)μα+1nα

)
.

PROOF. By (16), it is sufficient to show that

m − (2 + μ)

2μ

m2

n
+ (n − m)

(
−μm

nμ
+ μ(2 − μ)

2

m2

n2μ2 − Cα

(α + 1)

mα+1

nα+1μα+1

)

= − Cαmα+1

(α + 1)μα+1nα
+ o(1),

as n → ∞. But this is now easily seen to be true on cancellation and using m = O(nα/(α+1)).
The result follows. �

LEMMA 4.7. Let s(0) = 0 and s(i) = ∑i
j=1(kj −2) for i ≥ 1. Then if m = O(nα/(α+1)),

we have

φm
n (k1, k2, . . . , km) ≥ exp

(
1

nμ

m∑
i=0

(
s(i) − s(m)

) − Cαmα+1

(α + 1)μα+1nα

)(
1 + o(1)

)
,

where the o(1) term is independent of k1, . . . , km ≥ 1.

PROOF. First, rewrite

m∏
i=1

(n − i + 1) = nm
m−1∏
i=1

(
1 − i

n

)
.
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Then

φm
n (k1, k2, . . . , km) =

m−1∏
i=1

(
1 − i

n

)
E

[
m∏

i=1

(
nμ∑m

j=i kj + �n−m

)]

= E

[
exp

(
m−1∑
i=1

log
(

1 − i

n

)
−

m∑
i=1

log

(
�n−m

nμ
+ 1

nμ

m∑
j=i

kj

))]
.

Now note that for any x ∈ (−1,∞), we have log(1 + x) ≤ x. We also have log(1 − i/n) ≥
−i/n − m2/n2 for 1 ≤ i ≤ m − 1. So,

φm
n (k1, k2, . . . , km)

≥ E

[
exp

(
−

m−1∑
i=1

i

n
− m3

n2 − m

[
�n−m

nμ
− 1

]
− 1

nμ

m∑
i=1

m∑
j=i

kj

)]

= exp

(
−m(m − 1)

2n
− m3

n2 + m + 1

nμ

m∑
i=1

(
s(i) − s(m) − 2(m − i + 1)

))

×E

[
exp

(
− m

nμ
�n−m

)]

= exp

(
−m(m − 1)

2n
− m3

n2 + m + 1

nμ

m∑
i=0

(
s(i) − s(m)

) − m(m + 1)

nμ

)

×E

[
exp

(
− m

nμ
�n−m

)]

= exp

(
1

nμ

m∑
i=0

(
s(i) − s(m)

))
exp

(
m − (2 + μ)

2μ

m2

n

)[
L

(
m

nμ

)]n−m

× exp
(

(μ − 2)m

2μn
− m3

n2

)
.

We have m3/n2 = O(n
α−2
α+1 ) = o(1) and so the final exponential tends to 1 as n → ∞. The

desired result then follows from Lemma 4.6. �

LEMMA 4.8. Let (Xn)n≥1, (Yn)n≥1 be two sequences of nonnegative random variables
such that Xn ≥ Yn and E[Xn] = 1 for all n. Suppose that X is another nonnegative ran-

dom variable such that E[X] = 1 and Yn
d−→ X. Then Xn

d−→ X and (Xn)n≥1 is uniformly
integrable.

PROOF. Since Xn ≥ Yn, we have that

lim sup
n→∞

E
[|Xn − Yn|] = lim sup

n→∞
E[Xn − Yn] = 1 − lim inf

n→∞ E[Yn].
But by the Portmanteau theorem,

lim inf
n→∞ E

[|Yn|] ≥ E[X] = 1

and so Xn − Yn → 0 in L1. It follows that Xn − Yn
d−→ 0. But then by Slutsky’s lemma, we

have Xn
d−→ X. Now we prove that Xn → X in L1, which will imply the desired uniform

integrability. By Skorokhod’s representation theorem, we may work on a probability space
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where Xn → X almost surely. But then we also have E[Xn] = E[X] = 1 for all n and so
E[|Xn − X|] → 0 by Scheffé’s lemma. �

PROOF OF PROPOSITION 4.3. Recall that S(k) = ∑k
i=1(Zi − 2). By Lemma 4.7, for

m = 
tn α
α+1 �,

�(n,m) ≥ �(n,m) := exp

(
1

nμ

m∑
i=0

(
S(i) − S(m)

) − Cαmα+1

(α + 1)μα+1nα

)(
1 + o(1)

)
.

By (15) and Lemma 4.4, we have

1

nμ

m∑
i=0

(
S(i) − S(m)

) d−→ 1

μ

∫ t

0
(Ls − Lt) ds.

Hence, by the continuous mapping theorem,

�
(
n,

⌊
tn

α
α+1

⌋) d−→ exp
(

1

μ

∫ t

0
(Ls − Lt) ds − Cαtα+1

(α + 1)μα+1

)

= exp
(
− 1

μ

∫ t

0
s dLs − Cαtα+1

(α + 1)μα+1

)
,

and the right-hand side is, of course, �(t), which has mean 1. We also have E[�(n,


tn α
α+1 �)] = 1 for all n. So, by Lemma 4.8, we must have

�
(
n,

⌊
tn

α
α+1

⌋) d−→ �(t)

as n → ∞, as well as the claimed uniform integrability. �

We are now ready to prove Theorem 4.1.

PROOF OF THEOREM 4.1. It is sufficient to show that for any t ≥ 0 and any bounded
continuous test function f :D([0, t],R)2 →R,

E
[
f

(
n− 1

α+1 S̃n(⌊
n

α
α+1 u

⌋)
, n− α−1

α+1 G̃n(⌊
n

α
α+1 u

⌋)
,0 ≤ u ≤ t

)] → E
[
f (L̃u, H̃u,0 ≤ u ≤ t)

]
,

as n → ∞. Let us write S
n
(u) = n− 1

α+1 S(
n α
α+1 u�) and, similarly, G

n
(u) = n− α−1

α+1 ×
G(
n α

α+1 u�). Then, by changing measure, we wish to show that for any t ≥ 0 and any
bounded continuous test function f :D([0, t],R)2 →R,

E
[
�

(
n,

⌊
tn

α
α+1

⌋)
f

(
S

n
(u),G

n
(u),0 ≤ u ≤ t

)] → E
[
�(t)f (Lu,Hu,0 ≤ u ≤ t)

]
,

as n → ∞. From the proof of Proposition 4.3, we have that

E
[∣∣�(

n,
⌊
tn

α
α+1

⌋) − �
(
n,

⌊
tn

α
α+1

⌋)∣∣] → 0

as n → ∞, and so it will suffice to show that

E
[
�

(
n,

⌊
tn

α
α+1

⌋)
f

(
S

n
(u),G

n
(u),0 ≤ u ≤ t

)] → E
[
�(t)f (Lu,Hu,0 ≤ u ≤ t)

]
.

But

�
(
n,

⌊
tn

α
α+1

⌋) = exp
(

1

μ

∫ t

0

(
S

n
(u) − S

n
(t)

)
du − Cα
tn α

α+1 �α+1

(α + 1)μα+1nα

)
.

In particular, for a path x ∈ D([0, t],R), let

	(x, t) = exp
(

1

μ

∫ t

0

(
x(u) − x(t)

)
du − Cαtα+1

(α + 1)μα+1

)
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and observe that 	 is a continuous functional of its first argument. Then we have

E
[∣∣�(

n,
⌊
tn

α
α+1

⌋) − 	
(
S

n
, t

)∣∣] → 0.

So, it suffices to show that

E
[
	

(
S

n
, t

)
f

(
S

n
(u),G

n
(u),0 ≤ u ≤ t

)] → E
[
	(L, t)f (Lu,Hu,0 ≤ u ≤ t)

]
.

But this now follows from Theorem 2.4 and uniform integrability. �

5. The configuration multigraph. The processes S̃n and G̃n encode a forest of trees
where the numbers of children of the vertices, visited in depth-first order, are D̂n

i − 1, i ≥ 1.
Let us write F̃n(ν) for this forest. In this section, we wish to encode similarly the multigraph
Mn(ν). Let us first describe the organisation of this section.

In Section 5.1, we simultaneously generate and explore Mn(ν) using the depth-first ap-
proach outlined in the Introduction: we view each connected component of the graph as a
spanning tree explored in a depth-first manner plus some additional edges, creating cycles,
that we call back-edges. In Section 5.2, we prove that the exploration process is close enough
to S̃n in order to have the same scaling limit, and add the joint convergence of the locations of
the back-edges in Section 5.3 (Theorem 5.5). In Section 5.4, we split the multigraph into its
components by showing that the (rescaled) ordered sequence of component sizes converges
to the sequence of ordered excursion lengths of the continuous process R (Proposition 5.6).
We improve this result in Section 5.5 by adding in the locations of the back-edges under
each excursion (Proposition 5.12). In Section 5.6, we study the height process and show in
Proposition 5.16 the joint convergence of the height process excursions and the locations of
the back-edges. This finally allows us to prove Theorem 1.1 in Section 5.7.

5.1. Exploration of the multigraph. We work conditionally on the sequence (D̂n
1 , D̂n

2 ,

. . . , D̂n
n). Let us declare that the vertex of degree D̂n

i is called vi . This means that we have
already determined the (size-biased by degree) order in which we will observe new vertices.
We will couple F̃n(ν) and Mn(ν) by using the same ordering on the new vertices we explore.

Recall that we start from vertex v1 with degree D̂n
1 . We maintain a stack, namely an ordered

list of half-edges which we have seen but not yet explored (remember that the half-edges
come with an arbitrary labelling for this purpose). We put the D̂n

1 half-edges of v1 onto
this stack, in increasing order of label, so that the lowest labelled half-edge is on top of
the stack. At a subsequent step, suppose we have already seen the vertices v1, v2, . . . , vk .
If the stack is nonempty, take the top half-edge and sample its pair. This lies on the stack
with probability proportional to the height of the stack minus 1 or belongs to vk+1 with
probability proportional to

∑n
i=k+1 D̂n

i . In the first case, we simply remove both half-edges
from the stack. In the second, we remove the half-edge at the top of the stack (which has just
been paired) and replace it by the remaining half-edges (if any) of vk+1. If the stack is empty,
we start a new component at vk+1.

Let us now describe the forest Fn(ν) from which we will recover Mn(ν). Whenever there
is a back-edge in Mn(ν), say from vertex vk to vertex vi with i ≤ k, remove the back-edge
and replace it by two edges, one from vk to a new leaf and the other from vi to a new leaf.
To recover Mn(ν), it is then sufficient to remove the edges to the new leaves and put in a new
edge from vi to vk .

Our aim is to encode the forest Fn(ν), first via its depth-first walk and then by its height
process. We will simultaneously keep track of marks, which tell us which vertices we should
identify in order to recover the multigraph.

Our first observation is that the vertex-sets of pairs of components in F̃n(ν) correspond pre-
cisely to the vertex-sets of subcollections of components in Mn(ν). (This is illustrated in Fig-
ure 1 to which the reader is referred in the following argument.) More precisely, without loss
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FIG. 1. For simplicity, the labels given are those corresponding to the depth-first order. Top: the first two com-
ponents of the forest F̃n(ν). Middle: the first four components of Mn(ν), on the same vertices. Three back-edges
are marked in red. The subtree surgery required to get from F̃n(ν) to Mn(ν) is indicated. The back-edge from 8 to
5 moves the subtree rooted at 9 to the next available half-edge, also belonging to 5. This shifts further the subtrees
rooted at 13 and 16: 13 gets connected to 1, which has one more edge in Mn(ν) than in F̃n(ν) (D̂1 instead of
D̂1 − 1), as any first vertex of a connected component of Mn(ν). Vertex 16 starts a new component. Bottom: the
first four components of the forest Fn(ν) with marks.
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of generality, let the pair of components of F̃n(ν) be the first two, on vertices v1, v2, . . . , vm1

and vm1+1, vm1+2, . . . , vm1+m2 . Suppose that the same vertices in Mn(ν) are adjacent to b

back-edges. Now vertices v1 and vm1+1 each possess one more half-edge in Mn(ν) than they
do in F̃n(ν) (since in F̃n(ν), if vi is the first vertex of a component, it has D̂i − 1 edges and
not D̂i). In particular, adding an edge between v1 and vm1+1 clearly produces a tree with
m1 + m2 vertices and 1

2
∑m1+m2

i=1 D̂n
i = m1 + m2 − 1 edges. We now “rewire” this tree to

obtain the relevant components of Mn(ν). The effect of adding a back-edge is to shunt all
of the subsequent subtrees along in the depth-first order. (See Figure 1.) The overall effect is
that each back-edge causes a new component to come into existence. Each time we observe
a back-edge, it occupies two half-edges, so there are two subtrees which get pushed out of
the component. The earlier of these subtrees in the depth-first order becomes the basis for the
next component of Mn(ν). The root of this component has one more child than it had in the
original tree. This allows the absorption of the second subtree, whose root gets attached by its
free half-edge to the root of the component. Subsequent back-edges similarly each generate
one new component. Following this through, we see that we end up with b + 1 components
of Mn(ν). (For the purposes of intuition, note that because the vast majority of vertices lie
in components of size o(nα/(α+1)), with high probability at most one of them will be of size
	(nα/(α+1)), and thus show up in the limit. So, at least heuristically, this rewiring process
cannot affect what we see in the limit.)

It is clear that the effects of adding back-edges are relatively local and so it is at least
intuitively clear that the depth-first walk of the forest Fn(ν) should be similar to that of
F̃n(ν), as long as there are not too many back-edges. Let Xn denote the depth-first walk of
Fn(ν). We will now describe how to construct Xn from S̃n, and also how to keep track of
the back-edges. We will write Rn(k) for the number of half-edges on the stack at step k. We
will let Nn count the occurrences of back-edges, and Un the positions of their targets on the
stack. We will write Mn(k) for a set of marks (in N) at step k, indicating back-edges which
have not yet been closed, and τn(k) for the number of vertices already seen at step k (note
that we see a new vertex if and only if the current step does not involve a back-edge). Finally,
let Cn(k) be the number of components of Fn(ν) we have fully explored by time k. So, we
will have that for all k ≥ 1, Cn(k) = −min0≤�≤k Xn(�), and that Rn(k) = Xn(k) + Cn(k).

We start from Xn(0) = Nn(0) = 0, Mn(0) = ∅ and τn(0) = 0. For k ≥ 0, we might en-
counter the following three situations:

• New component.
If Xn(k) = min0≤i≤k−1 Xn(i)− 1 or k = 0, let τn(k + 1) = τn(k)+ 1, Nn(k + 1) = Nn(k),
Mn(k + 1) = Mn(k) and

Xn(k + 1) = Xn(k) + S̃n(
τn(k) + 1

) − S̃n(
τn(k)

) + 1.

