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We prove a scaling limit for globally centered discrete snakes on size-
conditioned critical Bienaymé trees. More specifically, under a global finite
variance condition, we prove convergence in the sense of random finite-
dimensional distributions of the head of the discrete snake (suitably rescaled)
to the head of the Brownian snake driven by a Brownian excursion. When the
third moment of the offspring distribution is finite, we further prove uniform
functional convergence under a necessary tail condition on the displacements.
We also consider displacement distributions with heavier tails, for which we
instead obtain convergence to a variant of the hairy snake introduced by Jan-
son and Marckert. We further give two applications of our main result. Firstly,
we obtain a scaling limit for the difference between the height process and the
Lukasiewicz path of a size-conditioned critical Bienaymé tree. Secondly, we
obtain a scaling limit for the difference between the height process of a size-
conditioned critical Bienaymé tree and the height process of its associated

looptree.
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1. Introduction. We consider a branching random walk whose genealogy is given by
the family tree of a Bienaymé branching process (which we refer to as a Bienaymé tree) con-
ditioned to have n vertices. We assume that the offspring distribution 1 = (11 )x>0 is critical
and has finite, non-zero variance, so that the genealogical tree has the Brownian continuum
random tree as its scaling limit.! Each vertex of the tree is endowed with a spatial location
in R: the root is fixed to be at 0; for every other vertex, its location is obtained via a random
displacement away from the location of its parent. The random displacements of children of
distinct vertices will always be independent but, in general, the displacements of siblings may
be dependent and may, moreover, depend on the vertex degree. For a vertex v with k children,
the distribution of the vector of displacements from v to its ordered children is denoted by
vg. In the sequel, Y;, = (Yy.1,..., Y x) always denotes a random vector with law 1. In this
paper, we explore conditions on  and v = (4 )x>1 such that the whole object converges to
a Brownian motion indexed by the Brownian tree.

A convenient formulation is via the notion of a discrete snake. We imagine exploring
the vertices of the tree one by one in depth-first order (we shall give precise definitions in
Section 2 below) and record a list of the spatial locations of the ancestors of the vertex we
are currently visiting. In other words, the snake is a process taking values in the set of finite
random walk paths (one should imagine it wiggling around as we explore the tree!). In fact,
it turns out to be sufficient for many purposes to track the spatial location of the vertex that
we are visiting only: this gives the so-called head of the discrete snake, which is our primary
object of interest. We aim to prove convergence, after an appropriate rescaling, of the head
of the discrete snake to the head of the Brownian snake driven by a normalised Brownian
excursion (BSBE), first introduced by Le Gall [23, 24]. This is a stochastic process (e,r) =
(et,rt)o<t<1 taking values in Ry x R, such that e is a normalised Brownian excursion and,
conditionally on e, the second coordinate r is a centered Gaussian process taking values in
R with covariance function
(1.1) cov (rg,r) = min ey.

u€E[sAt,sVt]
Let us give some interpretation. For any pair of vertices in the Brownian tree, encoded by
s,t € [0, 1], having heights e, and e;, the spatial locations along their genealogical paths
evolve as a common Brownian motion until their most recent common ancestor (which lies at

ITo avoid technicalities, we shall also assume that the support of 4 has greatest common divisor 1, so that the
event that the tree has size n has strictly positive probability for all n large enough.
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distance min,e[sa¢,sv¢) €u from the root) is reached, and they evolve as independent Brownian
motions thereafter.

The problem of proving convergence of rescaled discrete snakes to the BSBE has been
studied by a number of authors, under a wide range of different conditions on y and (vj)g>1.
We shall give a review of the literature after we state our main results.

In order to obtain a Brownian limit for the displacements along a lineage, we require
appropriate centering and moment conditions, which we now explain. Let £ be a random
variable with distribution z and let £ be a size-biased version, that is, having distribution
A= (fix)g>1, where for all k > 1,

o —
M= R

(Recall that the offspring distribution 4 is assumed to be critical, so that E [£] = 1.)
Conditionally on &, let Yz = (Yg,p o YE 5—) be vz-distributed and, independently, let Uz be

a Uniform([¢]) random variable (where [m] := {1,2,...,m}). Then we say that the discrete
snake is globally centered if

= k.

E |Yey,| =0.
In other words, the expected displacement of a uniform child of a vertex with a size-biased
number of offspring is 0. We define the global variance to be
2._ -2
Fr=E {Y&UJ ’
and will prove our results under the condition that 32 < co. Since distances in the tree scale
as n'/2, the spatial displacements along a lineage will then scale as n'/4.

1.1. Main result. Denote by T,, a Bienaymé tree with offspring distribution p, condi-
tioned to have n vertices. Write v(T),) for the vertex set of T,, and 9T, for its set of leaves.
Conditionally given T, let Y = (Y(*),v € v(T,,) \ dT,,) be independent random vectors,
such that if v € v(T,,) \ OT,, has k children then Y'(*) has distribution .. Endow the vertices
of T,, with spatial locations using the displacement vectors Y (*) as described above. We call
the pair T, = (T,,Y") a (u,v)-branching random walk conditioned to have n vertices, or
simply a (u, v)-branching random walk.

