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Abstract

Tree structures are very common in nature, and we often want to model trees which are
somehow randomly generated. In mathematics, we think of trees as connected graphs (or
networks) with no cycles. In these lectures, I will discuss some simple models of random
trees and what we can say about large instances of them. The first lecture will focus on
Galton–Watson branching processes. We think of an idealised biological population (say
of cells) in which each individual lives for a unit of time, gives birth to a random number
of children (with a given distribution) and then dies. What can we say about the way
the population size evolves? Or about the family tree of that population? In the second
lecture, we will take a more combinatorial perspective. What does a tree with n vertices,
chosen uniformly at random from all the possibilities, look like for large n? It turns out
that we can use Galton–Watson branching processes to help us answer this question.
Along the way, we will encounter several beautiful bits of combinatorics and probability,
including Cayley’s formula, random walks and (finally) Brownian motion.
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Figure 1. The family tree of a branching process. We start at the bottom of the tree, with a
single individual in generation 0. Then there are 3 individuals in each of generations 1 and 2,

5 individuals in generation 3, a single individual in generation 4 and no individuals in
subsequent generations. (Notice that in order to produce this picture, we must have p(0) > 0.)

1. Branching processes

1.1. Introduction

Suppose we have a population (say of bacteria). Each individual in the population
lives a unit time and, just before dying, gives birth to a random number of children
in the next generation. This number of children has probability mass function p(k),
k ≥ 0, called the offspring distribution i.e. p(k) is the probability that an individual has
k children. Different individuals reproduce independently in the same manner. Figure 1
shows a possible family tree of such a population.

Let Xn be the size of the population in generation n. The process (Xn)n≥0 is often
called a Galton–Watson branching process after it was popularised by Galton and
Watson [9], although had already been studied (much earlier) by Bienaymé [5]. As a
simple model of the evolution of a population, it has proved to be enormously powerful.
It is now considered to be one of the fundamental processes of probability theory.

1.2. Generating functions

Suppose that X0 = 1. Let C
(n)
i be the number of children of the ith individual in

generation n ≥ 0, so that we may write

Xn+1 = C
(n)
1 + C

(n)
2 + · · ·+ C

(n)
Xn
.

(We interpret this sum as 0 if Xn = 0.) Note that C
(n)
1 , C

(n)
2 , . . . are independent

and identically distributed. Consider the probability generating functions G(s) =∑∞
k=0 p(k)sk (for s ∈ R such that the right-hand side is absolutely convergent) and

Gn(s) = E
[
sXn

]
for n ≥ 0.
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Proposition 1.1. For n ≥ 0,

Gn+1(s) = Gn(G(s)) = G(G(. . . G︸ ︷︷ ︸
n+1 times

(s) . . .)) = G(Gn(s)).

Proof. Since X0 = 1, we have G0(s) = s. Also, we get X1 = C
(0)
1 which has

probability mass function p(k), k ≥ 0. So G1(s) = E
[
sX1
]

= G(s). Since

Xn+1 =

Xn∑
i=1

C
(n)
i ,

we get

Gn+1(s) = E
[
sXn+1

]
= E

[
s
∑Xn

i=1 C
(n)
i

]
=

∞∑
k=0

E
[
s
∑Xn

i=1 C
(n)
i

∣∣Xn = k
]
P (Xn = k)

and, since C
(n)
1 , C

(n)
2 , . . . are independent of Xn, this is equal to

∞∑
k=0

E
[
s
∑k

i=1 C
(n)
i

]
P (Xn = k) .

Since C
(n)
1 , C

(n)
2 , . . . are independent and identically distributed, this in turn equals

∞∑
k=0

E
[
sC

(n)
1

]k
P (Xn = k)

=

∞∑
k=0

(G(s))kP (Xn = k)

= Gn(G(s)).

Hence, by induction, for n ≥ 1,

Gn(s) = G(G(. . . G︸ ︷︷ ︸
n times

(s) . . .)) = G(Gn(s)).

Corollary 1.2. Suppose that the mean number of children of a single individual
is µ i.e.

∑∞
k=1 kp(k) = µ, for some µ <∞. Then

E [Xn] = µn.