• Start a back-edge or not.
If Xn(k) > min0≤i≤k−1 Xn(i) − 1 and Xn(k) /∈ Mn(k):
– With probability

Xn(k) − min0≤i≤k Xn(k) − |Mn(k)|
Xn(k) − min0≤i≤k Xn(k) − |Mn(k)| + ∑n

j=τn(k)+1 D̂n
j

,

let τn(k + 1) = τn(k) and Xn(k + 1) = Xn(k) − 1. Let Nn(k + 1) = Nn(k) + 1, sample
Un(k + 1) uniformly from{

min
0≤i≤k

Xn(i), . . . ,Xn(k) − 1
} ∖

Mn(k),

and let Mn(k + 1) = Mn(k) ∪ {Un(k + 1)}.
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– With probability ∑n
j=τn(k)+1 D̂n

j

Xn(k) − min0≤i≤k Xn(k) − |Mn(k)| + ∑n
j=τn(k)+1 D̂n

j

let τn(k + 1) = τn(k) + 1,

Xn(k + 1) = Xn(k) + S̃n(
τn(k) + 1

) − S̃n(
τn(k)

)
,

Nn(k + 1) = Nn(k) and Mn(k + 1) = Mn(k).
• Close a back-edge?

If Xn(k) > min0≤i≤k−1 Xn(i)− 1 and Xn(k) ∈ Mn(k) then let τn(k + 1) = τn(k), Xn(k +
1) = Xn(k) − 1, Nn(k + 1) = Nn(k) and Mn(k + 1) = Mn(k) \ {Xn(k)}.
It is straightforward to check that this is the depth-first walk of the forest Fn(ν). We observe

that for k ≥ 1 we have

Xn(k) + min
0≤i≤k

Xn(i) = S̃n(
τn(k)

) + 1 − Nn(k) − #
{
i ≤ k : ∣∣Mn(i)

∣∣ <
∣∣Mn(i − 1)

∣∣}.
Hence, Xn(k) + min0≤i≤k Xn(i) is the number of half-edges seen but not yet paired or re-
served for back-edges, in the currently explored connected component (if −min0≤i≤k Xn(i) =
j , this is the (j + 1)th component). Indeed,

S̃n(
τn(k)

) + 1 = (D̂1 − 1) − 1 + D̂2 − 2 + · · · + D̂τn(k)−1 − 2 + D̂τn(k) − 1

is the number of half-edges seen and not paired in the spanning forest of the components
explored so far. Nn(k) + #{i ≤ k : |Mn(i)| < |Mn(i − 1)|} is the number of half-edges that
have been paired in or reserved for back-edges. Note that |Mn(i)| increases (resp., decreases)
by 1 exactly when a back-edge is initiated (resp., closed). Nn(k) counts the number of back-
edges started.

In particular,

(17) S̃n(
τn(k)

) − 2Nn(k) ≤ Xn(k) + min
0≤i≤k

Xn(i) − 1 ≤ S̃n(
τn(k)

)
.

5.2. Convergence of the depth-first walk and marks. Let us first prove a bound on the
number Nn(k) of back-edges which have occurred by step k.

LEMMA 5.1. For every t > 0, the sequences of random variables (Nn(
tnα/(α+1)�))n≥1
and (sup0≤k≤
tnα/(α+1)� |τn(k) − k|)n≥1 are tight.

PROOF. Fix t > 0. We observe that k − 2Nn(k) ≤ τn(k) ≤ k so that it is enough to prove
that (Nn(
tnα/(α+1)�))n≥1 is tight. As underlined at the beginning of Section 5.1, we can
realize Mn(ν) by first generating the sequence (D̂n

k )1≤k≤n, and then proceeding to pair the
half-edges as we perform the exploration. At time i, the number of half-edges on the stack is
Rn(i), and the total number of unpaired half-edges is

∑n
j=τn(i)+1 D̂n

j , so that the conditional
probability of starting a back-edge is

Rn(i)∑n
j=τn(i)+1 D̂n

j

.

Note that if the component we are exploring at step i began at step j , then Rn(i) ≤ 2 +∑τn(i)
k=τn(j)(D̂

n
k − 2), since at most D̂n

τn(j) +· · ·+ D̂n
τn(i) half-edges have been seen, and at least
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2(τn(i) − τn(j)) of them have been used to connect the first τn(i) − τn(j) + 1 vertices of the
component. Hence,

Rn(i) ≤ 2 + max
0≤j≤i

S̃n(
τn(j)

) − min
0≤j≤i

S̃n(
τn(j)

) ≤ 2 + max
0≤j≤i

S̃n(j) − min
0≤j≤i

S̃n(j),

since τn({1, . . . , i}) ⊆ {1, . . . , i}. Moreover, τn(i) + 1 ≤ 
tnα/(α+1)� + 1 for every i ≤

tnα/(α+1)�. Therefore, conditionally on (D̂n

k )1≤k≤n, for every 1 ≤ i ≤ 
tnα/(α+1)�, irrespec-
tive of what happened in the first i − 1 steps of the exploration, the probability of creating a
back-edge at time i is at most

2 + max0≤j≤
tnα/(α+1)� S̃n(j) − min0≤j≤
tnα/(α+1)� S̃n(j)∑n
j=
tnα/(α+1)�+1 D̂n

j

,

which is a measurable function of (D̂n
i )1≤i≤n only. Therefore, conditionally on (D̂n

i )1≤i≤n,
the random variable Nn(
tnα/(α+1)�) is stochastically dominated by a Binomial random vari-
able with parameters 
tnα/(α+1)� and

2 + max0≤j≤
tnα/(α+1)� S̃n(j) − min0≤j≤
tnα/(α+1)� S̃n(j)∑n
j=
tnα/(α+1)�+1 D̂n

j

.

For K > 0, define

E1 =
{
2 + max

1≤i≤
tnα/(α+1)�
S̃n(i) − min

0≤i≤
tnα/(α+1)�
S̃n(i) ≤ Kn1/(α+1)

}
and

E2 =
{

n∑
j=
tnα/(α+1)�+1

D̂n
j ≥ n

}
.

Fix ε > 0. Theorem 4.1, Lemma A.5 and the fact that μ > 1 imply that there exists K > 0
such that for n large enough,

P(E1 ∩ E2) ≥ 1 − ε.

On the event E1 ∩ E2, we have

2 + max0≤j≤
tnα/(α+1)� S̃n(j) − min0≤j≤
tnα/(α+1)� S̃n(j)∑n
j=
tnα/(α+1)�+1 D̂n

j

≤ K

nα/(α+1)
.

Let Y ∼ Bin(
tnα/(α+1)�,2K/nα/(α+1)). Then there exists K ′ > 0 such that for n large
enough,

P
(
Nn(⌊

tnα/(α+1)⌋) ≥ K ′) ≤ P
(
Y ≥ K ′) + P

(
(E1 ∩ E2)

c) ≤ 2ε.

Since ε > 0 was arbitrary, the result follows. �

In particular, the steps on which back-edges occur are negligible on the timescale in which
we are interested. Write Ĩt = inf0≤s≤t L̃s for t ≥ 0 and recall that

Rt = L̃t − Ĩt .

PROPOSITION 5.2. As n → ∞,(
n−1/(α+1)S̃n(⌊

tnα/(α+1)⌋)
, n−1/(α+1)Rn(⌊

tnα/(α+1)⌋)
, n−1/(α+1)Cn(⌊

tnα/(α+1)⌋)
, t ≥ 0

)
d−→

(
L̃t ,Rt ,−1

2
Ĩt , t ≥ 0

)
,

in D(R+,R)3.
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PROOF. Recall that (17) says that

S̃n(
τn(k)

) − 2Nn(k) ≤ Xn(k) + min
0≤i≤k

Xn(i) − 1 ≤ S̃n(
τn(k)

)
.

Let 1 ≤ j ≤ k be such that Xn(j) = min0≤�≤k Xn(�). Then Xn(j) + min0≤�≤j Xn(�) =
2Xn(j) and so

min
0≤�≤k

(
Xn(�) + min

0≤i≤�
Xn(i)

)
= 2Xn(j) = 2 min

0≤�≤k
Xn(�).

It follows that

2 min
0≤�≤k

Xn(�) ≥ 1 + min
0≤�≤k

(
S̃n(

τn(�)
) − 2Nn(�)

)
≥ 1 + min

0≤�≤k
S̃n(

τn(�)
) − 2Nn(k),

since (Nn(i))i≥0 is nonincreasing. Thus, by (17) again, we have

(18) 1 + min
0≤�≤k

S̃n(
τn(�)

) − 2Nn(k) ≤ 2 min
0≤�≤k

Xn(�) ≤ 1 + min
0≤�≤k

S̃n(
τn(�)

)
.

By Theorem 4.1 and the continuous mapping theorem,(
n−1/(α+1) min

0≤�≤
snα/(α+1)�
S̃n(�), s ≥ 0

)
d−→ (Ĩs, s ≥ 0)

and combining this with Lemma 5.1 and recalling that Cn(k) = −min0≤�≤k Xn(�) yields(
n−1/(α+1)Cn(⌊

snα/(α+1)⌋)
, s ≥ 0

) d−→
(
−1

2
Ĩs , s ≥ 0

)
Another application of (17) gives

(19) 1 + S̃n(
τn(k)

) − 2Nn(k) − 2 min
0≤i≤k

Xn(i) ≤ Rn(k) ≤ 1 + S̃n(
τn(k)

) − 2 min
0≤i≤k

Xn(i)

and since (
n−1/(α+1)S̃n(

τn

(⌊
tnα/(α+1)⌋))

, t ≥ 0
) d−→ (L̃t , t ≥ 0)

we have (
n−1/(α+1)Rn(⌊

tnα/(α+1)⌋)
, t ≥ 0

) d−→ (Rt , t ≥ 0),

jointly with the convergence of the minimum. �

Thus the exploration of F̃n(ν) sees approximately twice as many components as that of
Fn(ν) but the limiting reflected process is the same for both. In particular, asymptotically the
two processes have the same longest excursions. This fact will play an important role in the
sequel.

5.3. Back-edges. We will now show that the parts of the multigraph we observe up until
well beyond the timescale in which we are interested are, with high probability, simple. To
this end, let An(k) be the number of loops and edges created parallel to an existing edge, up
until step k of the depth-first exploration of Fn(ν). Call these anomalous edges.

PROPOSITION 5.3. There exists β ∈ ( α
α+1 ,1) such that

P
(
An(⌊

nβ⌋)
> 0

) → 0

as n → ∞.
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PROOF. Our method is similar to that in the proof of Lemma 7.1 of Joseph [44], which
applies in the finite third-moment case. That proof contains a small error concerning the
number of possible multiple edges; this was observed and corrected in the related setting of
the directed configuration model by Donderwinkel and Xie [34], whose argument we adapt.
We work conditionally on D̂n

1 , . . . , D̂n
n . Self-loops are obviously associated with a unique

vertex. We associate extra edges created parallel to an existing edge with their vertex, which
is discovered second in the depth-first exploration. Consider the ith vertex discovered in the
exploration, which has degree D̂n

i . It creates a self-loop with probability bounded above by

(D̂n
i )2∑n

j=
nβ�+1 D̂n
j

.

Let us write p(i) for the parent of the ith vertex in the exploration, namely the index of the
first vertex, which connects to the vertex with degree D̂n

i . (Note that p(i) is not, in general,
measurable with respect to D̂n

1 , . . . , D̂n
n .) The ith vertex is the second vertex of a multiple

edge with probability at most

D̂n
i E[D̂n

p(i)|D̂n
1 , . . . , D̂n

n]∑n
j=
nβ�+1 D̂n

j

.

Therefore, we observe an anomalous edge in the first 
nβ� steps of the exploration with
probability bounded above by∑
nβ�

i=1 (D̂n
i )2∑n

j=
nβ�+1 D̂n
j

+
∑
nβ�

i=1 D̂n
i E[D̂n

p(i)|D̂n
1 , . . . , D̂n

n]∑n
j=
nβ�+1 D̂n

j

.

Let p = α. Let q be such that 1/p + 1/q = 1. By Hölder’s inequality, we have


nβ�∑
i=1

D̂n
i E

[
D̂n

p(i)|D̂n
1 , . . . , D̂n

n

] ≤
(
nβ�∑

i=1

(
D̂n

i

)p)1/p(
nβ�∑
i=1

(
E

[
D̂n

p(i)|D̂n
1 , . . . , D̂n

n

])q)1/q

.

Now, by the conditional version of Jensen’s inequality,

(
E

[
D̂n

p(i)|D̂n
1 , . . . , D̂n

n

])q ≤ E
[(

D̂n
p(i)

)q |D̂n
1 , . . . , D̂n

n

] =

nβ�∑
j=1

(
D̂n

j

)q
P

(
p(i) = j |D̂n

1 , . . . , D̂n
n

)
.

Since for fixed j there are at most D̂n
j values i such that p(i) = j , we have


nβ�∑
i=1

P
(
p(i) = j |D̂n

1 , . . . , D̂n
n

) ≤ D̂n
j

and so


nβ�∑
i=1

(
E

[
D̂n

p(i)|D̂n
1 , . . . , D̂n

n

])q ≤

nβ�∑
i=1


nβ�∑
j=1

(
D̂n

j

)q
P

(
p(i) = j |D̂n

1 , . . . , D̂n
n

) ≤

nβ�∑
j=1

(
D̂n

j

)q+1
.

It follows that

(20)

P
(
An(⌊

nβ⌋)
> 0|D̂n

1 , D̂n
2 , . . . , D̂n

n

)
≤

(∑
nβ�
i=1 (D̂n

i )2 + (
∑
nβ�

i=1 (D̂n
i )p)1/p(

∑
nβ�
j=1 (D̂n

j )q+1)1/q∑n
i=
nβ�+1 D̂n

i

)
∧ 1.
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But
∑n

i=
nβ�+1 D̂n
i = ∑n

i=1 D̂n
i − ∑
nβ�

i=1 D̂n
i . As in the proof of Lemma A.5, we get that

(21)
1

n

n∑
i=
nβ�+1

D̂n
i

p→ μ.

Applying Lemma A.4 shows that

(22)
1

n


nβ�∑
i=1

(
D̂n

i

)2 p→ 0

as long as α
α+1 < β < α/2. We now claim that for β ∈ ( α

α+1 , α2

3α−1), we also have

(23)
1

n

(
nβ�∑
i=1

(
D̂n

i

)p)1/p(
nβ�∑
j=1

(
D̂n

j

)q+1

)1/q
p→ 0.