Let H, = (Hy(7))o<i<n and H, = (ﬁn(i))ogiSQn be the height and contour processes
of T, respectively. Let R, (i) be the spatial location of the i-th vertex visited in a depth-
first exploration of T,,. We call the process (H,, R,,) the head of the discrete snake (see
Section 2 for a careful description of this). We may alternatively encode the endpoints of the
random walk trajectories using the process (H,,, R,,), where R, (i) is the spatial location of
the i-th vertex visited in a contour exploration of T,,. (Compared to (H,, R,), this simply
revisits some vertices.) We interpolate all of these functions linearly between integer times,
which turns H,, and R,, into elements of C([0, n], R) and turns H,, and R,, into elements of
C([0,2n],R).

We use two different notions of convergence for a sequence of random elements ( f;,),,>1 of
C([0,1],R) such that f,,(0) = f,,(1) =0 for all n > 1. Let Uy, Us, ... be 11D Uniform([0, 1])
random variables, independent of everything else. For k£ > 1, write U(kl), cey U(kk) for the
order statistics of Uy, .. ., Ug. For another random element f of C([0, 1], R) such that f(0) =

f(1) =0, we say that f, 4, f in the sense of random finite-dimensional distributions if, for
every k> 1,

(Fa (U)o, FalUE)) -5 (FWUE), - F(U))
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FIG 1. Top: a (rescaled) discrete snake; bottom: its head. The underlying tree is a size-conditioned Poisson(1)
Bienaymé tree with n = 25000 vertices and deterministic displacement distributions given by (1.5), below. The
area under the contour process of the underlying tree is illustrated by the gray shaded region.

as n — co. (We will discuss our choice of this notion of convergence in more detail below.)
We will also use the stronger notion of convergence with respect to the topology generated
by the uniform norm.

THEOREM 1.1.  Let 1 = (x>0 be a critical offspring distribution with variance o* €
(0,00). If v = (v )k>1 is such that

[A1] E|Yer,| =0 and 8= |(Vgy)?| <,



DISCRETE SNAKES WITH GLOBALLY CENTERED DISPLACEMENTS 5

then as n — oo the following joint convergence holds in the sense of random finite-
dimensional distributions:
(1.2)

H,(nt) R,(nt) H,(2nt) R, (2nt 2 2 2 2
( n(n )7 nf/rfl)’ n( - )7 n( n )> d> (ehﬁ 7rt77et)ﬂ rt) .
n o o o2 o
0<t< 0<t<1

vn VO

The convergence (1.2) holds in distribution in C([0,1],R*) endowed with the topology of
uniform convergence if, additionally,

[A2] P {1n<1a<x5 |Yeil > y} =o(y ) asy— oo and E [53] < 0.
_Z_

Theorem 1.1 follows immediately from Corollary 4.2 and Proposition 5.1 below. The ana-
logue of Theorem 1.1 holds with R¢-valued displacements for d > 1, and with essentially
identical proofs to those in the current work; the only change in the conclusion is that the
limit r of the rescaled spatial displacements takes values in R? rather than R, and that /32
should be interpreted as the covariance matrix of Yz ;..

Let ®, (i) be the random walk trajectory associated with path from the root to the i-th
vertex visited in the contour exploration of T',,, for 0 <7 < 2n. Then (ﬁn, ®,,) is the discrete
snake driven by H n- By the homeomorphism theorem of Marckert and Mokkadem (Theorem
2.1 of [31]), Theorem 1.1 entails also that (ﬁn, ®,,) has the BSBE as its scaling limit; see
Figure 1 for an illustration.

By [12, Corollary 2.5.1] and [32] it turns out that the convergence of the parametrisations
of the head of the snake via the height and contour processes are essentially equivalent. In
particular, in order to prove Theorem 1.1, it suffices to show that, under assumption [A1], we
have

13 <H,\L/(gt), Rnl(Zt)> d, <iet’5 irt> 7
n 0<t<1 0<t<1

as n — oo in the sense of random finite-dimensional distributions, and in C([0, 1], R?) en-
dowed with the topology of uniform convergence under the additional assumption [A2].

It is not clear to us whether the requirement that 2 [53] < 00 in [A2] is necessary or just
an artefact of our approach to proving tightness. We shall see in the next subsection that the
tail condition in [A2] is necessary.

1.2. Necessity of the tail condition. If we adjust assumption [A2] to allow for heavier
tails, displacements start to appear near the leaves which are not negligible on the scale n'/%.
In this case, one can no longer expect a continuous limit process. This is a consequence of
the following proposition on the largest displacement in the tree, which we prove in Section
A.2 in the appendix.