Proof. Note that µ = G′(1−) and that E [Xn] = G′n(1−). By the chain rule,

G′n(s) =
d

ds
G(Gn−1(s)) = G′n−1(s)G′(Gn−1(s)).

Letting s ↑ 1, we get

E [Xn] = E [Xn−1]µ = · · · = µn.



56 CHRISTINA GOLDSCHMIDT

Exercise 1.3. Show that if σ2 := var (X1) <∞ then

var (Xn) =

{
σ2µn−1(µn−1)

µ−1 if µ 6= 1

nσ2 if µ = 1.

Corollary 1.2 tells us that we get exponential growth on average if µ > 1 and
exponential decrease if µ < 1. This raises an interesting question: does the population
die out?

1.3. Extinction

In this section, we investigate the extinction probability :

q := P (population dies out) .

If p(0) = 0 then every individual has at least one child and so the population clearly
grows forever. If p(0) > 0, on the other hand, then the population dies out with positive
probability because

q ≥ P (X1 = 0) = p(0) > 0.

Notice that this holds even in the cases where E [Xn] grows as n→∞.

Proposition 1.4. We have

q = lim
n→∞

P (Xn = 0) .

Proof. The event that the population dies out can be written as

∞⋃
m=1

{Xm = 0}.

Notice that the events in this union are not disjoint: indeed, Xm = 0 implies that Xn = 0
for all n > m. It follows that

n⋃
m=1

{Xm = 0} = {Xn = 0}.

We have that
⋃n
m=1{Xm = 0} ⊆

⋃n+1
m=1{Xm = 0} ⊆

⋃∞
m=1{Xm = 0} and so by mono-

tone convergence,

P

( ∞⋃
m=1

{Xm = 0}

)
= lim
n→∞

P

(
n⋃

m=1

{Xm = 0}

)
= lim
n→∞

P (Xn = 0) .

Example 1.5. Suppose that p(k) = (1/2)k+1, k ≥ 0, so that each individual has a
geometric number of offspring. We’ll find the distribution of Xn.

First calculate

G(s) =

∞∑
k=0

sk
(

1

2

)k+1

=
1

2− s
.
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By plugging this into itself a couple of times, we get

G2(s) =
2− s
3− 2s

, G3(s) =
3− 2s

4− 3s
.

A natural guess is that Gn(s) = n−(n−1)s
(n+1)−ns which is, in fact, the case, as can be proved

by induction. If we want the probability mass function of Xn, we need to expand this
quantity out in powers of s. We have

1

(n+ 1)− ns
=

1

(n+ 1)

1

(1− ns/(n+ 1))
=

∞∑
k=0

nksk

(n+ 1)k+1
.

Multiplying by n− (n− 1)s, we get

Gn(s) =

∞∑
k=0

nk+1sk

(n+ 1)k+1
−
∞∑
k=1

nk−1(n− 1)sk

(n+ 1)k
=

n

n+ 1
+

∞∑
k=1

nk−1sk

(n+ 1)k+1
.

We can read off the coefficients now to see that

P (Xn = k) =

{
n
n+1 if k = 0
nk−1

(n+1)k+1 if k ≥ 1.

Notice that P (Xn = 0)→ 1 as n→∞, which indicates that the population dies out
eventually in this case.

Exercise 1.6. Suppose now that p(k) = p(1− p)k, k ≥ 0, for some p ∈ (0, 1).

(a) Find the probability generating function G(s) of this distribution. What is its
mean, µ?

(b) Suppose that p 6= 1/2. Prove, by induction, that the probability generating
function of Xn is

Gn(s) = p
[(1− p)n − pn]− (1− p)s[(1− p)n−1 − pn−1]

[(1− p)n+1 − pn+1]− (1− p)s[(1− p)n − pn]
,

for n ≥ 1.

(c) Find Gn(0) = P (Xn = 0) and thence show that q = min
{

p
1−p , 1

}
. Deduce that

the population always dies out if µ ≤ 1 whereas it has positive probability of
surviving forever if µ > 1.