First, note that it is, indeed, the case that

α2

3α − 1
>

α

α + 1
,

since on rearranging this gives the inequality α(α − 1)2 > 0, which clearly holds for α ∈
(1,2). Now observe that our claim will be proved if we can find values γ, δ > 0 such that

(24)
1

nγ


nβ�∑
i=1

(
D̂n

i

)p p→ 0,
1

nδ


nβ�∑
i=1

(
D̂n

i

)q+1 p→ 0

and γ /p + δ/q ≤ 1. By Lemma A.4, the convergences in (24) hold for any γ > pβ/α and
any δ > (q + 1)β/α. So, we are able to find suitable γ , δ as long as

pβ

αp
+ (q + 1)β

αq
< 1.

Using the definitions of p and q in terms of α and rearranging shows that this holds if and
only if

β <
α2

3α − 1
,

as claimed.
Note also that α2

3α−1 < α
2 . So, by (21), (22), (23) and the bounded convergence theorem,

we then obtain from (20) that

P
(
An(⌊

nβ⌋)
> 0

) → 0

as n → ∞ for any β ∈ ( α
α+1 , α2

3α−1). The result follows. �

Let ρ(n) = inf{k ≥ 0 : An(k) > 0} and note that the event that Mn(ν) is simple is equal
to {ρ(n) = ∞}. The last proposition shows that we observe any anomalous edges long after
the timescale in which we explore the largest components of the graphs. This allows us to
conclude that all of the results we prove using only the timescale nα/(α+1) for the multigraph
are also true conditionally on {ρ(n) = ∞}. In this way, we may give a proof of Conjecture 8.6
of Joseph [44]. (See also Theorem 3 of [32].)
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THEOREM 5.4. Conditional on {ρ(n) = ∞}, as n → ∞,(
n−1/(α+1)Rn(⌊

snα/(α+1)⌋)
, n−1/(α+1)Cn(⌊

snα/(α+1)⌋)
, s ≥ 0

) d−→
(
Rs,−1

2
Ĩs , s ≥ 0

)
,

in D(R+,R)2.

PROOF. Given Propositions 5.2 and 5.3, this follows in exactly the manner as Joseph’s
Theorem 3.2 follows from his Theorem 3.1. �

Henceforth, using exactly the same argument, statements about our processes should be
understood to hold either unconditionally or conditionally on the event {ρ(n) = ∞}.

We now turn to the locations of the back-edges that do occur. Recall that if a back-edge
occurs at step k, then Un(k) is its index in the stack. For steps k, such that Nn(k) − Nn(k −
1) = 0, declare Un(k) = ∂ , where ∂ denotes that no mark occurs.

For s ≥ 0, let (Ns, s ≥ 0) be a Cox process driven by (Rs/μ, s ≥ 0), and define marks

Us

{= ∂ if Ns − Ns− = 0,

∼ U[0,Rs] if Ns − Ns− = 1.

Then, conditionally on (Rs, s ≥ 0), we have that∑
s≥0:

Ns−Ns−=1

δ(s,Us)

is a Poisson point process on {(s, x) ∈ R+ ×R+ : x ≤ Rs} of constant intensity 1/μ.

THEOREM 5.5. We have jointly

(n−1/(α+1)Rn(⌊
sn

α
α+1

⌋)
, n−1/(α+1)Cn(⌊

snα/(α+1)⌋,Nn(⌊
sn

α
α+1

⌋)
, s ≥ 0

)
d−→

(
Rs,−1

2
Ĩs ,Ns, s ≥ 0

)
,

in D(R+,R)3 and ∑
k≥1:

Nn(k)−Nn(k−1)=1

δ
(n

− α
α+1 k,n

− 1
α+1 Un(k))

d−→ ∑
s≥0:

Ns−Ns−=1

δ(s,Us),

for the topology of vague convergence for counting measures on R2+.

We observe that, in particular, for fixed t ≥ 0 we have sup0≤s≤t Rs < ∞ a.s. and so Nt <

∞ a.s.

PROOF. We refine the argument from the proof of Lemma 5.1. We will find it convenient
to build all of our random variables and stochastic processes, for all n ≥ 1, on the same
probability space. By Theorem 4.1 and the continuous mapping theorem,

(25) n−1/(α+1)
(
S̃n(⌊

sn
α

α+1
⌋) − min

0≤�≤
snα/(α+1)�
S̃n(�), s ≥ 0

)
d−→ (Rs, s ≥ 0).

By Skorokhod’s representation theorem, we may assume that our probability space is such
that this convergence occurs almost surely. Since S̃n is a measurable function of (D̂i)1≤i≤n

for each n ≥ 1, we have that R is a measurable function of the collection of random vari-
ables {D̂m

i : 1 ≤ i ≤ m,m ≥ 1}. For definiteness, let us assume that all additional randomness
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needed to generate the processes Xn, Nn, Rn, Mn is independent between different values
of n.

Let Fn
k = σ({D̂m

i : 1 ≤ i ≤ m,m ≥ 1},Xn(i),Nn(i),Rn(i),Mn(i),0 ≤ i ≤ k) and so,
in particular, Fn

0 contains σ({D̂m
i : 1 ≤ i ≤ m,m ≥ 1}) for every n ≥ 1. (Recall that in the

construction of Mn(ν) at the beginning of Section 5.1, we condition on (D̂n
1 , D̂n

2 , . . . , D̂n
n)

before doing the exploration, so that having this information available at time 0 is consistent
with our construction.)

At step k + 1, conditionally on Fn
k , the probability of seeing a back-edge is

Rn(k) − |Mn(k)|
Rn(k) − |Mn(k)| + ∑n

j=τn(k)+1 D̂n
j

,

where |Mn(k)| ≤ Nn(k). For the numerator, (18) and (19) imply that∣∣∣(Rn(k) − ∣∣Mn(k)
∣∣) −

(
S̃n(

τn(k)
) − min

0≤�≤k
S̃n(�)

)∣∣∣ ≤ 5Nn(k) + 2,

so that by the almost sure version of (25) and both parts of Lemma 5.1,

n−1/(α+1)(Rn(k) − ∣∣Mn(k)
∣∣) p→ (Rs,0 ≤ s ≤ t).

As for the denominator, we have

n∑
i=k+1

D̂n
i ≤ Rn(k) − ∣∣Mn(k)

∣∣ + n∑
i=τn(k)+1

D̂n
i ≤

n∑
i=1

D̂n
i + Rn(k).

Hence by Lemma A.5 (in the Appendix), we obtain

(26)

nα/(α+1)

(
Rn(
snα/(α+1)�) − |Mn(
snα/(α+1)�)|

Rn(
snα/(α+1)�) − |Mn(
snα/(α+1)�)| + ∑n
j=τn(
snα/(α+1)�)+1 D̂n

j

,0 ≤ s ≤ t

)
p→ 1

μ
(Rs,0 ≤ s ≤ t)

in D([0, t],R+). Then (Nn(k), k ≥ 0) is a counting process with compensator

Nn
comp(k) =

k−1∑
j=1

Rn(j) − |Mn(j)|
Rn(j) − |Mn(j)| + ∑n

i=τn(j)+1 D̂n
i

1{Xn(j)/∈Mn(j)}.

Since

k−1∑
j=1

Rn(j) − |Mn(j)|
Rn(j) − |Mn(j)| + ∑n

i=τn(j)+1 D̂n
i

1{Xn(j)∈Mn(j)}

≤ Nn(k − 1) max
0≤j≤k−1

Rn(j) − |Mn(j)|
Rn(j) − |Mn(j)| + ∑n

i=τn(j)+1 D̂n
i

and n−α/(α+1)Nn(
tnα/(α+1)�) p→ 0 by Lemma 5.1, using (26) we get that

En(⌊
tnα/(α+1)⌋) :=


tnα/(α+1)�−1∑
j=0

Rn(j) − |Mn(j)|
Rn(j) − |Mn(j)| + ∑n

i=τn(j)+1 D̂n
i

1{Xn(j)∈Mn(j)}
p→ 0.
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So by (26), we obtain that for each t ≥ 0,

Nn
comp

(⌊
tnα/(α+1)⌋) =

k−1∑
j=1

Rn(j) − |Mn(j)|
Rn(j) − |Mn(j)| + ∑n

i=τn(j)+1 D̂n
i

− En(⌊
tnα/(α+1)⌋)

p→ 1

μ

∫ t

0
Rs ds.

Finally, applying Theorem 14.2.VIII of Daley and Vere-Jones [29] yields that(
Nn(⌊

snα/(α+1)⌋)
,0 ≤ s ≤ t

) d−→ (Ns,0 ≤ s ≤ t).

The marks are uniform on the vertices of the stack, which do not already carry marks, and so
it is straightforward to see that they must be uniform in the limit. �

5.4. Components of the finite graph. We now turn to the consideration of the individual
components of the multigraph. Let σn(0) = 0 and for k ≥ 1, write

σn(k) = inf
{
j ≥ 0 : Cn(j) ≥ k

}
.

This is the time at which we finish exploring the kth component of the forest Fn(ν). Let

ζ n(k) = σn(k) − σn(k − 1),

the corresponding length of the excursion, which is equal to the total number vertices within
the component, since precisely one of these is killed at each step. But then ζ n(k) is also equal
to the number of vertices in the corresponding component of Mn(ν), plus twice the number
of back-edges. Let

εn
k (t) = n−1/(α+1)(Xn(

σn(k − 1) + ⌊
tnα/(α+1)⌋) − Xn(

σn(k − 1)
))

for 0 ≤ t ≤ n−α/(α+1)ζ n(k) be the kth rescaled excursion of Xn, with length ζ(εn
k ) =

n−α/(α+1)ζ n(k) and rescaled left endpoint gn
k = n−α/(α+1)σ n(k − 1).

Recall from Section 3 the notation (̃εi, i ≥ 1) for the ordered excursions of R above 0
and ζ (̃εi) for the lifetime of ε̃i . Denote by gi the left endpoint of ε̃i . Recall also that �2↓ =
{(x1, x2, . . .) ∈ RN : x1 ≥ x2 ≥ · · · ≥ 0,

∑
i≥1 x2

i < ∞}. Let � be a countable index set and
write �2+(�) for the set of nonnegative sequences (xγ : γ ∈ �) such that

∑
γ∈� x2

γ < ∞.

Write ord : �2+(�) → �2↓ for the map, which puts the elements of (xγ : γ ∈ �) into decreasing
order. For a sequence (εk,Ak)k≥1 where εk is an excursion of length ζ(εk) and Ak is some
other random variable, write

ord
(
ζ(εk),Ak, k ≥ 1

)
for the same sequence put in decreasing order of ζ(εk).

This section is devoted to proving the following proposition.

PROPOSITION 5.6. We have (ζ (̃εi), i ≥ 1) ∈ �2↓,

ord
(
ζ
(
εn
k

)
, k ≥ 1

) d−→ (
ζ (̃εi), i ≥ 1

)
as n → ∞ in �2↓, and

ord
(
ζ
(
εn
k

)
, gn

k , k ≥ 1
) d−→ (

ζ (̃εi), gi, i ≥ 1
)
,

where the convergence is in �2↓ for the first coordinate and in the product topology for the
second.
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We apply a method outlined in Proposition 15 of Aldous [7], which is most conveniently
recounted in Section 2.6 of Aldous and Limic [8]. This is very similar to Theorem 8.3 of
Joseph [44], who omits many of the details of the proof. We feel that the argument is suffi-
ciently subtle to merit a full account, which we now give.

Essentially, there are two steps to proving the desired convergence. First, we need to show
that the longest excursions of Rn and R occurring before some finite time match up for large
enough n. Then we need to show that long excursions of Rn cannot “wander off to time ∞.”
Proposition 5.7 below is designed to deal with these issues.

Following Aldous, we introduce the concept of a size-biased point process. Suppose we
have random variables Y = (Yγ : γ ∈ �) in �2+(�). Given Y, let Eγ ∼ Exp(Yγ ) independently
for different γ ∈ �. Set

(27) �(a) = ∑
γ∈�

Yγ 1{Eγ <a}

and note that �(a) < ∞ a.s. Let �γ = �(Eγ ). Then � = {(�γ ,Yγ ) : γ ∈ �} is the size-
biased point process (SBPP) associated with Y. Write π for the projection onto the second
coordinate, so that π({(sγ , yγ )}) = {yγ }.

PROPOSITION 5.7 (Proposition 15 of [7] and Proposition 17 of [8]). Let Yn ∈ �2+(�n)

for each n > 1, let �n be the analogue of (27) and let �n be the associated SBPP. Suppose
that

�n d−→ �∞,

as n → ∞, for the topology of vague convergence of counting measures on [0,∞) × (0,∞),
where �∞ is some point process satisfying:

1. sup{s : (s, y) ∈ �∞ for some y} = ∞ a.s.
2. if (s, y) ∈ �∞ then

∑
(s′,y′)∈�∞:s′<s y′ = s a.s.

3. max{y : (s, y) ∈ �∞ for some s > t} p→ 0 as t → ∞.

Then Y∞ := ord(π(�∞)) ∈ �2↓ and ord(Yn)
d−→ ord(Y∞) in �2↓. In addition,

ord
(
Yn

γ ,�n
γ , γ ∈ �n) d−→ ord(Yγ ,�γ , γ ∈ �)

as n → ∞, where the convergence is in �2↓ for the first coordinate and in the product topology
for the second.

The original statement does not mention the last convergence. It is, in fact, implicitly
contained in the proof of Proposition 15 given in [7], more precisely in the assertion that the

tightness of the sequence (�n(a))n≥1 for arbitrary a > 0 and the convergence �n d−→ �∞

together imply the convergence ord(Yn)
d−→ ord(Y∞) in �2.

For k ≥ 1, we let

Yn
k = n−α/(α+1)[ζ n(k) − (

Nn(
σn(k)

) − Nn(
σn(k − 1)

) + 1
)]

.

Recall that at the end of the exploration of the (k − 1)th component of Mn(ν) in depth-
first order, we choose a new vertex from the unexplored parts of the graph with probability
proportional to its degree. So, we pick a component with probability proportional to the sum
of its degrees, which is twice the number of its edges. Since the number of steps it takes
to explore a component of Mn(ν) is the number of its vertices (which is the number of its
nonback-edges plus one) plus twice the number of back-edges (unlike the nonback-edges, a



42 G. CONCHON-KERJAN AND C. GOLDSCHMIDT

back-edge takes one step to create and another step to close), it follows that Yn
k is the number

of edges of the kth component of Mn(ν) times n−α/(α+1).
For k ≥ 1, let

�n
k =

k−1∑
i=1

Yn
i = n−α/(α+1)[σn(k − 1) − Nn(

σn(k − 1)
) − k + 1

]
,

and put

�n = {(
�n

k ,Y n
k

) : k ≥ 1
}
.