PROPOSITION 1.2.  Let jt = (ui)k>0 be a critical offspring distribution with variance
o? € (0,00). If limsup,_, . y*P {maxi<;<¢ [Ye ;| >y} > 0, then there exists a § > 0 such
that

limsup P { max  max \Y(”)‘ > 5n1/4} > 0.
n—00 veo(T,)\OT, j=1 7

We may however still obtain a global convergence result on the appropriate scale, under
an additional regularity assumption; see [A3] below. Since the large displacements from a
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vertex with k children need not be independent, in this setting the limit depends on the joint
distribution of the displacements from a vertex to its children. For £ > 1 and j € [k] denote
by

Yk_t? = Yk,j AL and ij] = (_Yk’»]) VO

the positive and negative displacements of the j-th child of a vertex with % children, respec-
tively. Further let Y, := (YkJrj)je[k] and Y;~ = (Y, ) jeln-

Suppose that E [53] < oo. Furthermore, suppose that there exists a Borel mea-

sure 7 on RZ \ {(0,0)} such that for any £ > 0, both m(Ry x (g,00)) < o0

and 7((g,00) x Ry) < 0o, and there exists 7 € [0,2) such that for all Borel sets
[A3] ACR2\{(0,0)} for which m(0A) =0, as r — oo

r \1<i<e $V1<i<e &

rd=np {1 <max Y., max Y) € A} —7m(A).

We note the following lemma, whose proof may be found in Section A.2 in the appendix.

LEMMA 1.3. [A3] implies that the projection of ™ onto either of its coordinates has no
atom in (0,00).

Under assumption [A3] we prove convergence results for the head of the discrete snake in
the space of non-empty compact subsets of [0, 1] x R equipped with the Hausdorff topology.
In what follows, for a continuous function f : [0,1] — R and a set S C [0,1] x R2 \ {(0,0)},
write U(f,S) for the union of the graph of f and the vertical line segments [(¢, f(¢) —
y), (t, f(t) + )] for each (¢, x,y) € S. The next theorem relates to the case n = 0 in [A3].

THEOREM 1.4. Let = (ui)k>0 be a critical offspring distribution with variance 0% e
(0,00), and let v = (vy,)k>1 be such that [A1] holds and [A3] holds for a given measure ™
with 1) = 0. Then, taking = to be a Poisson process on [0,1] x R% \ {(0,0)} with intensity
dt @ w(dx,dy), we have

o (1), o (50) = () o (3]

as n — oo, where the convergence in the first coordinate is in C([0,1],R) endowed with
the topology of uniform convergence, and the convergence in the second is in the space of
non-empty, compact subsets of [0, 1] x R endowed with the Hausdorff topology.

We refer to the object on the right-hand side of (1.4) as the hairy four, in keeping with the
previous work of Janson and Marckert [18].

When 7 € (0,2), the large jumps dominate the smaller ones to such an extent that, in the
limit, we obtain a pure jump process.

THEOREM 1.5.  Let = (u)k>0 be a critical offspring distribution with variance o’ e
(0,00), and let v = (vy,)k>1 be such that [A1] holds and [A3] holds for a given measure
with 1 € (0,2). Then, taking E to be a Poisson process on [0,1] x R% \ {(0,0)} with intensity
dt @ w(dx,dy), we have

( (H%t)%gg’ U (M@» d, ((iet>0§t§, U(O,E)) ,
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as n — oo, where the convergence in the first coordinate is in C([0,1],R) endowed with
the topology of uniform convergence, and the convergence in the second is in the space of
non-empty, compact subsets of [0, 1] x R endowed with the Hausdorff topology.

In contrast to Theorem 1.1, in Theorems 1.4 and 1.5 we need the condition E [5 3] < oo not
just for tightness but also for the convergence of the random finite-dimensional distributions.
The reason for this is that we apply a quantitative local central limit theorem which requires
a third moment on the offspring distribution. (See Theorem A.3 for the precise statement.)

The fact that we obtain a continuous function decorated by intervals in both Theorems 1.4
and 1.5 is really an artefact of the choice to interpolate R, linearly between integer times.
Indeed, the endpoints of the intervals capture the asymptotic behaviour of the two extremities
of the displacements away from vertices, but tell us nothing about how the “point process”
of displacements in between behaves. If we instead consider the graph of (%)qu
in the case where we do not have P {max;<;<¢ Y| > y} = o(y™*) there are, in fact, many
possible behaviours. We will not undertake any sort of exhaustive classification here, but let
us give a couple of illustrative examples.

Suppose first that the displacements are simply IID copies of a random variable Y such
that, for some Borel measure m on R \ {0} such that for any € > 0, 7((g,00)) < 0o, we have
riP{Y €rA} — n(A) as r — oo for every Borel set A C R\ {0} such that 7(9A) = 0. Then
we will not, in the limit, observe two or more @(nl/ 4) displacements away from the same
vertex of T, (nor, indeed, from vertices at distance o(nl/ 2) from one another), and so we
just obtain the graph of r decorated by isolated points which occur as a Poisson process of
intensity dt ® m(dy) on [0,1] x R\ {0}.

On the other hand, suppose that we have the following deterministic displacements:

2
(1.5) Yij=0—=(k—j)for 1<j<k.
ag

These displacements have a particular significance, which we will discuss in the next sub-
section. For the moment, let us just observe that it is straightforward to check that they are
globally centered and of finite global variance whenever the offspring distribution is critical
and admits a finite third moment. Suppose that there exists a Borel measure 71 on (0, 00) with
m1((g,00)) < oo for all € > 0, such that 7P {¢ € rA} — 71 (A) as r — oo for any Borel set
A C (0,00) with 71 (DA) = 0. Then all of the children of a vertex with ©(n'/*) children will
have @(nl/ 4) displacements which are regularly spaced with spacing 2/o. Again, with high
probability, we will not see two vertices of degree ©(n'/*) within distance o(n'/?) in T,,.