Let us now return to the general case. We can find an equation satisfied by q by
conditioning on the number of children of the first individual.

q =

∞∑
k=0

P (population dies out|X1 = k)P (X1 = k)

=

∞∑
k=0

P (population dies out|X1 = k) p(k).

Remember that each of the k individuals in the first generation behaves exactly like
the parent. In particular, we can think of each of them starting its own family, which is
an independent copy of the original family. Moreover, the whole population dies out if
and only if all of these sub-populations die out. If we had k families, this occurs with
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probability qk. So

q =

∞∑
k=0

qkp(k) = G(q).

Exercise 1.7. Check that for the offspring distribution in Exercise 1.6 the extinction
probability q you obtained does, indeed, solve s = G(s).

The equation q = G(q) doesn’t quite enable us to determine q: notice that 1 is always
a solution, but it’s not necessarily the only solution in [0, 1]. It turns out that when there
are multiple solutions, the one we want is the smallest one in [0, 1].

Theorem 1.8. Suppose that p(0) > 0 and p(0) + p(1) < 1.

(a) The equation s = G(s) has at most two solutions in [0, 1]. The extinction
probability q is the smallest non-negative root of the equation G(s) = s.

(b) Suppose that the offspring distribution has mean µ. Then
– if µ ≤ 1 then q = 1;
– if µ > 1 then q < 1.

Proof. We observe that G(0) = p(0) > 0, G(1) = 1 and that µ = G′(1−). We also
have

G′′(s) =

∞∑
j=2

j(j − 1)p(j)sj−2 for 0 ≤ s < 1.

Since p(0) + p(1) < 1, we have G′′(s) > 0 for s ∈ [0, 1). Hence, G is strictly convex.
Consider the case µ ≤ 1. Then G(0) > 0 and G′(s) ≤ G′(1−) = µ ≤ 1 for all s ∈ [0, 1].

It follows that G(s) > s for all s ∈ [0, 1) and so the unique root in [0, 1] is s = 1, which
must necessarily be q. See Figure 2.

Consider now the case µ > 1. Then since G(0) > 0, G(1) = 1, G′(1−) > 1 and G is
strictly convex, there exists precisely one root α of s = G(s) in [0, 1). See Figure 2. Now

G(0) ≤ G(α) = α.

So G(G(0)) ≤ G(α) = α and, iterating, Gn(0) ≤ α for all n ≥ 1. It follows that q =
limn→∞Gn(0) ≤ α. But since q must be a root of G(s) = s, we deduce that q = α.

We refer to the case µ < 1 as subcritical, the case µ = 1 as critical and the case µ > 1
as supercritical.

1.4. Martingales

We have just seen that, in the subcritical and critical cases, we haveXn → 0 as n→∞.
In the supercritical case, on the other hand, there is positive probability that Xn 6→ 0.
We also have that the population grows exponentially on average. What can we say
almost surely?

For n ≥ 0, define Wn = µ−nXn and let Fn = σ(Xm, 0 ≤ m ≤ n).
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Figure 2. Solving s = G(s) for µ < 1, µ = 1 and µ > 1 respectively.

Proposition 1.9. (Wn, n ≥ 0) is a non-negative martingale (with respect to the
filtration (Fn)n≥0) and so

W := lim
n→∞

Wn

exists almost surely.

Proof. We have already shown that E [Xn] = µn so that E [Wn] = 1 for all n ≥ 0.
Hence, Wn is integrable. Moreover,

E [Wn+1|Fn] = µ−(n+1)E [Xn+1|Fn] = µ−(n+1)E

[
Xn∑
i=1

C
(n)
i

∣∣∣Fn]
= µ−1WnE

[
C

(n)
1

]
,
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since Xn is Fn-measurable, C
(n)
i , i ≥ 1 are independent of Fn and are identically

distributed. Since E
[
C

(n)
1

]
= µ, we get

E [Wn+1|Fn] = Wn,

as required. The convergence result now follows from the almost sure martingale
convergence theorem.

Proposition 1.9 tells us that, in a rough sense, Wn ∼ µnW . Using Fatou’s lemma, we
obtain that E [W ] ≤ lim infn→∞ E [Wn] = 1. It is, however, still possible that W ≡ 0.
(Indeed, Proposition 1.9 holds even if µ ≤ 1, in which case we must have W ≡ 0.)