It is easy to see that �n then has the same distribution as the SBPP associated with
n−α/(α+1)(ζ n(k) − Nn(σn(k)) + Nn(σn(k − 1)) − 1, k ≥ 1).

Recall from Section 3 the notation (̃ε(�), � ≥ 0) for the excursions of the reflected process
(Rt , t ≥ 0) indexed by local time �, and (σ̃�, � ≥ 0) for the inverse local time process. Let
�∞ be the point process given by

�∞ = {(
σ̃�−, ζ

(̃
ε(�))) : � ≥ 0, σ̃� − σ̃�− > 0

}
.

By Proposition 3.1 and Lemma 3.5, properties (1), (2) and (3) from Proposition 5.7 above
hold for �∞. In order to apply Proposition 5.7, it thus remains to establish the convergence
of �n to �∞. We do this by first proving a deterministic result for a suitable class of functions,
extending Lemma 7 of Aldous [7] from the setting of continuous functions to the setting of
càdlàg functions satisfying certain conditions.

For a càdlàg function f : [0,∞) → R with only positive jumps, let E(f ) be the set of
nonempty intervals e = (l, r) such that f (l) = infs≤l f (s) = f (r) and f (s) > f (l) for all
s ∈ (l, r). We say that such intervals are excursions of f . Let S denote the set of functions
f : [0,∞) →R satisfying the following conditions:

1. f is càdlàg and has only nonnegative jumps.
2. f (x) → −∞ as x → ∞.
3. If 0 ≤ a < b and f (b−) = infa≤s≤b f (s), then f (b) = f (b−).
4. For each ε > 0, E(f ) contains only finitely many excursions of length greater than or

equal to ε.
5. The complement of

⋃
(l,r)∈E(f )(l, r) has Lebesgue measure 0.

6. If (l1, r1), (l2, r2) ∈ E(f ) and l1 < l2, then f (l1) > f (l2).

LEMMA 5.8. Let f ∈ S and let (fn)n≥1 be a sequence of càdlàg functions such that
fn → f as n → ∞ in the Skorokhod sense. For each n ∈N, let (tn,i)i≥1 be a strictly increas-
ing sequence such that:

(i) tn,1 = 0 and limi→∞ tn,i = ∞,
(ii) fn(tn,i) = infs≤tn,i

fn(s),
(iii) for each s < ∞, limn→∞ maxi:tn,i≤s(fn(tn,i) − fn(tn,i+1)) = 0.

Write � = {(l, r − l) : (l, r) ∈ E(f )} and �n = {(tn,i , tn,i+1 − tn,i) : i ≥ 1} for n ≥ 1. Then

�n → �

as n → ∞, where the convergence holds in the topology of vague convergence of counting
measures on [0,∞) × (0,∞).

PROOF. We adapt the proof of Lemma 4.8 of Martin and Ráth [49]. Suppose that (l, r)

is an excursion of f . Fix ε ∈ (0, r − l). Since f ∈ S , there exists δ > 0 such that:

f (x) ≥ f (l) + δ for all x ∈ [0, l − ε/2],
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f (x) ≥ f (l) + δ for all x ∈ [l + ε/2, r − ε/2],
f (x) ≤ f (l) − δ for some x ∈ (r, r + ε/2].
The first line is a consequence of conditions (1) and (6) in the definition of the set S : if for

every n > 0, there exists xn ∈ [0, l − ε/2] such that f (xn) < f (l) + 1/n, then by condition
(1) there would be an accumulation point x∞ ∈ [0, l − ε/2] of the sequence (xn)n≥1 such
that f (x∞) ≤ f (l), and hence there would exist an interval (l′, r ′) with r ′ < r such that
f (r ′) ≤ f (x∞) ≤ f (r). But this contradicts (6).

The second line follows from a similar argument: there cannot be an accumulation point
x∞ ∈ [l +ε/2, r −ε/2] such that f (x∞) ≤ f (l) since (l, r) is an excursion interval. The third
line is again a consequence of condition (6) in the definition of the set S .

Since we have fn → f in the Skorokhod sense, there exist n0 and a sequence of continuous
strictly increasing functions λn : [0,∞) → [0,∞) such that λn(0) = 0, limt→∞ λn(t) = ∞
and for all n ≥ n0, ∣∣fn

(
λn(x)

) − f (x)
∣∣ < δ/2 for all x ∈ [0, r + ε/2]

and ∣∣λn(x) − x
∣∣ < ε/2 for all x ∈ [0, r + ε/2].

Then for n ≥ n0:

fn(λn(x)) ≥ f (l) + δ/2 for all x ∈ [0, l − ε/2],
fn(λn(x)) > f (l) − δ/2 for all x ∈ [l − ε/2, l + ε/2],
fn(λn(l)) < f (l) + δ/2,
fn(λn(x)) ≥ f (l) + δ/2 for all x ∈ [l + ε/2, r − ε/2],
fn(λn(x)) ≤ f (l) − δ/2 for some x ∈ [r, r + ε/2].

For the second point, note that fn(λn(x)) > f (x)− δ/2 ≥ f (r)− δ/2 = f (l)− δ/2 for every
l + ε/2 ≤ x < r . Therefore:

fn(x) ≥ f (l) + δ/2 for all x ∈ [0, l − ε],
fn(x) > f (l) − δ/2 for all x ∈ [l − ε, l + ε],
fn(x) < f (l) + δ/2 for some x ∈ [l − ε/2, l + ε/2],
fn(x) ≥ f (l) + δ/2 for all x ∈ [l + ε, r − ε],
fn(x) ≤ f (l) − δ/2 for some x ∈ [r − ε/2, r + ε].

From the first and third inequalities, the set I := {x ∈ [l − ε, r + ε], fn(x) ≤ infy≤l−ε fn(y)}
is not empty. Let l(n) := inf I and let (xk)k≥1 be a decreasing sequence in I converging to
l(n). Since fn is right-continuous, fn(l

(n)) = limk→∞ fn(xk), and fn(l
(n)) ≤ infx≤l−ε fn(x),

so that l(n) = min I . Clearly,

fn

(
l(n)) = inf

x≤l(n)
fn(x).

Similarly, from the first, second, fourth and fifth inequalities, we obtain the existence of
r(n) ∈ [r − ε, r + ε] such that

fn

(
r(n)) = inf

x≤r(n)
fn(x).

Now fix η > 0. We can find t > 0 such that there are no excursions of length exceeding η

in E(f ) which intersect [t,∞). Then there exists a finite collection {(li, ri) : 1 ≤ i ≤ m} of
excursions in E(f ) with li ≤ t + η for 1 ≤ i ≤ m and such that

⋃
1≤i≤m(li, ri) covers all of

[0, t + η] except for a set of Lebesgue measure at most η/2. Set ε = η/4m and apply the
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above argument for each excursion, to see that for n sufficiently large, there exist disjoint
intervals (l

(n)
1 , r

(n)
1 ), . . . , (l

(n)
m , r

(n)
m ) such that∣∣l(n)

i − li
∣∣ < η/4m and

∣∣r(n)
i − ri

∣∣ < η/4m for 1 ≤ i ≤ m.

But then the remaining length in [0, t + η] is at most η and so, in particular, we must have
captured all possible intervals (tn,i , tn,i+1) with tn,i ≤ t +η and tn,i+1 − tn,i ≥ η, up to an error
of at most η/4m at each endpoint. The required vague convergence follows straightforwardly.

�

LEMMA 5.9. We have L̃ ∈ S almost surely. Moreover,

�n d−→ �∞

as n → ∞, where the convergence holds in the topology of vague convergence of counting
measures on [0,∞) × (0,∞).

PROOF. L̃ is clearly càdlàg with only nonnegative jumps almost surely. The other con-
ditions required for a function to lie in S follow from Proposition 3.1 and Lemma 3.5.

Now let f = L̃ and fn = n−1/(α+1)Xn(
nα/(α+1)·�). It is clear that �∞ is � of the pre-
vious lemma for this f . For n ≥ 1, i ≥ 0, let tn,i = n−α/(α+1)σ n(i). Then tn,0 = 0 and
limi→∞ tn,i = ∞. By construction, the tn,i are times at which new infima of fn are reached.
Moreover,

fn(tn,i) − fn(tn,i+1) = n−1/(α+1)(Xn(
σn(i)

) − Xn(
σn(i + 1)

)) = n−1/(α+1).

Hence, the (tn,i)i≥1 satisfy the conditions in Lemma 5.8. It follows that

�n = {
(tn,i , tn,i+1 − tn,i), i ≥ 1

} d−→ �

as n → ∞. Now we have

�n
i = tn,i − n−α/(α+1)[Nn(

σn(i)
) + i

]
and

Yn
i = tn,i − tn,i−1 − n−α/(α+1)[Nn(

σn(i)
) − Nn(

σn(i − 1)
) + 1

]
.

Since n−α/(α+1)Nn(σn(i)) → 0 for each i ≥ 0, it is straightforward to see that �n and
{(tn,i , tn,i+1 − tn,i), i ≥ 1} can be made arbitrarily close in the vague topology by taking

n large. Hence, �n d−→ �∞ as desired. �

Proposition 5.7 tells us that we may now extract the ordered excursion lengths, and that
we can add the convergence of the starting points of the excursions. This completes the proof
of Proposition 5.6. As an aside, we observe that Proposition 5.6 gives us an analogue of
Corollary 16 of [7], as follows.

COROLLARY 5.10. The point process �∞ = {(σ̃ (�), ζ (̃ε(�))) : � ≥ 0, σ̃� − σ̃�− > 0} con-
sisting of the left endpoints and the lengths of the excursions of R is distributed as the SBPP
associated with the set of excursion lengths of R.
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5.5. Marked excursions. We now strengthen the convergence in Proposition 5.6 to a con-
vergence of ordered marked excursions. Let us first prove a deterministic analytic result, sim-
ilar in spirit to Lemma 5.8, which we shall use to handle the positions of the back-edges
(recall that when a back-edge is discovered, its other endpoint is explored at the first time
when the corresponding mark in the stack reaches the top of the stack).

LEMMA 5.11. Let f ∈ S and let (fn)n≥1 be a sequence of càdlàg functions such that
fn → f as n → ∞ in the Skorokhod sense. For each n ∈ N, let (sn, yn) be a pair of points
such that sn ≥ 0 and yn ≤ fn(sn). Let (s, y) be such that s > 0, f (s−) = f (s) and 0 <

y < f (s). Let tn = inf{u ≥ sn : fn(u) ≤ yn} and t = inf{u ≥ s : f (u) ≤ y}. Suppose that
(sn, yn) → (s, y), that t is not a local minimum of f and that f (t−) = f (t). Then tn → t as
n → ∞.

PROOF. Fix 0 < ε < t − s. Since f ∈ S , y < f (s), f (s−) = f (s), f (t−) = f (t) and t

is not a local minimum of f , there exists δ > 0 such that

f (x) ≥ y + δ for all x ∈ [s − ε/2, t − ε/2],
f (x) ≤ y − δ for some x ∈ (t, t + ε/2].

As fn → f , there exist n0 and a sequence of continuous strictly increasing functions λn :
[0,∞) → [0,∞) such that λn(0) = 0, limx→∞ λn(x) = ∞ and, for all n ≥ n0,∣∣fn

(
λn(x)

) − f (x)
∣∣ < δ/2 for all x ∈ [0, t + ε/2]

and ∣∣λn(x) − x
∣∣ < ε/4 for all x ∈ [0, t + ε].

Then

fn

(
λn(x)

) ≥ y + δ/2 for all x ∈ [s − ε/2, t − ε/2],
fn

(
λn(x)

) ≤ y − δ/2 for some x ∈ (t, t + ε/2].
By taking n0 larger if necessary, we also have

|s − sn| < ε/4 and |y − yn| < δ/2

for all n ≥ n0. Then, for all n ≥ n0, we have |λ−1
n (sn) − s| < ε/2 and so

fn(x) ≥ y + δ/2 for all x ∈ [sn, t − ε].
It follows that

fn(x) > yn for all x ∈ [sn, t − ε].
Moreover, it must be the case that fn goes below yn in the time interval [λn(t − ε/2), λn(t +
ε/2)], that is, we must have tn ∈ [λn(t − ε/2), λn(t + ε/2)]. But then tn ∈ [t − ε, t + ε] for
all n ≥ n0. As ε was arbitrary, the result follows. �

Let

Mn(k) = Nn(
σn(k)

) − Nn(
σn(k − 1)

)
,

be the number of back-edges falling in the excursion εn
k . Suppose that Mn(k) ≥ 1. Then for

1 ≤ r ≤ Mn(k), let gn
k + sn

k,r be the rescaled time at which the r th back-edge is discovered in
the kth component and let n1/(α+1)xn

k,r ≥ 0 be its position on the stack. Let gn
k + tnk,r be the

rescaled time at which the corresponding marked leaf in the stack is killed, thus closing the
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r th back-edge. This is the first time that the stack size goes below the height of that leaf after
its discovery (the stack being a LIFO queue), so that we have

tnk,r = inf
{
t ≥ sn

k,r : εn
k (t) ≤ xn

k,r − n−1/(α+1)}.
Finally, if Mn(k) ≥ 1, let Pn

k = ∑Mn(k)
r=1 δ(sn

k,r ,t
n
k,r )

define a point measure on [0, ζ(εn
k )]2. If

Mn(k) = 0, let Pn
k be the null measure. Let

Qn = ∑
k≥1

Mn(k)∑
r=1

δ(gn
k +sn

k,r ,g
n
k +tnk,r )

,

the point measure encompassing all of the pairs of rescaled times at which a back-edge is
opened and closed.

Turning now to the limiting process, recall that (̃εi , i ≥ 1) are the excursions of R listed
in decreasing order of length, and that the sequence (ζ (̃εi), i ≥ 1) lies in �2↓. Let Mi be the
number of marks falling in the excursion ε̃i , and if Mi ≥ 1, write si,1, . . . , si,Mi

for the times
and xi,1, . . . , xi,Mi

for the positions of the marks, respectively. For 1 ≤ r ≤ Mi , let

ti,r = inf
{
t ≥ si,r : ε̃i (t) ≤ xi,r

}
.

If Mi ≥ 1, write Pi = ∑Mi

r=1 δ(si,r ,ti,r ), and if Mi = 0, let Pi be the null measure. Finally, let

Q = ∑
i≥1

Mi∑
r=1

δ(gi+si,r ,gi+ti,r ).