So in the limit for the graph of (M

—ve: we will see decorations driven by a Poisson

) 0<t<1
process on [0, 1] x R4 with intensity dt ® m(dx) such that when we observe a point (¢, z) of
the Poisson process, we attach the whole interval [—2x /0, 0] to the graph of r at .

1.3. Related work. As mentioned earlier, versions of the topic studied in this paper have
received extensive attention in the literature. One reason for this is that discrete snakes play
a crucial role in the study of random planar maps; see [1, 2, 8, 26, 30, 34].

The earliest discrete snake convergence results were proved in models with a fixed off-
spring distribution. Chassaing and Schaeffer [8] treated the setting of a Geometric(1/2) off-
spring distribution (which results in uniformly random planar trees) with 11D displacements
uniform on {—1,0,1}. Marckert and Mokkadem [31] treated the same offspring distribu-
tion, but where the displacements away from a vertex all have the same centered marginal
distribution (but may depend on one another) with a 6 + ¢ moment. Gittenberger [13] later
generalised these results to critical, finite variance offspring distributions with centered (but
not necessarily 11D) displacements having finite 8 + ¢ moment.



Work on the 11D displacement case culminated in a paper of Janson and Marckert [18]
which established the following result.

THEOREM 1.6 ([18], Theorems 1 and 2). Let 1 = (ui)r>0 be a critical offspring dis-
tribution with variance o* € (0,00) such that ju has a finite exponential moment. For each
k > 1, let vy, be the law of a vector of k 1ID copies of a random variable Y with E[Y] =0
and E [Y?] = 2 € (0,00). Then

06 Hy(2nt) Ro(201) (2 5.2
Vn nl/4 o o
0<t<1 0<t<1

as n — oo, in the sense of finite-dimensional distributions. The convergence also holds in
distribution in C([0,1],R?) endowed with the topology of uniform convergence if and only if

(1.7) P{lY|>y}=o(y™) asy— oco.

The finite exponential moment condition on the offspring distribution has subsequently
been shown to be unnecessary, and may be weakened to a finite second moment assumption;
see, for example, Marzouk [33]. Our Theorem 1.1 recovers this theorem under the additional
assumption of a finite third moment for p (and replacing convergence in the sense of finite-
dimensional distributions in the first statement with random finite-dimensional distributions).

Janson and Marckert [18] also considered what happens in some of the “heavy-tailed”
cases for which the tail condition P {|Y| > y} = o(y~*) fails. In particular, they considered
the setting in which

P{Y>y}~ayy™? P{Y <—-y}l~a_y ? asy—oo

for some constants at,a_ >0 and ¢ € (2, 4], and prove analogues of Theorems 1.4 and 1.5
in such cases. They call the limiting object in this setting the hairy tour, and the associated
snake the jumping snake. Their results were an important inspiration for Theorems 1.4 and
1.5.

Marzouk [33] later extended Janson and Marckert’s results in [18] to the situation where
the offspring distribution is in the domain of attraction of a stable law, and the displacements
are IID.

Returning now to non-1ID displacements, there are several notions of centering and finite
variance which have been imposed in order to obtain convergence to the BSBE. Marckert
and Miermont [30] worked under the “local centering” assumption that E [Y}, ;] = 0 for all
1 < j < k. For multi-type Bienaymé trees, [2] establishes convergence of discrete snakes
under assumptions that impose in particular that the displacements away from vertices of
each type are centered.

Most closely related to our results is a paper of Marckert [29], which proves the following
theorem.

THEOREM 1.7 ([29], Theorem 1). Let = (ux)r>0 be a critical offspring distribution
with po + p1 < 1 and with bounded support. Suppose further that v = (vy,)>1 is such that

E [YE,UJ =0 and B*=E [(}/'57(]5)2} < 00,
and that there exists p > 4 such that

sup  E[|Yy; — E [V ][7] < oo
1<j<k<K
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where y is supported by {0, ..., K}. Then, as n — oo,
(1.8)

<Hn(nt) Ro(nt) H,(2nt) f-an@nt)> i)(% PNENE T 2r>
) ) — St — Lty —Ct, —1¢
0<t<1 g g g g 0<t<1

NG /A n nl/a
in C([0,1],R*) endowed with the topology of uniform convergence.

The boundedness condition is a necessary requirement of Marckert’s proof technique,
which is a tour de force involving tracking very detailed information about the number of
vertices of each possible different degree along a lineage, which converge on appropriate
rescaling to a Gaussian field. Our approach removes the boundedness requirement, but we do
not obtain such fine information on the limit object.

Finally, we mention a forthcoming work of Duquesne and Rebei [10], which proves limit
theorems for snakes whose jumps are centered and sibling-independent and such that the
underlying family tree converges to a Lévy tree. Our understanding is that the results and
technique of [10] are rather different from those of the current work.