Proposition 1.10. Suppose that 1 < µ <∞. Then P (W = 0) is either equal to q
or to 1.

Proof. We have

Xn+1 =

X1∑
i=1

X(i)
n ,

where X
(1)
n , X

(2)
n , . . . are i.i.d. copies of Xn, independent of X1. So, similarly,

Wn+1 = µ−1
X1∑
i=1

W (i)
n .

Letting n→∞ and using Proposition 1.9, we see that W has the same distribution as

µ−1
X1∑
i=1

W (i). (1.1)

In particular, P (W = 0) = E
[
P (W = 0)

Z1

]
= G(P (W = 0)). So P (W = 0) is a root of

s = G(s). But, by Theorem 1.8 the possible roots are q and 1 and the result follows.

Exercise 1.11. Consider again the Geometric offspring distribution of Exercise 1.6.
Assume that p < 1/2, so that µ = 1−p

p > 1. Suppose thatW has the distribution specified
by

P (W = 0) =
p

1− p
, P (W > w) =

1− 2p

1− p
e−

(1−2p)w
1−p for w > 0.

Show that W solves the recursive distributional equation (1.1).
[Hint: First show that the number of terms in the sum (1.1) which are non-zero
has a Geometric distribution, with parameter p/(1− p). Then use moment generating
functions.]

A necessary and sufficient condition for E [W ] = 1 is given in the following theorem,
which we won’t prove.
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Theorem 1.12 (Kesten and Stigum [12]). Suppose that 1 < µ <∞, and write
log+ x = max{log x, 1}. Then the following are equivalent:

– E [W ] = 1;
– P (W > 0|non-extinction) = 1;
–
∑∞
k=0 kp(k) log+ k <∞.

1.5. Galton–Watson trees

We have so far just considered the population sizes X0, X1, X2, . . . in each of the
successive generations. But it’s also natural to want to think about a richer structure:
the family tree (also called the genealogical tree). In order to do this, it will turn out to be
useful to consider a canonical labelling for trees (called the Ulam–Harris labelling). Let
N = {1, 2, . . .} and let U = {∅} ∪

⋃∞
n=1 Nn. In general, an element u ∈ U is a sequence of

natural numbers representing a point in an infinitary tree. We will think of u as a string
and write u1u2 . . . un. The concatenation of strings u = u1u2 . . . un and v = v1v2 . . . vm
is written uv = u1u2 . . . unv1v2 . . . vm.

The label of a vertex u ∈ U indicates its genealogy:

– u has parent p(u) = u1u2 . . . un−1.
– u has children u1, u2, . . ..

We write |u| = n for the generation of u.

Definition 1.13. A rooted ordered tree t is a subset of U such that

– ∅ ∈ t;
– for all u ∈ t such that u 6= ∅, p(u) ∈ t;
– for all u ∈ t, there exists c(u) ∈ {0, 1, 2, . . .} such that for j ∈ N, uj ∈ t if and only

if 1 ≤ j ≤ c(u).

The tree is rooted at ∅. The number of children of u in t is given by c(u). We write #(t)
for the size (number of vertices) of t and note that

#(t) = 1 +
∑
u∈t

c(u).

We can think of the family tree of a branching process as a random rooted ordered tree
which is obtained by sampling independent and identically distributed random variables
C(u), u ∈ U , each having the offspring distribution. The corresponding Galton–Watson
tree T is then obtained by finding the largest subset of U such that the conditions of
Definition 1.13 are fulfilled. Note that the tree is finite if and only if the branching
process becomes extinct.

1.6. Relationship to random walks

Trees are slightly awkward objects to manipulate and so we often find it useful to
encode them in terms of functions. This will be useful in the next lecture. There are
several different ways to do this; we will concentrate on one which works well with our
labelling. See Sections 1.1 and 1.2 of Le Gall [13] for more details.