Recall that

σ̃ n(i) = min
{
k : S̃n(k) ≤ −i

}
and let ζ̃ n(i) = σ̃ n(i) − σ̃ n(i − 1) be the length of the ith excursion of S̃n above its running
minimum. Since the components of F̃n(ν) again appear in size-biased order, an argument
completely analogous to that above gives that n−α/(α+1) ord(ζ̃ n(k), k ≥ 1) converges in dis-
tribution to (ζ (̃εi), i ≥ 1) in �2↓. In particular,

n−α/(α+1) max
i≥1

ζ̃ n(i)
d−→ ζ (̃ε1),

where we recall that ζ (̃ε1) is the length of the longest excursion of R above 0; in particular,
by Proposition 3.1 and Lemma 3.5 we have ζ (̃ε1) < ∞ a.s.

For i ≥ 1, let M̃n(i) be the number of back-edges falling among the vertices corresponding
to the (2i − 1)th and 2ith components of F̃n(ν), and let Ñn

max = maxk≥1 M̃n(k). On the pair
formed of the (2i − 1)th and 2ith components of F̃n(ν), at corresponding vertices, we have
that the size of the stack in Fn(ν) is bounded above by the size of the stack in F̃n(ν) plus 1.

PROPOSITION 5.12. We have

ord
(
ζ
(
εn
k

)
, εn

k ,Pn
k , k ≥ 1

) d−→ (
ζ (̃εi), ε̃i ,Pi , i ≥ 1

)
as n → ∞. Here, for each k ≥ 1, the convergence in the second coordinate is for the Sko-
rokhod topology and in the third for the Hausdorff distance on R2+; then we take the product
topology over the different indices.

PROOF. Observe that {(si,r , xi,r ) : 1 ≤ r ≤ Mi} are the times and marks of the marked
Cox process (see Theorem 5.5), which fall into the excursion ε̃i , for each i ≥ 1. Equiva-
lently, they are picked uniformly from the Lebesgue measure under the excursion ε̃i . Such
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an excursion has only countably many discontinuities (all of which are up-jumps), and so the
conditions of Lemma 5.11 are fulfilled almost surely. Combining this with Theorem 5.5, we
may deduce the joint convergence in distribution as n → ∞ of(

n−1/(α+1)Rn(⌊
tnα/(α+1)⌋)

, t ≥ 0
) → (Rt , t ≥ 0)

in the Skorokhod topology and Qn → Q in the topology of vague convergence on R2+.
By Skorokhod’s representation theorem, we may work on a probability space such that

this joint convergence holds almost surely. Fix K ∈ N. We have already shown that, given
δ > 0, there exist M > 0 and n0 sufficiently large such that, with probability at least 1 − δ,
the K longest excursions of both n−1/(α+1)Rn(
·nα/(α+1)�) and R occur in the time interval
[0,M] for all n ≥ n0. Since Qn → Q and Q has only finitely many points in [0,M]2, we
may deduce that the K smaller point processes obtained by restricting Qn to each of the K

longest excursion intervals converge in the sense of the Hausdorff distance to P1, . . . ,PK ,
respectively. The result follows. �

We conclude this section with some technical bounds on the number of back-edges in a
given component, of which we will make use later.

LEMMA 5.13. Almost surely, we have #{i ≥ 1 : Mi ≥ 2} < ∞ and Nmax := supi≥1 Mi <

∞.

PROOF. We will bound

E
[
#{i ≥ 1 : Mi ≥ 2} | (

ζ (̃εi)
)
i≥1

] = ∑
i≥1

P
(
Mi ≥ 2 | ζ (̃εi)

)
,

where we have used the independence of the excursions given their lengths. We use the crude
bound P(Po(λ) ≥ 2) ≤ λ2. For any i ≥ 1, we have

P
(
Mi ≥ 2 | ζ (̃εi) = x

) = P

(
Po

(
1

μ

∫ x

0
ε̃i (u) du

)
≥ 2

∣∣∣ ζ (̃εi) = x

)

≤ EN(x)[( 1
μ

∫ x
0 e(u) du)2 exp( 1

μ

∫ x
0 e(u) du)]

EN(x)[exp( 1
μ

∫ x
0 e(u) du)]

≤ EN(x)

[(
1

μ

∫ x

0
e(u) du

)4]1/2
EN(x)

[
exp

(
2

μ

∫ x

0
e(u) du

)]1/2
,

by the Cauchy–Schwarz inequality and the fact that the denominator is bounded below by 1.
By the scaling property of the excursion e,

EN(x)

[(
1

μ

∫ x

0
e(u) du

)4]1/2
≤ Cx2(1+1/α)

for some constant C > 0. Define

f (x) := EN(x)

[
exp

(
2

μ

∫ x

0
e(u) du

)]1/2
= EN(1)

[
exp

(
2x1+1/α

μ

∫ 1

0
e(u) du

)]1/2
.

This is clearly an increasing function of x, so that for x ≤ ζ (̃ε1) we have f (x) ≤ f (ζ (̃ε1)),
which is almost surely finite by Lemma 3.6, since ζ(ε̃1) < ∞ a.s. By Proposition 5.6, we
have

∑
i≥1 ζ (̃εi)

2 < ∞ a.s. and so

E
[
#{i ≥ 1 : Mi ≥ 2} | (

ζ (̃εi)
)
i≥1

] ≤ f
(
ζ (̃ε1)

)∑
i≥1

ζ (̃εi)
2(1+1/α) < ∞ a.s.
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It follows that

#{i ≥ 1 : Mi ≥ 2} < ∞ a.s.

Since the area of any individual excursion ε̃i is finite, it contains an almost surely finite
number of points, and this together with the fact that only finitely many excursions contain
more than 2 points, gives that Nmax < ∞ a.s. �

5.6. Height process. In order to deal with the metric structure, we also need to know that
the height process associated with Xn converges. Let

Hn(k) = #
{
j ∈ {0,1, . . . , k − 1} : Xn(j) = inf

j≤�≤k
Xn(�)

}
so that Hn(k) is the distance from the root of the component being explored to the current
vertex at step k. See Figure 2 for an illustration. (Recall that Mn(ν) is obtained from Fn(ν)

by replacing pairs of marked leaves by back-edges.)
Our aim in this section is to prove that Hn has H̃ as its scaling limit, and that we can

extract its marked excursions as for the exploration process. Recall that

G̃n(k) = #
{
j ∈ {0,1, . . . , k − 1} : S̃n(j) = inf

j≤�≤k
S̃n(�)

}
,

which is the height process corresponding to the forest F̃n(ν). We will compare Hn and G̃n.
It will be sufficient to do this for pairs of components of F̃n(ν). To this end, suppose that
for a ≥ 0 and m ≥ 1, vertices va+1, va+2, . . . , va+m form a pair of components of F̃n(ν), and
that there are b back-edges on these vertices in Mn(ν). Then the corresponding collection of
components in Fn(ν) together have m+ 2b vertices, which are visited at times c + a, c + a +
1, . . . , c+a+m+2b−1 in the depth-first exploration, where c ≥ 0 is such that a = τn(c+a).
We compare Hn with G̃n at the times τn(c + a), τn(c + a + 1), . . . , τn(c + a + m + 2b − 1).

LEMMA 5.14. We have

max
0≤i≤m+2b−1

∣∣Hn(a+c+i)−G̃n(
τn(a+c+i)

)∣∣ ≤ 1+b+2b max
1≤i≤m

∣∣G̃n(a+i)−G̃n(a+i−1)
∣∣.

FIG. 2. Top: three components of Fn(ν). Left: Xn(k) drawn with the vertices on the stack indicated. Empty
squares represent half-edges, which are available to be connected to as back-edges. Filled squares are marked
vertices. Right: the corresponding height process (with the extra vertices in red).
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PROOF. Suppose first that b = 0. Until we come to the end of the first component of
F̃n(ν), we have

Hn(a + i) = G̃n(
τn(a + i)

)
.

Thereafter, we have Hn(a + i) = 1 + G̃n(τn(a + i)), since the second component of F̃n(ν)

becomes a subtree attached to the root of the first component of Fn(ν).
For b > 0, we encourage the reader to refer back to Figure 1.
Write � = max1≤i≤m |G̃n(a + i) − G̃n(a + i − 1)|. The occurrence of a head or tail of

a back-edge at time k implies τn(k + 1) = τn(k). To get from F̃n(ν) to Fn(ν), we unplug
a sequence of subtrees and plug them back in further along in the depth-first order. Within
subtrees containing no back-edges, the increments of the height process remain the same as
they are in the corresponding subtrees of F̃n(ν). Finally, every time we start a new subtree
there is an extra difference of 1. It follows that the most by which the height process can be
altered in going from F̃n(ν) to Fn(ν) is an additive factor of 1 + b + 2b�. �

We are now ready to state and prove the main result of this section.

PROPOSITION 5.15. Jointly with the convergence in Theorem 5.5, we have that as n →
∞, (

n− α−1
α+1 Hn(⌊

tnα/(α+1)⌋)
, t ≥ 0

) d−→ (H̃t , t ≥ 0)

in D(R+,R+).

PROOF. By Theorem 4.1, we have(
n− α−1

α+1 G̃n(⌊
n

α
α+1 u

⌋)
, u ≥ 0

) d−→ (H̃u, u ≥ 0).

By Theorem 1.4.3 of Duquesne and Le Gall [36], (Hu,u ≥ 0) is almost surely continuous.
By the absolute continuity in Proposition 3.2, the same is true of (H̃u,0 ≤ u ≤ t). It follows
that, for any t > 0,

(28) n− α−1
α+1 sup

1≤j≤
tnα/(α+1)�

∣∣G̃n(j) − G̃n(j − 1)
∣∣ d−→ 0

as n → ∞.
By Lemma 5.13, if δ > 0, there exists Kδ < ∞ such that

P
(
ζ (̃ε1) > Kδ

)
< δ and P(Nmax > Kδ) < δ.

In particular, starting from any time k, the number of steps until we next reach the beginning
of an odd-numbered component is bounded above by 2Kδn

α/(α+1) with probability at least
1 − δ + o(1).

Now fix t > 0 and ε > 0. Then, by Lemma 5.14, we have

P
(
n− α−1

α+1 sup
0≤k≤
tnα/(α+1)�

∣∣Hn(k) − G̃n(
τn(k)

)∣∣ > ε
)

≤ P
(
n−α/(α+1) max

i≥1
ζ̃ n(i) > Kδ

)
+ P

(
Nn

max > Kδ

)
+ P

(
1 + Kδ + 2Kδ sup

1≤j≤
(t+2Kδ)nα/(α+1)�

∣∣G̃n(j) − G̃n(j − 1)
∣∣ > εn

α−1
α+1

)
.

Using (28), we obtain that

P
(
1 + Kδ + 2Kδ sup

1≤j≤
(t+2Kδ)nα/(α+1)�

∣∣G̃n(j) − G̃n(j − 1)
∣∣ > εn

α−1
α+1

)
→ 0
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as n → ∞. It follows that

lim sup
n→∞

P
(
n− α−1

α+1 sup
0≤k≤
tnα/(α+1)�

∣∣Hn(k) − G̃n(
τn(k)

)∣∣ > ε
)

< 2δ.

But δ > 0 was arbitrary and so by Lemma 5.1 we may deduce that(
n− α−1

α+1 Hn(⌊
unα/(α+1)⌋)

,0 ≤ u ≤ t
) d−→ (H̃u,0 ≤ u ≤ t). �

Now let

hn
k(t) = n−(α−1)/(α+1)Hn(

σn(k − 1) + ⌊
tnα/(α+1)⌋)

,0 ≤ t ≤ n−α/(α+1)ζ n(k).

PROPOSITION 5.16. We have

ord
(
εn
k , hn

k,Pn
k , k ≥ 1

) d−→ (̃εi, h̃i ,Pi , i ≥ 1)

as n → ∞. Here, for each k ≥ 1, the convergence in the first coordinate is for the Skorokhod
topology and in the second for the topology of vague convergence of counting measures on
[0,∞)2; then we take the product topology over different k.

PROOF. We derive this from Proposition 5.15 by applying the same reasoning as in the
proof of Proposition 5.12, using the fact that Rn and Hn have the same excursion intervals.

�

5.7. The convergence of the metric structure. We have now assembled all of the ingre-
dients needed in order to prove Theorem 1.1. Recall that Mn

1 ,Mn
2 , . . . are the components of

the random multigraph Mn(ν), listed in decreasing order of size. We will make the distance
and measure explicit in each by writing (Mn

i , dn
i ,μn

i )i≥1. Recall also that Fn(ν) is the forest
encoded by Hn. In order to recover Mn(ν) from Fn(ν), we remove pairs of marked leaves
and replace them by back-edges as described above.

PROOF OF THEOREM 1.1. Write (hn
(i),Pn

(i)) for the ith element of the sequence
ord(hn

k,Pn
k , k ≥ 1). Write (T n

i , dn
i ,μn

i ) for the tree with rescaled height process hn
(i) and

with mass n−α/(α+1) on each vertex. (For i ≥ 1, these are the trees of the forest Fn(ν) listed
in decreasing order of mass.) By Skorokhod’s representation theorem, we may work on a
probability space where the convergence(

hn
(i),Pn

(i), i ≥ 1
) → (h̃i,Pi , i ≥ 1)

occurs almost surely. By (8), this entails that

dGHP
((

T n
i , dn

i ,μn
i

)
, (T̃i , d̃i , μ̃i)

) → 0 a.s.

as n → ∞. In order to obtain (Mn
i , dn

i ,μn
i ) from (T n

i , dn
i ,μn

i ) if Pn
(i) = ∑mn

(i)

r=1 δsn
(i),r ,t

n
(i),r

we
must remove the vertices encoded by sn

(i),r and tn(i),r and replace them by a single edge be-

tween their parents, for each 1 ≤ r ≤ mn
(i). Since edges have rescaled length n−(α−1)/(α+1) →

0 it is straightforward to see (in the same manner as in the proof of Theorem 22 in [2]) that
we get

(29) dGHP
((

Mn
i , dn

i ,μn
i

)
, (Gi , di,μi)

) → 0 a.s.

as n → ∞. The conclusion follows. �
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APPENDIX

A.1. A change of measure for spectrally positive Lévy processes. Let L be a spec-
trally positive Lévy process with Lévy measure π satisfying

(30)
∫ ∞

0

(
x ∧ x2)

π(dx) < ∞.

Then we may write the Laplace transform of Lt as

E
[
exp(−λLt)

] = exp
(
t�(λ)

)
,

where

�(λ) = γ λ + δ2λ2

2
+

∫ ∞
0

π(dx)
(
e−λx − 1 + λx

)
.

We impose also that

(31) γ ≥ 0, δ ≥ 0

and that at least one of the two following conditions holds:

(32) δ > 0 or
∫ ∞

0
xπ(dx) = ∞.