1.4. A first application. One nice consequence of Theorem 1.1 is a strengthening of a
result of Marckert and Mokkadem [32] concerning the difference between the height process,
H,,, and the Lukasiewicz path, here denoted by W, (and formally defined in Section 2) of T},.
It is proved in [32] that if ¢ is critical with variance o € (0, 00) and has a finite exponential
moment, then

H,(2nt) H,(nt) Wy(nt) a <2e 2_ e)
) ) —€t, —€4,0€
NG Vn Vn 0<i<1 o 0 0<t<1

as n — oo in C([0, 1], R3). (As mentioned after Theorem 1.6, the finite exponential moment
condition is unnecessary and may be removed; see Duquesne [11] for this result in the context
of trees rather than snakes.)
Moreover, under the same assumptions, [32] establishes that, for any € > 0, there exists
~ > 0 such that for n > 0 sufficiently large
P{ sup

0<i<n

oH, (i) — 207 W, (4)

> n1/4+a} <exp(—yn%).

It is natural to conjecture that, under suitable conditions, the difference varies precisely on
the order of n'/4. We are able to prove this conjecture in a large degree of generality. It turns
out that the difference (o H,, (i) — 20~ 1W,,(),0 < i < n) evolves precisely as the head of a
discrete snake (see Lemma 2.1 for a proof of this fact). The relevant displacements are given
by Vi j =0 — (2/0)(k — j); this formula already appeared at (1.5). We have

00 k [e9) k o9
ZukZE[Yk,j] :Z,ukz (J— i(k—j)) :Zuk <gk_ k(k(;l)) :U—%:O,
k=1 j=1 k=1 j=1 k=1

so that the associated discrete snake is globally centered. Moreover, the global variance is

o) k fe'e) k 9 2
IS RITARD IS DI CEETEN)
k=1  j=1 k=1

J=1

2
kzuk <02k —2k(k—1)+ &71{(14 —1)(2k — 1))

=1
E[E] 1)~ (? +2),
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which is finite provided that E [{3} < 00. Also,

P{lrgax Ve il >y} P{

asy — oo ifand only if P {¢ >y} = o(y~*) as y — oo; moreover, the latter condition implies
E [{3] < 00. We obtain the following corollary of Theorem 1.1.

a_§<g—1>‘va>y}:o<y—4>

COROLLARY 1.8. Let p1 = (pr)k>1 be a critical offspring distribution with variance
0% €(0,00). Let 8% = 35 (E [€3] — 1) — (0° + 2). Then

H H — 2071
< n(nt) ) ? n(nt) I/Z W (nt) ) i) *eta ﬁ *rt )
vn " Ost<l 0<t<1

asn— oo in C([0,1],R?) if and only if P{¢ >y} = o(y™*) as y — oc.

Let us observe that, while Corollary 1.8 concerns the difference between the height process
and the Lukasiewicz path, the joint convergence in Theorem 1.1 can be used to prove an
analogous result for the difference between the Lukasiewicz path and the contour process
encoding of the head of the same discrete snake. (We leave the details of this statement to the
reader.)

In the case where £ is bounded, Marckert’s result (Theorem 1.7) applies, so the corollary is
new only in the case of unbounded offspring distributions. In an earlier paper [28], Marckert
had already observed that the difference between the left and right pathlengths (also known
as the imbalance) of a size-conditioned Bienaymé tree with offspring distribution g = o =
1/2 converges in distribution after rescaling to 21/48 where S = fol r;dt. We note that such
trees are binary, and recall that the left pathlength (resp. right pathlength) of a vertex v is the
number of vertices in its ancestral lineage who precede (resp. succeed) their siblings in the
lexicographical order. The left (resp. right) pathlength of binary trees is then the sum of the
left (resp. right) path lengths over all vertices in the tree. Janson [15] later used the method
of moments to give an alternate proof of this convergence in distribution.

It can also be the case that the sequence (n~'/4 maxg<;<p |0 H,, (1) — 20~ W, (1)|)n>1 is
tight without converging in distribution to the maximum modulus of the head of the BSBE;
indeed, by Theorem 1.4, if r*P {¢ € rA} — 71 (A) as r — oo for all Borel sets A such that
m1(0A) = 0 and a Borel measure 7; on R \ {0} such that for any € > 0, 7m;((g,00)) <
oo, then it is possible to prove that n~Y*maxg<i<p [0 Hy, (i) — 20 W, (i)| converges in
distribution to the maximum modulus of the appropriate hairy tour. If, on the other hand, we
have r4~"P {¢ € rA} — 71 (A) as r — oo for some 7 € (0,2), then Theorem 1.5 yields the
convergence

d

n-1/@=n) o loHy (i) — 20" Wy (4)| = L,

0<i<n
where P {L < /{} = exp(— fe m1(x)dx) is the probability that no point of a Poisson point
process of intensity dtm;(dx) on [0, 1] x R has second co-ordinate greater than £.