For a rooted ordered tree t, let v1 = ∅ and, for i ≥ 2, let vi be the ith vertex of t when
the vertices are listed in lexicographic order of label.
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Definition 1.14. The  Lukasiewicz path associated with a tree t of size #(t) = n is
the function ` : {0, 1, . . . , n} → {−1, 0, 1, . . .} defined by `(0) = 0 and, for 1 ≤ i ≤ n,

`(i) = `(i− 1) + c(vi)− 1;

i.e. `(i) =
∑i
j=1(c(vj)− 1). Note that by (1.13), we must have `(n) = −1. Moreover,

`(i) ≥ 0 for 1 ≤ i ≤ n− 1.

Exercise 1.15. Show that a given  Lukasiewicz path (`(i), 0 ≤ i ≤ n) encodes a
unique tree.

In other words, there is a bijection between rooted ordered trees and  Lukasiewicz
paths. In the case of Galton–Watson trees, this correspondence gives us something
particularly nice. Write (L(i), 0 ≤ i ≤ #(T)) for the  Lukasiewicz path associated with
a Galton–Watson tree T. Let (S(i), i ≥ 0) be a random walk with step-sizes having
distribution p(k + 1), k ≥ −1 and let τ = inf{i : S(i) = −1}.

Proposition 1.16. The processes (L(i), 0 ≤ i ≤ #(T)) and (S(i), 0 ≤ i ≤ τ) have
the same distribution.

Proof (sketch). We have L(i) =
∑i
j=1(C(vj)− 1), so that L(i) ≥ 0 for 0 ≤ i ≤ #(T)

and L(#(T)) = −1. Since the random variables C(u)− 1, u ∈ U are independent, take
values in {−1, 0, 1, . . .} and have probability mass function p(k + 1), k ≥ −1, the result
seems intuitively clear. The problem is that the labels v1, v2, . . . are random and depend
on (C(u), u ∈ U), so it is not, in fact, obvious that C(v1)− 1, C(v2)− 1, . . . are indepen-
dent and identically distributed. The point is that, at step n+ 1 of the lexicographic
exploration of the tree, the labels v1, . . . , vn and the numbers C(v1), . . . , C(vn) enable
us to determine (a) if we have reached the end of the tree and (b) if not, which is the
label vn+1. But, in case (b), the information we already possess can’t influence the value
of C(vn+1). See Proposition 1.5 of Le Gall [13] for the details.

Note that we can (and will) think of the random walk as continuing on beyond the
first time it hits −1.

Remark 1.17. Proposition 1.16 entails that we can think of the extinction proba-
bility of a branching process as the probability that the random walk ever hits −1. We
observe that the step sizes of the random walk have mean µ− 1. Assuming additionally
that p(0) > 0 and p(0) + p(1) < 1, we see that it is, indeed, the case that the walk hits
−1 with probability 1 if µ ≤ 1 (corresponding to extinction) and has positive probability
of never hitting −1 if µ > 1.
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2. Uniform random trees

2.1. Introduction

In this lecture, we’re going to take a more combinatorial perspective on random trees,
but it will eventually connect back to what we discussed in the first lecture. Here we
will concentrate on labelled trees. We let Tn be the set of (unordered) labelled trees on
n vertices (labelled by [n] := {1, 2, . . . , n}. For example, T3 consists of the trees

3

21

1

32

2

3 1

Unordered means that these trees are all the same:

54

3

1

2 2

1

3

5 4

1

4 5

3 2

but this one is different:

23

1

4 5

Suppose we take all of the trees on n labelled vertices and pick one uniformly at
random; call it Tn. What does Tn look like? Phrased another way: what does a typical
tree on n vertices look like?

2.2. Cayley’s formula

A good starting place is to ask how many elements Tn has.

Theorem 2.1 (Cayley’s formula). For n ≥ 1,

|Tn| = nn−2.

This theorem was first proved by Borchardt [6] and later extended by Cayley [7].

