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Part I: Voronoi tessellations



Voronoi cells in a metric space

Let (M, d) be a metric space.

Fix k ≥ 1 and let S = {xi : 1 ≤ i ≤ k} be a collection of points in
M, the centres.

For 1 ≤ i ≤ k , the Voronoi cells are

Vi = {y ∈ M : d(y ,S) = d(y , xi )}.

(Note that the Voronoi cells are not necessarily disjoint.)
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Standard example: Voronoi cells in R2

Euclidean distance
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Standard example: Voronoi cells in R2

Manhattan distance
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Voronoi supermarkets

See https://chriszetter.com/voronoi-map/examples/uk-supermarkets/
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General set-up: Voronoi cells in a metric space

Let (M, d) be a metric space endowed with a Borel probability
measure µ.

Fix k ≥ 1 and let S = {xi : 1 ≤ i ≤ k} be a collection of points in
M, the centres. Typically these will be random and i.i.d. samples
from µ.

For 1 ≤ i ≤ k , the Voronoi cells are

Vi = {y ∈ M : d(y ,S) = d(y , xi )}.

(Note that the Voronoi cells are not necessarily disjoint.)

We will be interested in the “masses” of these cells, as measured
by µ, i.e.

(µ(V1), µ(V2), . . . , µ(Vk)).



Warm-up: circle

Circle of circumference 1, Euclidean distance, Lebesgue measure.
Any two points.

(µ(V1), µ(V2)) = (1/2, 1/2).
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Warm-up: circle

Circle of circumference 1, Euclidean distance, Lebesgue measure.
Three uniform points.

0 U(1) U(2) 1

The lengths are uniform on the 2-dimensional simplex i.e. have
Dir(1, 1, 1) distribution.

We get that the Lebesgue measures of the Voronoi cells are

(µ(V1), µ(V2), µ(V3)) =

(
1
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(1− U(1)),
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(1− U(1) − U(2))

)
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Warm-up: circle

Circle of circumference 1, Euclidean distance, Lebesgue measure.
Three uniform points.

0 U(1) U(2) 1

The lengths of these intervals are uniform on the 2-dimensional
simplex i.e. have Dir(1, 1, 1) distribution.

We get that the Lebesgue measures of the Voronoi cells are

(µ(V1), µ(V2), µ(V3)) =
(

1
2U(2),

1
2

(
1− U(1)

)
, 1

2

(
1− U(1) − U(2)

))
(exchangeable with marginals distributed as 1

2 Beta(2, 1)).



Voronoi cells in graphs

A very simple example of a metric space is a connected graph: the
vertices are the points of the metric space and we use the graph
distance for the metric.
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Voronoi cells in graphs

A very simple example of a metric space is a connected graph: the
vertices are the points of the metric space and we use the graph
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Setting of interest: random trees

Let Tn be a uniform random labelled tree on n vertices.

Pick 3
uniform points (with replacement).
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Question. If we sample k uniform points in Tn, how large are the
Voronoi cells?
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Voronoi mass-partition in random trees

Theorem. (Addario-Berry, Angel, Chapuy, Fusy & G, 2018)
Let Tn be a uniform random tree on n labelled vertices. Fix k ≥ 2
and let X n

1 ,X
n
2 , . . . ,X

n
k be independent uniform points. Let

V n
1 ,V

n
2 , . . . ,V

n
k be the corresponding Voronoi cells. Then

1

n
(|V n

1 |, |V n
2 |, . . . , |V n

k |)
d→ Dir(1, 1, . . . , 1)

as n→∞.

If you want to chop up a random tree in a uniform manner, pick
uniform points and find their Voronoi cells.
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The Brownian continuum random tree
The neatest formulation (and proof) are for the scaling limit, the
Brownian continuum random tree (CRT).

Picture by Igor Kortchemski



Part II: The Brownian CRT



Convergence to the Brownian CRT

Recall that Tn is a uniform random labelled tree on n vertices.
Write dn for the graph distance in Tn and µn for the uniform
measure on the vertices.

Theorem. (Aldous, Le Gall)
We have (

Tn,
1√
n
dn, µn

)
d→ (T , d , µ) ,

as n→∞, where (T , d , µ) is the Brownian CRT.

(T , d) is a random path metric space. µ is usually referred to as
its mass measure.

The convergence occurs in the sense of the
Gromov–Hausdorff–Prokhorov topology. This is essentially strong
enough to deduce the convergence of the µn-masses of the Voronoi
cells.
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Universality
The convergence to the Brownian CRT holds, in fact, for a much
more general class of trees. We may take Tn to be any
Galton–Watson tree with offspring distribution of mean 1 and finite
variance σ2 > 0, conditioned to have precisely n vertices. Then(

Tn,
σ√
n
dn, µn

)
d→ (T , d , µ) ,

as n→∞.