1.5. A second application. A second consequence of Theorem 1.1 concerns the differ-
ence between the height process of T, and the height process of the corresponding looptree.
The looptree corresponding to T, denoted by T, is the connected multigraph obtained by
replacing the edges from a vertex to its children by a cycle going through the parent and
all of its children in order (whose length, therefore, equals its number of children plus one).
See Figure 2 for an illustration. (It turns out that it is possible to make sense of a continuum
analogue of this notion, as proved by Curien and Kortchemski [9].)
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D

FIG 2. In the top left figure, a tree, and in the bottom left figure its corresponding looptree. The top-right figure
serves to aid in understanding the construction, and the bottom-right figure illustrates how distances are calcu-
lated in the loop-tree.

Vertices in the original tree naturally correspond to vertices in the looptree. Let v1,..., v,
be the vertices of T, listed in lexicographical order. We define the height function of the
looptree, denoted H; : [0,n] — R, to give the graph distance between the root and each of
the vertices in the looptree, visited in the order vy, ..., vy,. This is the height process (in the
usual sense) of the spanning tree of the looptree made up of the union of the geodesic paths
from each of its vertices to the root. Formally, using the Ulam—Harris notation (see Section 2
for details) for 0 <7 <n —1 let

HS (i) = > min{j, c(u, Tp,) + 1 — 5},
(u,uj)ee(Tr) : uj=vitq
where for u € v(T,), c¢(u,T,) denotes the number of children of v in T,,. Finally let
Hy(n) =0, and extend the domain to [0,n] by linear interpolation. For ¢ € R, it is read-
ily seen that the difference (cH, (i) — HS(i),0 <i<n) evolves as the head of a discrete
snake whose displacements are given by
Yy j=c—min{j,k+1—j}.
Moreover, if we fix c= 1E [¢3] + § + P {5 € 27 + 1}, then

) k
> kY E[Yil Zuch—min{j,kH—j})
k=1 j=1 k=1
0 L%/2] k
ZZ ck —2 Z (A [—‘ [ke2Z+1]

(o (A 0) )
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1 1 1
=c—-E[¢}] - —-P{¢€2Z+1}=
c— ;B[] -5 - JP{eeZ+1} =0,
so that the associated discrete snake is globally centered. Moreover, the global variance is
(1.9)
00 k
ey E[Y]
k=1  j=1
%) k
=> kY (c—min{j,k+1—j})°
k=1  j=1
00 i c [k/2] IR
— ;Nk CQ]Q - Ck’ (2 + 1) - §l[k622+1] + 2 Zl i2 —|— ’72—‘ 1[/€GQZ+1]
- k ko1 B2k 1 ¢
2
- (e (51) (G5 (g +i5) tem)
E[¢] /1 ¢ 1 &2 ¢ 1 ¢
2 2
=c” + 12 +<42)E[§]+6C+E[(12+3+42)1[£€2Z+1}:|
= 52
which is finite provided E [63} < 00.
Finally,

P { max [Ved > o} =P fle= [e/2 VIe= 11> 9} =0l

as y — oo if and only if P {¢ >y} = o(y~*) as y — oo and, moreover, the latter condition
implies E [53] < 00. We obtain the following corollary of Theorem 1.1.

COROLLARY 1.9. Let y1 = (p)k>1 be a critical offspring distribution with variance
0% € (0,00), and let & be a random variable with distribution 1. Let ¢ = 1E [¢%] + % +
iP {£ €27+ 1} and B? be as in (1.9). Then,

H,(nt) HS(nt) cHy,(nt)— HS(nt) a (2 2 \/5
(110) < \/ﬁ ) \/ﬁ ) n1/4 )(JStSl — (Jetvo_eta O_ﬁrt> )

0<t<1

as n — oo in C([0, 1], R3) endowed with the topology of uniform convergence if and only if
P{{>yl=o(y ) asy— <.

Analogues of this result also hold in the settings of Theorems 1.4 and 1.5. Even the func-
tional convergence for the height process of looptrees of Bienaymé trees, expressed in the sec-
ond coordinate of (1.10), is new, although pointwise convergence was proved by Kortchemski
and Marzouk [21]. (The convergence of looptrees in the Gromov—Hausdorff topology was
proved in [22] via spinal decomposition — see Theorem 1.2 and the generic case in Corol-
lary 1.4 for the application to maps — and convergence in the Gromov—Hausdorff-Prokhorov
topology was shown in [20, Theorem 15].)
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1.6. Overview of the proofs. We will prove weak convergence of the head of the snake
by making use of the following variant of the usual formulation of weak convergence for a
sequence of random continuous functions. (This formulation is inspired by Theorem 20 of
[4], and can be proved by essentially the same method as the second proof of Theorem 7.5 of

[6]1.)

PROPOSITION 1.10. Let (fn)n>1 and f be random elements of C([0,1],R) such that
fn(0) = fn(1) =0 for every n > 1 and f(0) = f(1) =0. Let U1, Us,... be D U|[0, 1] ran-
dom variables, independent of (fn)n>1 and f. For k > 1, write U(kl)7 U(’“Q), cey U(kk) for the

values of U1, Us, ..., Uy written in increasing order, and set U(ko) =0 and U(kk+1) =1.
Suppose that for each k > 1 we have
d
(1.11) (fn(U(’ﬁ)»...,fn(U(’z))) - (f(U(’i))7...,f(U('2))),
as n — oo, and that for any € > 0,
(1.12) lim limsupP < max sup | fu(s) — fu(t)| >ep =0.
k—o0 n—oo nggk&te[U@),U(}cHl)]

Then f, N f as n — oo, for the topology generated by the uniform norm on C([0, 1], R).