Proof. We give a beautiful proof due to Pitman [14]. Call the quantity we’re after
a(n). It’s useful for the purposes of this proof to think of rooted trees with directed
edges, where the edges are all directed away from the root. (We can simply forget the
root and the directions of the arrow at the end.) Start from the empty graph on our n
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vertices and count the number of different sequences of directed edges that we can add
to form a rooted tree.
First way to count. Start with one of the a(n) unrooted trees on n vertices. There

are n ways to pick a root. Direct all edges away from the root. There are (n− 1)! different
orders in which we might add the n− 1 directed edges. So, we have a(n)× n× (n− 1)! =
a(n)n! different sequences of directed edges.

Second way to count. Start by thinking of each of the n vertices as a root. At each
step, we have a forest of rooted trees, with edges directed away from the roots. Add an
edge from an arbitrary vertex v to the root of a different tree, and root the resulting
tree at the root of v’s old tree. If we have added k edges already, then we have a forest
containing n− k trees (we reduce the number of trees by 1 at each step). So there are
n(n− k − 1) choices for the edge we add: the starting vertex can be any one of the n
vertices and there are n− k − 1 roots of other trees to which it can connect.

So the total number of choices is

n−2∏
k=0

n(n− k − 1) = nn−1(n− 1)! = nn−2n!.

So a(n)n! = nn−2n! and cancelling gives a(n) = nn−2.

There are many questions we might ask about our uniform random tree Tn. For
example,

– How many leaves (i.e. vertices with only one neighbour) are there?
– How many vertices have two neighbours? Or three? Or more?
– What is the diameter of the tree (i.e. the length of the longest path between two

points in the tree)?
– Pick a vertex uniformly at random to be the root. How many vertices are there at

distance d from the root?

Because the tree is random, all of these quantities are random variables.

2.3. Leaves

We first investigate the proportion of leaves in a uniform random tree.

Theorem 2.2. Let Nn denote the number of leaves in Tn. Then

Nn
n

p→ e−1

as n→∞.

Proof. Note that

Nn =

n∑
i=1

Ii

where

Ii =

{
1 if the vertex labelled i is a leaf

0 otherwise.
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We have

E [Ii] = P (i is a leaf) .

In order to calculate this probability, we need to determine how many trees on [n] have
i as a leaf. Each such tree can be thought of as a tree on [n] \ {i} plus an edge from one
of the other vertices to i. Since there are (n− 1)n−3 trees on n− 1 labelled vertices, it
follows that there are (n− 1)n−2 trees which have i as a leaf. So

P (i is a leaf) =
(n− 1)n−2

nn−2
=

(
1− 1

n

)n−2
→ e−1,

as n→∞.
If the indicator random variables I1, I2, . . . , In were independent, we would now be

able to apply the weak law of large numbers. But this is not quite the case. Let i 6= j.
Then

P (i is a leaf and j is a leaf) =
(n− 2)2(n− 2)n−4

nn−2
=

(
1− 2

n

)n−2
→ e−2,

so that Ii and Ij are asymptotically independent. In particular,

cov (Ii, Ij) =

(
1− 2

n

)n−2
−
(

1− 1

n

)2(n−2)

→ 0,

as n→∞. We also have

var (Ii) =

(
1−

(
1− 1

n

)n−2)(
1− 1

n

)n−2
→ (1− e−1)e−1.

Hence, using symmetry,

var

(
Nn
n

)
=

1

n2

n∑
i=1

var (Ii) +
2

n2

∑
i<j

cov (Ii, Ij)

=
1

n
var (I1) +

n− 1

n
cov (I1, I2)

→ 0,

as n→∞. Finally, for any ε > 0, we can apply Chebyshev’s inequality to obtain

P
(∣∣∣∣Nnn − e−1

∣∣∣∣ > ε

)
≤ var (Nn/n)

ε2
→ 0,

as n→∞, as desired.

2.4. The uniform random tree as a Galton–Watson tree

We now make the link between our study of the uniform random tree and the last
lecture on branching processes.

Proposition 2.3. The uniform random tree Tn has the same distribution as a tree
generated as follows:

– Take a Galton–Watson tree with Poisson(1) offspring distribution;
– Condition it to have total progeny precisely n;
– Assign the root the label 1 and the other vertices random labels chosen from
{2, . . . , n}. Forget the root and the original ordering.
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Proof. Let T be a Poisson(1) Galton–Watson tree, and let t be a particular tree with
#(t) = n. Then

P (T = t) =
∏
v∈t

e−1

c(v)!
= e−n

∏
v∈t

1

c(v)!
.