As observed by Duquesne and Le Gall [36], assumptions (30), (31) and (32) together ensure
that L does not drift to +∞ and has paths of infinite variation.

We note that
∫ t

0 �(θs) ds < ∞ for all θ > 0 and all t > 0.

LEMMA A.1. For any θ > 0 we have

E

[
exp

(
−θ

∫ t

0
s dLs

)]
= exp

(∫ t

0
�(θs) ds

)
= E

[
exp

(
θ

∫ t

0
(Ls − Lt) ds

)]
.

In consequence, the process(
exp

(
−θ

∫ t

0
s dLs −

∫ t

0
�(θs) ds

)
, t ≥ 0

)
is a martingale.

PROOF. Let M(ds, dx) be a Poisson random measure on R+ of intensity ds ⊗ π(dx),
and let M̃(ds, dx) be its compensated version. Then

E

[
exp

(
−θ

∫ t

0

∫ ∞
0

sxM̃(ds, dx)

)]
= exp

(∫ t

0
ds

∫ ∞
0

π(dx)
(
e−θsx − 1 + θsx

))
.

If B is a standard Brownian motion, we obtain

E

[
exp

(
−θ

∫ t

0
s dBs

)]
= exp

(
1

2
θ2

∫ t

0
s2 ds

)
.

Since we may, in general, realise L as

Lt = −γ t + δBt +
∫ t

0

∫ ∞
0

xM̃(ds, dx),
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where B and M̃ are independent, we obtain

E

[
exp

(
−θ

∫ t

0
s dLs

)]
= E

[
exp

(
θ

∫ t

0
γ s ds − θ

∫ t

0
δs dBs − θ

∫ t

0

∫ ∞
0

xsM̃(ds, dx)

)]
= exp

(
γ

∫ t

0
θs ds + 1

2
δ2

∫ t

0
θ2s2 ds +

∫ t

0
ds

∫ ∞
0

π(dx)
(
e−θsx − 1 + θsx

))
= exp

(∫ t

0
�(θs) ds

)
.

The second equality in the statement of the lemma follows on integrating by parts, and the
martingale property follows since L has independent increments. �

This martingale plays an important role as a Radon–Nikodym derivative. Fix θ > 0 and
consider the process X with independent (but nonstationary) increments and Laplace trans-
form

E
[
exp(−λXt)

] = exp
(∫ t

0
ds

∫ ∞
0

π(dx)
(
e−λx − 1 + λx

)
e−θxs

)
.

(The process X may again be realised as a stochastic integral with respect to a compensated
Poisson random measure on R+ ×R+, but this time with intensity exp(−xs) dsπ(dx).) Let

At = −1

θ
�(θt) = −γ t − 1

2
θδ2t2 − 1

θ

∫ ∞
0

π(dx)
(
e−θtx − 1 + θtx

)
and L̃t = δBt + Xt + At . (Note that this is expressed as the Doob–Meyer decomposition of
L̃, with δBt + Xt the martingale part.)

PROPOSITION A.2. For any θ > 0 and every t ≥ 0, we have the following absolute con-
tinuity relation: for every nonnegative integrable functional F ,

E
[
F(L̃s,0 ≤ s ≤ t)

] = E

[
exp

(
−θ

∫ t

0
s dLs −

∫ t

0
�(θs) ds

)
F(Ls,0 ≤ s ≤ t)

]
.

PROOF. Observe first that Lemma A.1 entails that the change of measure is well defined
for each t ≥ 0.

Let us first deal with the case where γ = δ = 0. We use a decomposition of the Lévy
measure similar to that in Bertoin [13] or the proof of Proposition 1 in Miermont [51]:∫ t

0
ds

∫ ∞
0

π(dx)
(
e−λx − 1 + λx

)
e−θxs

=
∫ t

0
ds

∫ ∞
0

π(dx)
(
e−(λ+θs)x − 1 + (λ + θs)x

) −
∫ t

0
ds

∫ ∞
0

π(dx)
(
e−θxs − 1 + θxs

)
−

∫ t

0
ds

∫ ∞
0

π(dx)λx
(
1 − e−θxs)

=
∫ t

0
�(λ + θs) ds −

∫ t

0
�(θs) ds −

∫ t

0
ds

∫ ∞
0

π(dx)λx
(
1 − e−θxs).
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The last integral on the right-hand side makes sense because of the integrability condition
(30). Indeed, it may be calculated as follows:∫ t

0
ds

∫ ∞
0

π(dx)λx
(
1 − e−θxs) = λ

∫ ∞
0

xπ(dx)

∫ t

0

(
1 − e−θxs)ds

= λ

θ

∫ ∞
0

π(dx)
(
e−θtx − 1 + θtx

) = λ

θ
�(θt).

Hence,

E
[
exp(−λXt)

] = exp
(∫ t

0
ds

∫ ∞
0

π(dx)
(
e−λx − 1 + λx

)
e−θxs

)
= exp

(
−λ

θ
�(θt) +

∫ t

0
�(λ + θs) ds −

∫ t

0
�(θs) ds

)
and we obtain

E
[
exp

(−λ(Xt + At)
)] = exp

(∫ t

0
�(λ + θs) ds −

∫ t

0
�(θs) ds

)
.

Consider the stochastic integral∫ t

0
(λ + θs) dLs = λLt + θ

∫ t

0
s dLs.

We have

E

[
exp

(
−

∫ t

0
(λ + θs) dLs

)]
= exp

(∫ t

0
�(λ + θs)

)
ds)

and so

E
[
exp

(−λ(Xt + At)
)] = E

[
exp

(
−λLt − θ

∫ t

0
s dLs −

∫ t

0
�(θs) ds

)]
.

Suppose now that 0 = t0 < t1 < · · · < tm = t . Let λ1, . . . , λm ∈ R+. Then, by the fact that
X has independent increments,

E

[
exp

(
−

m∑
i=1

λi(L̃ti − L̃ti−1)

)]
=

m∏
i=1

E
[
exp

(−λi(L̃ti − L̃ti−1)
)]

.

By the same argument as above, we then have

E

[
exp

(
−

m∑
i=1

λi(L̃ti − L̃ti−1)

)]
=

m∏
i=1

E

[
exp

(
−

∫ ti

ti−1

(λi + θs) dLs −
∫ ti

ti−1

�(θs) ds

)]

= E

[
exp

(
−

m∑
i=1

∫ ti

ti−1

(λi + θs) dLs −
∫ t

0
�(θs) ds

)]
,

since L also has independent increments. Again by integration by parts, we then get that the
right-hand side is equal to

E

[
exp

(
−

m∑
i=1

λi(Lti − Lti−1) − θ

∫ t

0
s dLs −

∫ t

0
�(θs)

)]
.

This yields the claimed result for γ = δ = 0.
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Now let us instead suppose that γ ≥ 0, δ > 0 and there is no jump component, that is,
Lt = −γ t + δBt and L̃t = −γ t + δBt − δθt2/2. Then by the Cameron–Martin–Girsanov
formula (see, e.g., Section 5.6 of Le Gall [47]),

E
[
f (L̃s,0 ≤ s ≤ t)

] = E

[
exp

(
−δθ

∫ t

0
s dBs − δ2θ2

∫ t

0
s2 ds

)
f (Ls,0 ≤ s ≤ t)

]
= E

[
exp

(
−θ

∫ t

0
s dLs −

∫ t

0
�(θs) ds

)
f (Ls,0 ≤ s ≤ t)

]
.

The result for general γ , δ and π now follows using the independence of X and B . �

The α-stable case stated in Proposition 3.2 is obtained by setting γ = δ = 0, π(dx) =
c
μ
x−(α+1) dx and θ = 1/μ. The Brownian case is obtained by taking γ = 0, δ = √

β/μ,
θ = 1/μ and no Lévy measure π .

A.2. Size-biased reordering. In this section, we prove some elementary results about
the size-biased reordering (D̂n

1 , D̂2
n, . . . , D̂

n
n) of the degrees. First, we prove Proposition 4.2.

PROOF OF PROPOSITION 4.2. Denote the set of permutations of {1,2, . . . , n} by Sn. By
definition,

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
n = kn

)
= P(D�(1) = k1,D�(2) = k2, . . . ,D�(n) = kn)

= ∑
σ∈Sn

P(Dσ(1) = k1,Dσ(2) = k2, . . . ,Dσ(n) = kn,� = σ)

= ∑
σ∈Sn

P(Dσ(1) = k1,Dσ(2) = k2, . . . ,Dσ(n) = kn)
k1∑n

j=1 kj

k2∑n
j=2 kj

· · · kn

kn

= n!νk1νk2 · · ·νkn

k1∑n
j=1 kj

k2∑n
j=2 kj

. . .
kn

kn

,

since D1, . . . ,Dn are i.i.d. with law ν. Rearrangement of this expression yields

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
n = kn

) = k1νk1k2νk2 . . . knνkn

n∏
i=1

(n − i + 1)∑n
j=i kj

= k1νk1

μ

k2νk2

μ
· · · knνkn

μ

n∏
i=1

(n − i + 1)μ∑n
j=i kj

.

Now,

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
m = km

)
= ∑

km+1,...,kn≥1

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
n = kn

)

= k1νk1

μ

k2νk2

μ
· · · kmνkm

μ
μmn! ∑

km+1,...,kn≥1

km+1νkm+1 · · ·knνkn

n∏
i=1

1∑n
j=i kj

= k1νk1

μ

k2νk2

μ
· · · kmνkm

μ
μmn!
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× ∑
km+1,...,kn≥1

m∏
i=1

1∑m
j=i kj + ∑n

j=m+1 kj

νkm+1 · · ·νkn

n∏
�=m+1

k�∑n
j=� kj

= k1νk1

μ

k2νk2

μ
· · · kmνkm

μ
μm n!

(n − m)!

× ∑
km+1,...,kn≥1

m∏
i=1

1∑m
j=i kj + ∑n

j=m+1 kj

P
(
D̂n−m

1 = km+1, . . . , D̂
n−m
n−m = kn

)
.

We have that
∑n−m

j=1 D̂n−m
j

d= ∑n
j=m+1 Dj = �n−m. It follows that the last expression is equal

to

k1νk1

μ

k2νk2

μ
· · · kmνkm

μ

n!μm

(n − m)!E
[

m∏
i=1

1∑m
j=i kj + �n−m

]
,

and the claimed result follows. �

A simple consequence of Proposition 4.2 is the following stochastic domination.

LEMMA A.3. We have(
D̂n

1 , D̂n
2 , . . . , D̂n

n

) ≤st (Z1,Z2, . . . ,Zn).

PROOF. By Proposition 4.2, we have

P
(
D̂n

1 ≥ d1, D̂
n
2 ≥ d2, . . . , D̂

n
n ≥ dn

) = E

[
n∏

i=1

(n − i + 1)μ∑n
j=i Zj

1{Z1≥d1,Z2≥d2,...,Zn≥dn}
]
.

Let

f (k1, k2, . . . , kn) =
n∏

i=1

(n − i + 1)μ∑n
j=i kj

and

g(k1, k2, . . . , kn) = 1{k1≥d1,k2≥d2,...,kn≥dn}.

Then f is a decreasing function of its arguments and g is an increasing function of its argu-
ments. It follows from the FKG inequality that

E
[
f (Z1,Z2, . . . ,Zn)g(Z1,Z2, . . . ,Zn)

] ≤ E
[
f (Z1,Z2, . . . ,Zn)

]
E

[
g(Z1,Z2, . . . ,Zn)

]
.

But E[f (Z1,Z2, . . . ,Zn)] = 1 and so

P
(
D̂n

1 ≥ d1, D̂
n
2 ≥ d2, . . . , D̂

n
n ≥ dn

) ≤ P(Z1 ≥ d1,Z2 ≥ d2, . . . ,Zn ≥ dn),

as required. �

LEMMA A.4. Fix α ∈ (1,2) and suppose p ≥ α. Then for γ > p/α, we have

1

mγ

m∑
i=1

(
D̂n

i

)p p→ 0

as m → ∞, uniformly in n.
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PROOF. By Lemma A.3, it is sufficient to prove that

1

mγ

m∑
i=1

Z
p
i

p→ 0.

By Theorem 2.5.9 of Durrett [37], we have

lim sup
m→∞

1

mγ

m∑
i=1

Z
p
i = 0 a.s.

if and only if
∞∑

m=1

P
(
Z

p
1 > mγ )

< ∞.

But P(Z
p
1 > mγ ) = P(Z1 > mγ/p) = O(m−αγ/p), which is summable since αγ/p > 1. �

LEMMA A.5. As n → ∞,

1

n

n∑
i=
tnα/(α+1)�+1

D̂n
i

p→ μ.

PROOF. We have
n∑

i=
tnα/(α+1)�+1

D̂n
i =

n∑
i=1

D̂n
i −


tnα/(α+1)�∑
i=1

D̂n
i =

n∑
i=1

Di −

tnα/(α+1)�∑

i=1

D̂n
i .

By the weak law of large numbers,

1

n

n∑
i=1

Di
p→ E[D1] = μ.

Using Lemma A.3 and Markov’s inequality, we see that

1

n


tnα/(α+1)�∑
i=1

D̂n
i

p→ 0,

and the result follows. �

A.3. Convergence of the measure-change in the Brownian case. Recall that we have
μ := E[D1], E[D2

1] = 2μ and β := E[D1(D1 − 1)(D1 − 2)], so that E[D3
1] = β + 4μ.

LEMMA A.6. Let L(λ) := E[exp(−λD1)]. Then as λ → 0,

(33) L(λ) = exp
(
−λμ + λ2μ(2 − μ)

2
− λ3

6

(
β + 4μ − 6μ2 + 2μ3) + o

(
λ3))

.

PROOF. The first three cumulants of D1 are

E[D1] = μ,var(D1) = μ(2 − μ),E
[
(D1 − μ)3] = β + 4μ − 6μ2 + 2μ3,

and the result follows immediately. �

Recall from Proposition 4.2 that

φn
m(k1, k2, . . . , km) = E

[
m∏

i=1

(n − i + 1)μ∑m
j=i kj + �n−m

]
.

We prove the following lemma.
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LEMMA A.7. Let s(0) = 0 and s(i) = ∑i
j=1(kj − 2) for i ≥ 1. Suppose that |s(i) −

s(m)| ≤ n1/3 logn for all 0 ≤ i ≤ m. Then if m = 	(n2/3), we have

φm
n (k1, k2, . . . , km) ≥ exp

(
1

nμ

m∑
i=0

(
s(i) − s(m)

) − βm3

6μ3n2

)(
1 + o(1)

)
,

where the o(1) term is independent of k1, . . . , km ≥ 1 satisfying the conditions.