This class contains, for example,

I uniform random labelled trees

I uniform random plane trees

I uniform random binary trees.

Our theorem on the Voronoi mass-partition holds in these settings
also.



Construction 1: line-breaking

Take an inhomogeneous Poisson process on R+ of intensity t at t.

C1 C2 C3 C4 C5 C60

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.
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Construction 1: line-breaking

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.

Take the union of all the branches, thought of as a metric space,
and then take its completion.

(Technical point: it will be useful later on to think of branches as
having two sides, and we glue each new branch with probability
1/2 on the left side and with probability 1/2 on the right side.
This endows the branches with a planar order.)
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Construction 1: line-breaking

Write µ̂m for the empirical measure on the leaves after m steps. It
turns out that this converges as m→∞ to a limiting probability
measure µ.



Construction 2: from a Brownian excursion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Picture by Igor Kortchemski



Construction 2: from a Brownian excursion
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Construction 2: from a Brownian excursion



Construction 2: from a Brownian excursion

(Interpret distances vertically)



Construction 2: from a Brownian excursion

Local minima correspond to branch-points in the tree. These are
a.s. unique, so the tree is binary.

µ is the push-forward of the Lebesgue measure on [0, 1] onto
(T , d). It turns out that if L is the set of leaves of T then
µ(L) = 1. The root is a uniform sample from µ.



Voronoi mass-partition in the Brownian CRT

Theorem. (Addario-Berry, Angel, Chapuy, Fusy & G, 2018)
Let (T , d , µ) be the Brownian CRT. Fix k ≥ 2 and let
X1,X2, . . . ,Xk be i.i.d. samples from µ. Let V1,V2, . . . ,Vk be the
corresponding Voronoi cells. Then

(µ(V1), µ(V2), . . . , µ(Vk)) ∼ Dir(1, 1, . . . , 1).



Our original motivation

Conjecture. (Chapuy, 2016)
Let (B, d , µ) be the Brownian map (or Brownian surface of genus
g ≥ 0). Let X1,X2, . . . ,Xk be i.i.d. points sampled from µ and
V1,V2, . . . ,Vk be the corresponding Voronoi cells. Then

(µ(V1), µ(V2), . . . , µ(Vk)) ∼ Dir(1, 1, . . .).



The Brownian map (sphere)

Picture by Jérémie Bettinelli



The Brownian double torus

Picture by Jérémie Bettinelli



Brownian surfaces

Conjecture. (Chapuy, 2016)
Let (B, d , µ) be the Brownian map (or Brownian surface of genus
g ≥ 0). Let X1,X2, . . . ,Xk be i.i.d. points sampled from µ and
V1,V2, . . . ,Vk be the corresponding Voronoi cells. Then

(µ(V1), µ(V2), . . . , µ(Vk)) ∼ Dir(1, 1, . . .).

Proved for g = 0, k = 2 by Emmanuel Guitter (but proof does not
generalise).



Unicellular random maps
Let S be an arbitrary compact surface without boundary. Let Mn

be a uniform random map drawn on S with n vertices and a single
face. (Mn is unicellular.) If S is the sphere then Mn is a uniform
random plane tree.

Then there is a scaling limit: as n→∞,(
Mn,

1√
n
dn, µn

)
d→ (M, d , µ).



Unicellular random maps

In the case of the torus, as a graph we have

From Addario-Berry, Broutin & G. (2010, 2012), we may deduce
that the scaling limit of a graph conditioned to have a
theta-shaped kernel may be constructed out of three independent
randomly rescaled Brownian CRT’s.



A generalisation of our result to unicellular random maps

Theorem. (Addario-Berry, Angel, Chapuy, Fusy & G, 2018+)
For any compact surface S without boundary, (M, d , µ) has
uniform Voronoi mass-partitions.

k = 5, genus 2:

Picture by Igor Kortchemski



Open problem. Which properties of a random metric space give
rise to uniform Voronoi mass-partitions?



Part III: proof of Brownian CRT case



Useful properties: sampling uniform points

Sampling X1, . . . ,Xk i.i.d. points from µ is easy: use the excursion
construction, and take the push-forwards of 0 and

U1,U2, . . . ,Uk−1
i.i.d.∼ U[0, 1].

X1

X2
X3

X4

U1 U2U3



Useful properties: sampling uniform points

Non-trivial fact: the subtree spanned by X1,X2, . . . ,Xk has the
same distribution as the tree obtained after k − 1 steps of the
line-breaking construction.

X1
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Useful properties: sampling uniform points
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4

Non-trivial fact: the subtree spanned by X1,X2, . . . ,Xk has the
same distribution as the tree obtained after k − 1 steps of the
line-breaking construction.