Now observe that P (#(T) = n) is a function only of n. Hence,

P (T = t|#(T) = n) = f(n)
∏
v∈t

1

c(v)!

for some function f . Moreover, there are (n− 1)! different ways to label t with the root
labelled 1 and the other labels chosen from {2, . . . , n}.

Now consider a particular unordered labelled tree t ∈ Tn, and think of it as rooted at
1. Then we can say which are the children of a vertex v ∈ t (i.e. those which are further
away from the root than the vertex itself). Then there are

∏
v∈t c(v)! different possible

orderings of the labelled tree t. In particular, there are
∏
v∈t c(v)! different labelled

ordered trees which yield the same labelled tree when we forget the ordering.
So the probability that our conditioned Galton–Watson tree gives a particular tree

t ∈ Tn is ∏
v∈t

c(v)!× f(n)

(n− 1)!

∏
v∈t

1

c(v)!
=

f(n)

(n− 1)!
.

Since this depends only on n, and not on any other feature of the tree, it must be the
case that the tree is uniformly distributed on Tn.

Remark 2.4. Other classes of “combinatorial” trees may also be obtained as
Galton–Watson trees conditioned on their total progeny. For example, taking p(k) =(
1
2

)k+1
, k ≥ 0, gives a uniform plane tree; taking p(0) = 1/2 and p(2) = 1/2 gives a

uniform complete binary tree (as long as the total progeny is odd).

2.5. Taking limits

We’ve already seen that if we look at the proportion of the vertices in Tn which are
leaves then we obtain a meaningful limit as n→∞. What can we say more generally
about Tn as n gets large? We will make crucial use of the link to Galton–Watson trees
outlined in the last section. We won’t prove the results in this section or the next; see
Aldous [2] and Le Gall [13] for more details.

Recall that if T is a Galton–Watson tree with offspring distribution p(k), k ≥ 0, then
its  Lukasiewicz path (L(i), 0 ≤ i ≤ #(T)) has the same distribution as a random walk
(S(k), k ≥ 0) with step-size distribution p(k + 1), k ≥ −1, stopped at τ , the first time S
hits −1.

We will concentrate on the critical case, where µ = 1. The fundamental idea that we
will make use of in this section comes from the following theorem.

Theorem 2.5 (Donsker’s theorem). Suppose that (S(k), k ≥ 0) is a random walk
with step-sizes of mean 0 and finite variance σ2. Then, as n→∞,(

1

σ
√
n
S(bntc), t ≥ 0

)
d→ (B(t), t ≥ 0),
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Figure 3. A simulation of a standard Brownian excursion.

where (B(t), t ≥ 0) is a standard Brownian motion.

In other words, in the critical case, there is a good way to rescale the random walk
in such a way that we obtain a non-trivial limiting process. If we have a Poisson(1)
offspring distribution, we get that the step-sizes precisely have mean 0 and variance 1.

Rather than a critical Galton–Watson of random size, we would like to consider a
critical Galton–Watson tree conditioned to have size n. The corresponding  Lukasiewicz
path is a random walk conditioned to hit −1 for the first time at time n. Let (S(n)(k), 0 ≤
k ≤ n) have the same distribution as (S(k), 0 ≤ k ≤ n) conditioned on the event {τ = n}.

Theorem 2.6 (Kaigh [10]). As n→∞,(
1

σ
√
n
S(n)(bntc), 0 ≤ t ≤ 1

)
d→ (e(t), 0 ≤ t ≤ 1),

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

Informally, e is a Brownian motion conditioned to stay positive in the interval (0, 1)
and to come back to 0 at time 1 (see Figure 3).

This theorem suggests that there should be a limit for the tree itself, and that limit
should somehow be encoded by e. This is, indeed, the case, as was proved by Aldous
in a series of papers in the early 1990’s [1, 2, 3]. The limit is known as the Brownian
continuum random tree.