PROOF. The method of proof is similar in spirit to, but somewhat more involved than
that of Lemma 4.7. Let us first introduce some useful notation. Let D′

i = Di − μ, the centred
degree random variables, and let �n−m := �n−m − μ(n − m) be their sum. Let ψ be the
log-Laplace transform of D′

1,

ψ(λ) = logE
[
exp

(−λD′
1
)]

,

so that as λ → 0, we have

(34) ψ(λ) = λ2μ(2 − μ)

2
− λ3

6

(
β + 4μ − 6μ2 + 2μ3) + o

(
λ3)

.

Now,

φm
n (k1, . . . , km)

=
m∏

i=1

(
1 − i − 1

n

)

×E

[
exp

(
−

m∑
i=1

log
(

1 + �n−m + s(m) − s(i − 1) + 2(m − i + 1) − μm

μn

))]
.

We use Taylor’s expansion in order to approximate the exponent

(35)

m∑
i=1

(
log

(
1 − i − 1

n

)
− log

(
1 + �n−m + s(m) − s(i − 1) + (2 − μ)m − 2(i − 1)

μn

))

= −m2

2n
− m3

6n2 + o(1)

− m�n−m

nμ
+ 1

nμ

m∑
i=0

(
s(i) − s(m)

) − (2 − μ)m2

nμ
+ m2

nμ
+ o(1)

+ m(�n−m)2

2n2μ2 + 1

2μ2n2

m∑
i=0

(
s(i) − s(m)

)2 + (2 − μ)2m3

2μ2n2 + 2m3

3μ2n2

− (2 − μ)m3

μ2n2 + o(1)

+ �n−m

μ2n2

m∑
i=0

(
s(m) − s(i)

) − (μ − 1)m2�n−m

μ2n2 + (2 − μ)m

μ2n2

m∑
i=0

(
s(m) − s(i)

)

− 2

μ2n2

m∑
i=0

i
(
s(m) − s(i)

) + · · · .

As �n−m is a centred sum of i.i.d. random variables with finite variance, the central limit

theorem applies and we have that n−1/2�n−m
d−→ N(0,

√
μ(2 − μ)) as n → ∞. The desired
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lower bound will, however, be obtained by restricting to the moderate deviation event

En = {−(2 − μ)m − n7/12 ≤ �n−m ≤ −(2 − μ)m + n7/12}
.

On this event, for any 0 ≤ i ≤ m, we have

|�n−m| = O
(
n2/3)

,
∣∣s(m) − s(i)

∣∣ = O
(
n1/3 logn

)
and∣∣(2 − μ)m − 2(i − 1)

∣∣ = O
(
n2/3)

.

So, we have

1

2μ2n2

m∑
i=0

(
s(i) − s(m)

)2 = o(1),
(2 − μ)m

μ2n2

m∑
i=0

(
s(m) − s(i)

) = o(1),

�n−m

μ2n2

m∑
i=0

(
s(m) − s(i)

) = o(1) and − 2

μ2n2

m∑
i=0

i
(
s(m) − s(i)

) = o(1),

and that the remainder term (hidden in the ellipsis) in the expansion of (35) is o(1). Using
these facts we see that, on En, the exponent (35) is equal to Fn + o(1), where

Fn := 1

nμ

m∑
i=0

(
s(i) − s(m)

) − (2 − μ)m2

2μn
− (2 − μ)(μ − 1)m3

3μ2n2

+ m(�n−m)2

2n2μ2 −
(

m

μn
+ (μ − 1)m2

μ2n2

)
�n−m.

In order to find a lower bound on E[exp(Fn)1En], we first consider the expectation of the
stochastic part,

E

[
exp

(
m(�n−m)2

2n2μ2 −
(

m

μn
+ (μ − 1)m2

μ2n2

)
�n−m

)
1En

]
.

Let θ > 0 (we shall choose a specific value for θ shortly) and define an equivalent measure
Q via

dQ

dP
= exp

(−θ�n−m − (n − m)ψ(θ)
)
.

Because the Radon–Nikodym derivative has a product form, under Q the random variables
D′

1,D
′
2, . . . ,D

′
n−m are still i.i.d. and each have mean

EQ

[
D′

1
] = E[D′

1 exp(−θD′
1)]

E[exp(−θD′
1)]

= −ψ ′(θ)

and variance varQ(D′
1) = ψ ′′(θ). Now fix

θ = m

μn
+ m2

μn2 ,

so that

EQ[�n−m] = −(n − m)ψ ′(θ)

= −(n − m)

[
(2 − μ)m

n
+ (2 − μ)m2

n2 − (β + 4μ − 6μ2 + 2μ3)m2

2μ2n2

− (β + 4μ − 6μ2 + 2μ3)m3

2μ2n3 + o

(
m3

n3

)]
= −(2 − μ)m + O

(
n1/3)
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and

varQ(�n−m) = (n − m)ψ ′′(θ) = μ(2 − μ)(n − m) + O
(
n1/3)

.

Using Chebyshev’s inequality and the fact that n1/3 � n7/12, it follows that

Q
(
Ec

n

) ≤Q

(∣∣�n−m + (2 − μ)m
∣∣ >

1

2
n7/12

)
≤ 5 varQ(�n−m)

n7/6 = O
(
n−1/6)

.

So,

E

[
exp

(
m(�n−m)2

2n2μ2 −
(

m

μn
+ (μ − 1)m2

μ2n2

)
�n−m

)
1En

]

= exp
(
(n − m)ψ

(
m

nμ
+ m2

μn2

))
EQ

[
exp

(
m(�n−m)2

2n2μ2 + m2�n−m

μ2n2

)
1En

]

≥ exp
(
(n − m)ψ

(
m

nμ
+ m2

μn2

))
Q(En)

× exp
(

m((2 − μ)m − n7/12)2

2n2μ2 − m2((2 − μ)m + n7/12)

μ2n2

)

= (
1 + o(1)

)
exp

(
(n − m)ψ

(
m

nμ
+ m2

μn2

)
+ (2 − μ)2m3

2n2μ2 − (2 − μ)m3

μ2n2

)
.

Now,

(n − m)ψ

(
m

nμ
+ m2

μn2

)

= (n − m)

[
(2 − μ)m2

2μn2 + (2 − μ)m3

μn3 − (β + 4μ − 6μ2 + 2μ3)m3

6μ3n3

]
+ o(1)

= (2 − μ)m2

2μn
+ (2 − μ)m3

2μn2 − (β + 4μ − 6μ2 + 2μ3)m3

6μ3n2 + o(1).

It follows that

φm
n (k1, . . . , km)

≥ (
1 + o(1)

)
E

[
exp(Fn)1En

]
≥ (

1 + o(1)
)

exp

(
(2 − μ)m2

2μn
+ (2 − μ)m3

2μn2 − (β + 4μ − 6μ2 + 2μ3)m3

6μ3n2

+ (2 − μ)2m3

2n2μ2 − (2 − μ)m3

μ2n2 − (2 − μ)m2

2μn
− (2 − μ)(μ − 1)m3

3μ2n2

+ 1

nμ

m∑
i=0

(
s(i) − s(m)

))

= (
1 + o(1)

)
exp

(
1

nμ

m∑
i=0

(
s(i) − s(m)

) − βm3

6μ3n2

)
,

as claimed. �

The event {|S(i) − S(m)| ≤ n1/3 logn for 1 ≤ i ≤ m} has probability tending to 1 as n →
∞, and so the analogue of Proposition 4.3 now follows exactly as in the α ∈ (1,2) case.
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A.4. Convergence of a single large component for α ∈ (1,2). In this section, we con-
sider a large component of the graph conditioned to have size 
xnα/(α+1)�, for α ∈ (1,2)

only, and do the main technical work necessary to prove that it converges in distribution to
a single component of the stable graph conditioned to have size x. By arguments analogous
to those in Section 5, it is essentially sufficient to consider a single tree in the forest F̃n(ν)

of size 
xnα/(α+1)�, described by an excursion of the corresponding coding functions S̃n and
G̃n. The main result of this section, Theorem A.8, is a conditioned version of Theorem 4.1,
which says that these excursions converge jointly in distribution to normalised excursions of
L̃ and H̃ of length x. (This is precisely the analogue of Theorem 2.5 in the measure-changed
setting.) At the end of the section, we sketch how to obtain the metric space scaling limit of
a single large component of the graph.

For simplicity, we will make the assumption that the support of the law of D1 is Z+ so that
excursions of any strictly positive length occur with positive probability. This assumption
is not necessary, since the condition P(D1 = k) ∼ ck−(α+2) implies that the greatest com-
mon divisor of {k ≥ 2 : P(D1 − 1 = k) > 0} is 1, so that the claimed results all hold for n

sufficiently large.
Recall that (S(k), k ≥ 0) is a random walk, which is skip-free to the left and in the domain

of attraction of an α-stable Lévy process. Let

Em = {
S(k) ≥ 0 for 0 < k < m,S(m) = −1

}
,

the event that the first m steps form an excursion above the running minimum. If m =

nα/(α+1)x� then, by Theorem 2.5,

E
[
f

(
n−1/(α+1)S

(⌊
nα/(α+1)t

⌋)
, n−(α−1)/(α+1)G

(⌊
nα/(α+1)t

⌋)
,0 ≤ t ≤ x

) | Em

]
→N(x)[f (e,h)

]
.

More generally, write

Em1,m2 =
{
S(m1) = min

0≤k≤m2−1
S(k) = S(m2) + 1

}
(so that Em = E0,m) and, similarly,

Ẽn
m1,m2

=
{
S̃n(m1) = min

0≤k≤m2−1
S̃n(k) = S̃n(m2) + 1

}
,

so that Ẽn
m1,m2

is the event that there is an excursion of S̃n above its running minimum between
times m1 and m2 (recall that S̃n and G̃n have the same excursion intervals). This, of course,
corresponds to a component of size m2 − m1. Observe that the corresponding excursion of
the height process starts and ends at 0. We will prove the following result.

THEOREM A.8. For any bounded continuous test function f , 0 ≤ t1 < t2 such that t2 −
t1 = x, and m1 = 
t1nα/(α+1)�, m2 = 
t2nα/(α+1)�, m = m2 − m1 then

E
[
f

(
n−1/(α+1)[S̃n(⌊

(t1 + t)nα/(α+1)⌋) − S̃n(⌊
t1n

α/(α+1)⌋)]
,

n−(α−1)/(α+1)G̃n(⌊
(t1 + t)nα/(α+1)⌋)

,0 ≤ t ≤ n−α/(α+1)m
) | Ẽn

m1,m2

]
→ N(x)[exp( 1

μ

∫ x
0 e(t) dt)f (e,h)]

N(x)[exp( 1
μ

∫ x
0 e(t) dt)]

as n → ∞.

We need to prove a refinement of Lemma 4.7, to show that the change of measure is well
behaved at times when the process attains a new minimum.
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PROPOSITION A.9. Fix T > 0. For n ≥ 1 and m ≤ T n
α

α+1 , let k
(n)
1 , k

(n)
2 , . . . , k

(n)
m ≥ 1

and let s(n)(i) = ∑i
j=1(k

(n)
j − 2) be such that s(n)(0) = 0 and s(n)(i) > s(n)(m) for 1 ≤ i ≤

m − 1. Then

φm
n

(
k
(n)
1 , k

(n)
2 , . . . , k(n)

m

) = (1 + δn) exp

(
1

nμ

m∑
i=0

(
s(n)(i) − s(n)(m)

) − Cαmα+1

(α + 1)μα+1nα

)
,

where δn depends only on n and T , and δn → 0 as n → ∞.

We start with a technical lemma.

LEMMA A.10. Suppose that m = O(nα/(α+1)). Let E1,E2, . . . be i.i.d. standard expo-
nential random variables. Suppose that for each n we have a sequence a

(n)
1 , a

(n)
2 , . . . , a

(n)
m

such that a
(n)
i ∈ (0,Km/n) for all 1 ≤ i ≤ m for some constant K .

(a) We have
m∑

i=1

a
(n)
i (Ei − 1) → 0

in L2.
(b) For any p > 1, there exists a constant C > 0 such that

E

[
exp

(
p

m∑
i=1

a
(n)
i (Ei − 1)

)]
≤ C exp

(
2pK2m3

n2

)
.

Both the convergence in (a) and the bound in (b) are uniform in sequences (a
(n)
i ) satisfying

the above conditions.

PROOF. (a) Since the sum is centred, we have

E

[(
m∑

i=1

a
(n)
i (Ei − 1)

)2]
= var

(
m∑

i=1

a
(n)
i (Ei − 1)

)
=

m∑
i=1

(
a

(n)
i

)2 ≤ K2m3

n2 → 0

as n → ∞.
(b) For 0 < a < 1/2, we have

E
[
exp(aE1 − a)

] = e−a

1 − a
= e−a

(
1 + a

1 − a

)
≤ exp

(
−a + a

1 − a

)
≤ exp

(
2a2)

.

So, for sufficiently large n we have

E

[
exp

(
p

m∑
i=1

a
(n)
i (Ei − 1)

)]
≤ exp

(
2p

m∑
i=1

(
a

(n)
i

)2

)
≤ exp

(
2pK2m3

n2

)
.

�

PROOF OF PROPOSITION A.9. The lower bound does not rely on s(n) attaining a new
minimum at time m, and has already been proved in Lemma 4.7; we need a matching upper
bound. To ease readability, we will suppress the superscripts on k

(n)
i and s(n)(i). Now,

E

[
m∏

i=1

(n − i + 1)μ∑m
j=i kj + �n−m

]

=
m−1∏
i=1

(
1 − i

n

)
E

[
m∏

i=1

nμ

s(m) − s(i − 1) + 2(m − i + 1) + �n−m

]

=
m−1∏
i=1

(
1 − i

n

)
E

[
exp

(
−

m∑
i=1

{
(s(m) − s(i − 1) + 2(m − i + 1) + �n−m

nμ
− 1

}
Ei

)]
,
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where E1,E2, . . . are i.i.d. standard exponential random variables, independent of �n−m.
We shall first consider the expectation conditionally on E1,E2, . . . ,Em. Write Am for the
quantity

m−1∏
i=1

(
1 − i

n

)

×E

[
exp

(
−

m∑
i=1

{
(s(m) − s(i − 1) + 2(m − i + 1) + �n−m

nμ
− 1

}
Ei

) ∣∣∣∣ E1, . . . ,Em

]
.

Let C > 0 be a constant to be chosen later. We will split E[Am] into two parts, so that

E

[
m∏

i=1

(n − i + 1)μ∑m
j=i kj + �n−m

]
= E[Am1{∑m

i=1 Ei>Cnα/(α+1)}] +E[Am1{∑m
i=1 Ei≤Cnα/(α+1)}].