This subtree is a uniform binary leaf-labelled plane tree whose
2k − 3 edge-lengths are exchangeable with

(L1, L2, . . . , L2k−3) ∼
√

Γk × Dir(1, 1, . . . , 1),

where the two factors on the right-hand side are independent and
Γk ∼ Gamma(k − 1, 1/2).



Useful properties: reconstructing the whole tree
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Suppose we start from the subtree spanned by X1, . . . ,Xk .

In order
to get back to the whole tree, we need to take i.i.d. copies of the
Brownian CRT, randomly rescaled by an exchangeable vector with
sum 1, and glued onto the subtree at i.i.d. uniform positions.
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Useful properties: the Dirichlet distribution

Let E1,E2, . . . ,Em be i.i.d. Exp(1). Then

1∑m
i=1 Ei

(E1,E2, . . . ,Em) ∼ Dir(1, 1, . . . , 1),

and is independent of
∑m

i=1 Ei .



Base case: k = 2

The proof goes via induction, with the base case being k = 2.

X1 X2

We wish to find the masses of the blue and red parts.



k = 2: an observation

U1

X1 X2

Call the masses above and below the backbone the contour cells.

These are equal to U1 and 1− U1, with U1 ∼ U[0, 1]. The little
trees attached to the backbone have exchangeable masses.
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k = 2: a bijection

We may convert the Voronoi cells into the contour cells of a
different tree:

X1 X2

Since the subtree masses are exchangeable, the new tree is again a
Brownian CRT. But the contour cells in a Brownian CRT have
(U, 1− U) mass split, so the same must be true for the Voronoi
cells. (This may be read off from results of Lévy (1939) or Bertoin
and Pitman (1994).)
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and Pitman (1994).)



k = 2: a bijection

We may convert the Voronoi cells into the contour cells of a
different tree:

X1 X2

Since the subtree masses are exchangeable, the new tree is again a
Brownian CRT. But the contour cells in a Brownian CRT have
(U, 1− U) mass split, so the same must be true for the Voronoi
cells. (This may be read off from results of Lévy (1939) or Bertoin
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Reductions for k ≥ 3: contour cells
Consider the subtree spanned by our uniform points.

U1 U2U3

We will show that the lengths of the coloured intervals (the
contour intervals) have the same joint law as the lengths of the
Voronoi cells in the subtree. Since the mass attached to the
contour intervals yields a uniform split of unity, the same must be
true for the Voronoi cells.
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Reductions for k ≥ 3: scaling

Since we’re now only interested in showing that two vectors of
lengths have the same distribution, it makes no difference if we
rescale the whole tree.

So by the properties of the Brownian CRT, we may take the
edge-lengths in the subtree spanned by our uniform points to be
i.i.d. Exp(1).



k = 3: contour lengths ↔ Voronoi lengths

1
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So again we have a bijection between the contour lengths and the
Voronoi lengths.
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k = 3: contour lengths ↔ Voronoi lengths
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So again we have a bijection between the contour lengths and the
Voronoi lengths.



General k ≥ 3: by induction

Suppose the result is true for all smaller k. We start with a uniform
binary plane leaf-labelled tree with i.i.d. Exp(1) edge-lengths.

Start from the shortest branch incident to a leaf. This branch is
uniform among all those incident to leaves. Call its leaf i and its
length `. Call the “opposite leaf” j .

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

`



General k ≥ 3: by induction

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

`
Ci−1

Ci

Ci+1

Cj

Cj+1

Voronoi lengths: (L0, L1, . . . , Lk−1)
Contour lengths: (C0,C1, . . . ,Ck−1).



General k ≥ 3: by induction
Now burn in from every leaf to remove length `:

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

`

By the memoryless property of the exponential, and the uniformity
of the shortest leaf, we split into two uniform binary leaf-labelled
trees with i.i.d. exponential edge-lengths, each with < k leaves.

So, by the induction hypothesis, the Voronoi and contour lengths
have the same laws in each of the subtrees.
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General k ≥ 3: by induction

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

I For each leaf other than j , we can get back the original
contour length Cr from r to r + 1 by simply adding 2` to the
contours in the smaller problems.

I For the contour from j to j + 1, we must add two contours
together and add 2`.



General k ≥ 3: by induction

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

I For the Voronoi cells, add 2` to the new lengths of the cells to
get Lr , r 6= i .

I For the cell of i , add two Voronoi cells from the smaller trees,
plus 2`.

By induction, the vectors of lengths therefore have the same law. �



Thank you!

Voronoi tessellations in the CRT and continuum random
maps of finite excess, Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2018),
pp.933-946.