We will refer to assumption (1.11) as the convergence of random finite-dimensional distri-
butions and to (1.12) as tightness. Observe that (1.11) is weaker than the usual convergence
of finite-dimensional distributions. However, it is more natural in the context of random trees,
and indeed plays a key role in Aldous’ theory of continuum random trees as developed in [4].
(See the appendix of [5] for a discussion and for further references.)

Let s be the real tree encoded by 2e, where e is a normalised Brownian excursion. (We
refer to the survey of Le Gall [25] for standard definitions concerning random real trees.) Fix
k> 1 and let Uy, ..., Uy be 1ID Uniform([0, 1]) random variables. Furthermore, let 75’2 be
the subtree of 72 spanned by the images of 0 and of Uy, ..., Uy in Tae. Formally, it is useful
to think of this as an ordered rooted tree with leaves labeled by 1,2,.. .,k and edge-lengths,
where we use the relative ordering of Uy, Us, ..., Ui to determine the planar ordering of the
leaves. Using Aldous’ line-breaking construction [4], we may construct a tree which is equal
in distribution to 75, as follows.

Let Jp,...,Ji be the first k£ jump times of a Poisson point process on [0, 00) with inten-
sity tdt at time ¢t. For i = 1,...,k — 1, sample an attachment point A; ~ Uniform([0, J;]),
independent of (A;),;. Take the completion of each of the line segments [0, J1], (J1, J2], .. .,
(Ji—1,Jk), and for each i € {1,...,k — 1} let J* denote the limit point as x | .J;_;. Identify
the points J; and A;, and think of the line-segment as being attached to the left side of the
branch containing A; with probability 1/2 and to the right side with probability 1/2. Denote

the resulting rooted ordered tree with leaf-labels and edge-lengths by 7. Then, Tle 4 T*,
see [4, p. 279].

The proof of Theorem 1.1 (and similarly Theorems 1.4 and 1.5) relies on proving that
a certain discrete line-breaking construction of T, described formally in Section 2.2, con-
verges to Aldous’ line-breaking construction upon rescaling. The discrete construction builds
atree on [n] by first constructing paths PW . P®) and then attaching them to one another
by identifying one endpoint of each path P(!) with a point in (PU )) j<i- The proof of con-
vergence of the random finite-dimensional distributions relies on the observation that, along
each path, the sequence of partial sums of the displacements is essentially a random walk
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trajectory with IID steps with the same distribution as Yz Ue and, moreover, that random dis-
placements appearing at branch points do not contrlbute to the displacements of the discrete
snake on the “macroscopic” spatial scale of ©(n!/*).

For the proofs of tightness, we adapt a method of Haas and Miermont [34] used to prove
tightness for the height process of a Markov branching tree. (Note that size-conditioned Bien-
aymé trees are examples of Markov branching trees.) Let T* be a subtree of T,, spanned by
its root and k uniform vertices. The difference T,, \ TF is a forest F¥, and to prove tightness
we bound the maximum modulus of the spatial locations in each tree in F¥. Following Haas
and Miermont, we reduce this bound to an expression involving only a size-biased pick from
among the trees in F¥. The proof of tightness then reduces to proving an explicit tail bound
for the maximum modulus of the spatial location of a vertex in T,, when rescaled by n~/4.
As a key part of our argument, we require a strong control on the total variation distance
between the laws of ¢ and of the number of children of the root of T,,, which we denote by
lA)’f. For k € [n], by Kemperman’s formula [37, Chapter 6],

~ n P{S,-1=n—
1.13 P{D} =k} = Ip =i
(1-13) ! <n—1> P{S, —n—l} &=k},
where (.Sy,)n>1 18 a random walk with 11D p-distributed increments. In order to control this
total variation distance, we use a version of the local central limit theorem ([35, Theorem
13, Chapter VII] which, for completeness, we also state below in Theorem A.2) which holds
whenever E [5 3] < 00; this is the origin of the third moment condition in our main theorem.

1.7. Asymptotic notation. We will use the following notation related to the asymptotics
of random variables (X},),> € R. (See Janson [16].) For (y,)n>1 € R>o,

* X,, = op(yn) means that X,, /y, B 0asn— oo;

* X,, = wp(y,) means that X,, /y, B oo as n — oo;

* X,, = Op(y,) means that for all € > 0, there exist constants n., C. > 0 such that for all
nZnE’P{XnSCEyn} >1—¢;

* X,, = Qp(y,) means that for all £ > 0 there exist constants n., Ce > 0 such that for all
n>ne, P{X,, > Ceyn} >1—¢;

* X,, = Op(y,) means that X,, = Op(y,) and X,, = Qp(yn);

* Lastly, “with high probability”” always means “with probability tending to 1 as n — oo.