2.6. The Brownian continuum random tree

In order to see how the limit tree arises, we will go through the construction in the

special case where the offspring distribution is given by p(k) =
(
1
2

)k+1
, k ≥ 0 i.e. when
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we have a uniform plane tree. We will use an encoding for our tree which is somewhat
easier to visualise than the  Lukasiewicz path. The contour function is obtained by simply
tracing the “contour” of the tree from left to right at speed 1, so that we pass along each
edge twice. Record the distance from the root at each time to get (C(k), 0 ≤ k ≤ 2n− 2).
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The contour function is a sort of “expanded” version of the tree. For convenience, we
will define a slightly shifted version: let C̃(0) = 0, C̃(2n) = 0 and, for 1 ≤ k ≤ 2n− 1,
C̃(k) = 1 + C(k − 1).

Exercise 2.7. Show that (C̃(k), 0 ≤ k ≤ 2n) has the same distribution as a simple
symmetric random walk conditioned to return to the origin for the first time at time 2n.

It’s easy to linearly interpolate to give a continuous function C̃ : [0, 2n]→ [0,∞), and
similarly for C. Since the variance of the offspring distribution is 2, it follows from
Theorem 2.6 that

1√
2
√

2n
(C̃(2nt), 0 ≤ t ≤ 1)

d→ (e(t), 0 ≤ t ≤ 1)

as n→∞ and, hence,

1√
n

(C(2nt), 0 ≤ t ≤ 1)
d→ (2e(t), 0 ≤ t ≤ 1).

It’s also relatively straightforward to see how to get back a tree from a contour function.
Intuitively speaking, we put glue on the underside of the function and then push the
two sides together until they meet (see Figure 4).

The Brownian continuum random tree is the object we obtain by doing this gluing
procedure to the function (2e(t), 0 ≤ t ≤ 1); see Figure 5.
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1. 2. 3.

4. 5. 6.

7. 8.

Figure 4. Trees from excursions

Figure 5. A simulation of a Brownian continuum random tree

For a general critical Galton–Watson tree with finite offspring variance σ2 conditioned
to have total progeny n, it turns out that the convergence of the (suitably rescaled)
 Lukasiewicz path to a standard Brownian excursion actually implies the convergence of
the contour function of the tree (although this is far from trivial to see). Hence, any such
conditioned tree converges in distribution as n→∞ to the Brownian continuum random
tree. See Aldous [2] and Le Gall [13] for more details, in particular the specification of
the topology in which convergence occurs.

Further reading

In these lectures, I have just scraped the surface of a large and fascinating topic. For
an account of the history of branching processes, see Kendall [11]. For much more on
the theory of branching processes, see the classic account of Athreya and Ney [4] or the
recent lecture course of Shi [15]. To learn about martingales, see the beautiful book of
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Williams [16]. The account I have presented here of the relationship between Galton–
Watson trees and random walks owes much to the excellent survey paper of Le Gall [13].
That paper also gives the rigorous details of the convergence of a critical Galton–Watson
tree with finite offspring variance to the Brownian continuum random tree. For overview
of the Brownian continuum random tree, see Aldous’ article [2]. Finally, for an account
of a variety of models of random trees, see the book of Drmota [8].

Acknowledgements

The simulation of a large Galton–Watson tree (approximating the Brownian con-
tinuum random tree) in Figure 5 was done using Mathematica code written by Igor
Kortchemski. I am very grateful to him for letting me use his program. I would like to
express my gratitude to the organisers of the research school in Ulaanbaatar at which
these lectures were given for their tireless efforts and wonderful hospitality. Finally, I
would like to thank the audience for their warm welcome and infectious enthusiasm,
which made the research school an unforgettable experience.

References

1. D. Aldous, The continuum random tree. I, Ann. Probab. 19 (1991), no. 1, 1–28.
2. , The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990), London

Math. Soc. Lecture Note Ser., vol. 167, Cambridge University Press, Cambridge, 1991, pp. 23–70.
3. , The continuum random tree. III, Ann. Probab. 21 (1993), no. 1, 248–289.
4. K. Athreya and P. Ney, Branching processes, Springer-Verlag, New York, 1972, Die Grundlehren

der mathematischen Wissenschaften, Band 196.
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