We deal with the first term on the right-hand side first. Since kj ≥ 1 for all j and �n−m ≥
n − m a.s., we have the crude bound

s(m) − s(i − 1) + 2(m − i + 1) + �n−m ≥ n − i + 1 > n − m > n/2

for 1 ≤ i ≤ m and all n sufficiently large that m/n < 1/2. Then

E[Am1{∑m
i=1 Ei>Cnα/(α+1)}] ≤ E

[
exp

((
1 − 1

2μ

) m∑
i=1

Ei

)
1{∑m

i=1 Ei>Cnα/(α+1)}

]

=
∫ ∞
Cnα/(α+1)

exp
(
x − x

2μ

)
e−xxm−1

�(m)
dx

=
∫ ∞
Cnα/(α+1)

exp
(
− x

2μ

)
xm−1

�(m)
dx

= (2μ)mP

(
1

2μ

m∑
i=1

Ei > Cnα/(α+1)

)
.

By Markov’s inequality, this last quantity is bounded above by

(2μ)mE

[
exp

(
1

2μ

m∑
i=1

Ei

)]
exp

(−Cnα/(α+1)) =
(

(2μ)2

2μ − 1

)m

exp
(−Cnα/(α+1)) → 0

as n → ∞, as long as we take C > T (2 log(2μ)− log(2μ−1)), which we henceforth assume.
Let us now turn to the expectation of Am on the event {∑m

i=1 Ei ≤ Cnα/(α+1)}. Since

m−1∏
i=1

(
1 − i

n

)
≤ exp

(
−m(m − 1)

2n

)
,

we have

Am1{∑m
i=1 Ei≤Cnα/(α+1)}

≤ exp

(
−m(m − 1)

2n
+ 1

nμ

m∑
i=1

(
s(i − 1) − s(m)

)
Ei −

m∑
i=1

(
2(m − i + 1)

nμ
− 1

)
Ei

)

×E

[
exp

(
−

(
1

nμ

m∑
i=1

Ei

)
�n−m

) ∣∣∣∣ E1, . . . ,Em

]
1{∑m

i=1 Ei≤Cnα/(α+1)}.
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On the event {∑m
i=1 Ei ≤ Cnα/(α+1)}, we have 1

nμ

∑m
i=1 Ei = o(1). Hence, we may apply

the asymptotic formula (16) for the Laplace transform of D1 to obtain that on the event
{∑m

i=1 Ei ≤ Cnα/(α+1)} we have

E

[
exp

(
−

(
1

nμ

m∑
i=1

Ei

)
�n−m

) ∣∣∣∣ E1, . . . ,Em

]

= exp

(
−(n − m)

n

m∑
i=1

Ei + (2 − μ)

2μn

(
m∑

i=1

Ei

)2

− Cα

(α + 1)nαμα+1

(
m∑

i=1

Ei

)α+1

+ o(1)

)
.

It follows that

Am1{∑m
i=1 Ei≤Cnα/(α+1)}

≤ exp

(
1

nμ

m∑
i=1

(
s(i − 1) − s(m)

)
Ei − Cα

(α + 1)nαμα+1

(
m∑

i=1

Ei

)α+1

+ o(1)

)

× exp

(
(2 − μ)

2μn

(
m∑

i=1

Ei

)2

− 2

nμ

m∑
i=1

(m − i + 1)Ei + m

n

m∑
i=1

Ei − m2

2n

)

× 1{∑m
i=1 Ei≤Cnα/(α+1)}.

Observe that

(2 − μ)

2μn

(
m∑

i=1

Ei

)2

− 2

nμ

m∑
i=1

(m − i + 1)Ei + m

n

m∑
i=1

Ei − m2

2n

= (2 − μ)

2μn

(
m +

m∑
i=1

Ei

)
m∑

i=1

(Ei − 1) − 2

nμ

m∑
i=1

(m − i + 1)(Ei − 1)

+ m

n

m∑
i=1

(Ei − 1) + m

nμ
.

So,

(36)
Am1{∑m

i=1 Ei≤Cnα/(α+1)}

≤ exp

(
1

nμ

m∑
i=0

(
s(i) − s(m)

) − Cαmα+1

(α + 1)μα+1nα
+ o(1)

)
exp(χn)1{∑m

i=1 Ei≤Cnα/(α+1)},

where

χn = 1

nμ

m∑
i=1

(
s(i − 1) − s(m)

)
(Ei − 1) − 2

nμ

m∑
i=1

(m − i + 1)(Ei − 1) + m

n

m∑
i=1

(Ei − 1)

+ (2 − μ)

2μn

(
m +

m∑
i=1

Ei

)
m∑

i=1

(Ei − 1) − Cαmα+1

(α + 1)nαμα+1

((
1

m

m∑
i=1

Ei

)α+1

− 1

)
.

We need to understand the asymptotics of the expectation of the right-hand side of (36).
Recall that s has steps down of magnitude at most 1, so that we have the crude bound s(i) −
s(m) ≤ m − i + 1 ≤ m for all 0 ≤ i ≤ m. So, by Lemma A.10(a), we get

1

nμ

m∑
i=1

(
s(i − 1) − s(m)

)
(Ei − 1) − 2

nμ

m∑
i=1

(m − i + 1)(Ei − 1) + m

n

m∑
i=1

(Ei − 1) → 0



64 G. CONCHON-KERJAN AND C. GOLDSCHMIDT

in L2, as n → ∞. We have

E

[(
(2 − μ)

2μn

(
m +

m∑
i=1

Ei

)
m∑

i=1

(Ei − 1)

)2

1{∑m
i=1 Ei≤Cnα/(α+1)}

]

≤ (2 − μ)2(T + C)2n2α/(α+1)

4μ2n2 E

[(
m∑

j=1

(Ej − 1)

)2]
≤ (T + C)2T n3α/(α+1)

μ2n2 → 0,

since nα/(α+1)/n2 = n(α−2)/(α−1) = o(1). If m → ∞ as n → ∞, it follows straightforwardly
from the weak law of large numbers that(

1

m

m∑
i=1

Ei

)α+1
p→ 1

and so, for any m ≤ T nα/(α+1), we have

Cαmα+1

(α + 1)nαμα+1

((
1

m

m∑
i=1

Ei

)α+1

− 1

)
p→ 0.

These results imply that χn
p→ 0 on {∑m

i=1 Ei ≤ Cnα/(α+1)}, as n → ∞ and so

exp(χn)1{∑m
i=1 Ei≤Cnα/(α+1)}

p→ 1.

It remains to show that

E
[
exp(χn)1{∑m

i=1 Ei≤Cnα/(α+1)}
] → 1

as n → ∞, for which we require uniform integrability. Now we have

exp

(
(2 − μ)

2μn

(
m +

m∑
i=1

Ei

)
m∑

i=1

(Ei − 1)

)
1{∑m

i=1 Ei≤Cnα/(α+1)}

≤ 1 + exp

(
(2 − μ)

2μn
(C + 1)m

m∑
i=1

(Ei − 1)

)
.

Hence,

exp(χn)1{∑m
i=1 Ei≤Cnα/(α+1)}

≤ exp
(

Cαmα+1

(α + 1)μα+1nα

)

×
[

exp

(
m∑

i=1

{
(s(i − 1) − s(m))

nμ
− 2(m − i + 1)

nμ
+ m

n

}
(Ei − 1)

)

+ exp

(
m∑

i=1

{
(s(i − 1) − s(m))

nμ
− 2(m − i + 1)

nμ
+ m

n
+ (2 − μ)(C + 1)m

2μn

}
(Ei − 1)

)]
.

Applying Lemma A.10(b), we see that both terms are bounded in Lp for p > 1. Hence, the
sequence (exp(χn)1{∑m

i=1 Ei≤Cnα/(α+1)}, n ≥ 1) is uniformly integrable and we may deduce
that

E
[
exp(χn)1{∑m

i=1 Ei≤Cnα/(α+1)}
] → 1,

which concludes the proof. �

We will also need the following lemma.
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LEMMA A.11. Fix θ > 0 and let m = 
T nα/(α+1)�. Then we have the following uniform
integrability: for K > 0,

lim sup
K→∞

sup
n≥1

E

[
exp

(
θ

n

m∑
i=0

(
S(i) − S(m)

))
1{ 1

n

∑m
i=0(S(i)−S(m))>K}

∣∣∣∣ Em

]
= 0.

PROOF. The proof uses similar ingredients to the proof of Lemma 3.6. On the event Em,
we have

θ

n

m∑
i=0

(
S(i) − S(m)

) ≤ θm

n

(
1 + max

0≤i≤m
S(i)

)
≤ θT (α+1)/αm−1/α

(
1 + max

0≤i≤m
S(i)

)
.

So, it will be sufficient to show that we have

lim sup
K→∞

sup
m≥1

E
[
exp

(
θm−1/α max

0≤i≤m
S(i)

)
1{m−1/α max0≤i≤m S(i)>K}

∣∣ Em

]
= 0.

We have

E
[
exp

(
θm−1/α max

0≤i≤m
S(i)

)
1{m−1/α max0≤i≤m S(i)>K}

∣∣ Em

]
=

∞∑
k=
Km1/α�+1

eθm−1/αkP
(

max
0≤i≤m

S(i) = k
∣∣ Em

)

≤ e(K+1)θP
(
m−1/α max

0≤i≤m
S(i) > K

∣∣ Em

)
+

∞∑
k=
Km1/α�+2

θm−1/αeθm−1/αkP
(

max
0≤i≤m

S(i) ≥ k
∣∣ Em

)
,

by summation by parts and the fact that eθm−1/αk − eθm−1/α(k−1) ≤ m−1/αθeθm−1/αk . Theo-
rem 9 of Kortchemski [45] gives that for any δ ∈ (0, α/(α − 1)), there exist universal con-
stants C1,C2 > 0 such that

P
(
m−1/α max

0≤i≤m
S(i) ≥ u

∣∣ Em

)
≤ C1 exp

(−C2u
δ).

We take δ ∈ (1, α/(α − 1)). So, then

E
[
exp

(
θm−1/α max

0≤i≤m
S(i)

)
1{m−1/α max0≤i≤m S(i)>K}

∣∣ Em

]
≤ e(K+1)θP

(
m−1/α max

0≤i≤m
S(i) > K

∣∣ Em

)
+

∫ ∞
K

θeθxP
(
m−1/α max

0≤i≤m
S(i) ≥ x − 1

∣∣ Em

)
dx

≤ C1 exp
(
(K + 1)θ − C2K

δ) +
∫ ∞
K

C1θ exp
(
θx − C2(x − 1)δ

)
dx,

which clearly tends to 0 as K → ∞ since δ > 1. The result follows. �

PROOF OF THEOREM A.8. Recall that S(k) = ∑k
i=1(Zi − 2), where Z1,Z2, . . . are i.i.d.

with the size-biased degree distribution. Then we have

E
[
f

(
n− 1

α+1
[
S̃n(⌊

(t1 + ·)n α
α+1

⌋) − S̃n(⌊
t1n

α
α+1

⌋)]
, G̃n(⌊

(t1 + ·)n α
α+1

⌋)) | Ẽn
m1,m2

]
=

E[f (n− 1
α+1 [S̃n(
(t1 + ·)n α

α+1 �) − S̃n(
t1n α
α+1 �)], n− α−1

α+1 G̃n(
(t1 + ·)n α
α+1 �))1Ẽn

m1,m2
]

E[1Ẽn
m1,m2

] .
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Using the change of measure, this is equal to

(37)
E[�(n, 
t2n α

α+1 �)f (n− 1
α+1 [S(
(t1 + ·)n α

α+1 �) − S(
t1n α
α+1 �)], n− α−1

α+1 G(
(t1 + ·)n α
α+1 �))1Em1,m2

]
E[�(n, 
t2n α

α+1 �)1Em1,m2
]

= E[�(n, 
t2n α
α+1 �)f (n− 1

α+1 [S(
(t1 + ·)n α
α+1 �) − S(
t1n α

α+1 �)], n− α−1
α+1 G(
(t1 + ·)n α

α+1 �)) | Em1,m2 ]
E[�(n, 
t2n α

α+1 �) | Em1,m2 ]
.

By Proposition A.9, we have that on the event Em1,m2 ,

(38) �
(
n,

⌊
t2n

α
α+1

⌋) = (
1 + o(1)

)
exp

(
1

μn

m2∑
i=0

(
S(i) − S(m2)

) − Cαtα+1
2

(α + 1)μα+1

)
,

where the o(1) is uniform on Em1,m2 . But using that S(m2) = S(m1) − 1, we get

�
(
n,

⌊
t2n

α
α+1

⌋) = (
1 + o(1)

)
exp

(
1

μn

m1−1∑
i=0

(
S(i) − S(m1)

) + m1

μn
− Cαtα+1

2

(α + 1)μα+1

)

× exp

(
1

μn

m2∑
i=m1

([
S(i) − S(m1)

] − [
S(m2) − S(m1)

]))
.

The increments of the random walk S are independent, and so the first and second terms
in this product are independent. The first term is also independent of the argument of the
function f . So, in both the numerator and denominator of the fraction (37), we may cancel a
factor of

E

[
exp

(
1

μn

m1−1∑
i=0

(
S(i) − S(m1)

) + m1

μn
− Cαtα+1

2

(α + 1)μα+1

) ∣∣∣∣ Em1,m2

]
.

Using also the stationarity of the increments of S and the fact that m = m2 − m1, we then
obtain that (37) is equal to (1 + o(1)) times

E[exp( 1
μn

∑m
i=0(S(i) − S(m)))f (n− 1

α+1 S(
tn α
α+1 �), n− α−1

α+1 G(
tn α
α+1 �),0 ≤ t ≤ n− α

α+1 m) | Em]
E[exp( 1

μn

∑m
i=0(S(i) − S(m))) | Em] .

Lemma A.11 gives us the requisite uniform integrability in order to now deduce the result
from Theorem 2.5 and the continuous mapping theorem. �

Let us briefly sketch how this result gives a scaling limit for a single component of Mn(ν)

or Gn(ν) conditioned to have size 
xnα/(α+1)�. First, note that for any ε > 0 there ex-
ists a time T > 0 such that any component of size 
xnα/(α+1)� is discovered before time

T nα/(α+1)� with probability exceeding 1 − ε, uniformly in n sufficiently large. Any such
component discovered before time 
T nα/(α+1)� corresponds to a tree of size ≈ xnα/(α+1) in
the forest encoded by S̃n and G̃n and, indeed, this tree is asymptotically indistinguishable in
the Gromov–Hausdorff–Prokhorov sense from a spanning tree of the graph component. The
locations of the back-edges can then be handled in exactly the same way as in the uncondi-
tioned setting.
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