2. Trees, branching random walks, and their encodings. We require a number of dif-
ferent tree models, which we now define.

First, a tree is simply a connected acyclic graph T'= (v(T"),e(T")). A rooted tree consists
of a tree together with a distinguished root vertex p = p(T") € v(T'). Given a rooted tree T
and a vertex v of T" write C'(v,T') for the set of children of v in T" and ¢(v,T) = |C(v,T)|;
vertex v is a leaf of T if ¢(v,T) = 0. We write T for the set of leaves of T'. Also, for a
non-root vertex v we write p(v) = p(v,T) for the parent of v in T'. For vertices v, w € v(T')
we write v < w if v is an ancestor of w, and for an edge e we also write e < v if at least one
endpoint of e is an ancestor of v. For S C v(T"), the subtree of T' spanned by S is the minimal
subtree of 7" containing all elements of .S.

Letting NV := {(}}, the Ulam—Harris tree is the rooted tree with root () and vertex set

w:UW

n>0

in which, for each v € U, the set of children of v is {vi,i € N}. (Here, and in the sequel, for
a string v = (v, ...,v) we write vi := (vq,..., vk, 7).) We say w is a younger sibling of u
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FIG 3. Left: an ordered rooted tree. Center: a labeled ordered rooted tree, with the functions oy indicated for
v € {1,4}. Right: the edge labeling of T\ introduced in Section 2.2.

if w=wv7, u=wvt and 5 > 7. We will make use of the usual lexicographic order on ¢/, which
is the total order in which each vertex precedes all of its descendants and all of its younger
siblings. Also, for v € N” C U we write |v| = n for the depth of v in /.

The definitions of the coming paragraph are illustrated in Figure 3. An ordered rooted tree
is a tree T' with v(T') C U and the following properties: (i) ) € v(T); (ii) if v € v(T') then
p(v,U) € v(T); (iii) if vi € v(T") then vj € v(T') forall 1 < j <. Note that the edge set of an
ordered rooted tree may be recovered from its vertex set, and we will often identify ordered
rooted trees with their vertex sets. The lexicographic order on v(T") is simply the restriction
of the lexicographic order on U to v(T').

A labeled ordered rooted tree is a finite rooted tree T' = (v(T'),e(T")) with v(T) = [n] in
which, for each non-leaf vertex of 7', the set of children is endowed with a total order o, =
op1:C(v,T) = [c(v,T)]. We will sometimes abuse notation by writing vi = o, (i) for the
i-th child of v under this total order. This abuse of notation is justified by the observation
that the ordering of the children of each non-leaf induces an injection ¢ : v(1") — U defined
inductively by p(p(T)) = 0 and p(vi) = (0, 1(i)) = p(v)i for i € [e(v, T)]; and ¢(v(T))
is indeed (the vertex set of) an ordered rooted tree. As such, a labeled ordered rooted tree
could equivalently be represented as a pair (7, f) where T' C U is a finite ordered rooted tree
and f: T — [n] is a bijection (so n = |T'|). However, the first representation is more natural
in the context of the methods we shall shortly use for constructing random labeled ordered
rooted trees. Moreover, the second representation would be confusing, as it is very similar to
our representations of branching random walks and of spatial trees, which we now describe.

2.1. Branching random walks, tukasiewicz path, contour and height processes. A
branching random walk is a pair T = (T,Y"), where T is an ordered rooted tree (possibly

labeled) and Y = (Y(*) v € v(T) \ 9T, where Y () = (Yj(v),j € [e(v,T)]) € RET), We
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think of Y'(*) as a set of spatial displacements from vertex v to its children, so Yj(v) is the
difference in the spatial locations of vertices v and vj. The spatial location of u € v(T) is
then given by the sum of displacements along u’s ancestral path:

0(u) = 0(u, T) := 3 v

{(v,vj)€e(T):vj=u}

We refer to the pair (7', ¢) as a spatial tree. The branching random walk (7,Y") can clearly
be recovered from the spatial tree (7, ¢), and vice versa.

Let T'= (v(T),e(T)) be a finite ordered rooted tree and write n = |T'|. The Lukasiewicz
path of T is the function Wr : [0, n] — R defined as follows. List the elements of v(7") in lex-
icographic order as v1,.. ., v,. Set Wr(0) = 0. For 1 <4 <n, set Wr(i) =% _, (c(v;, T) —
1), and then extend the domain of Wy to [0, n] by linear interpolation.

The height process of T' is the function Hr : [0,n] — R>¢ defined as follows. For 0 <i <
n set Hp(i) = |vit1] and set Hp(n) = 0; then extend the domain of Hp to [0,n] by linear
interpolation.

The contour order of v(T') is the sequence wy, . .., wy(,—1) of elements of v(T') defined
as follows. First, wg = () is the root of 7. Inductively, for each 0 <i < 2(n — 1), if w; has
at least one child in 7" which does not appear in the sequence wy, ..., w;_1, then let w;1 be
the lexicographically least such child. Otherwise, let w;+1 = p(w;, T'). It is straightforward to
verify that each vertex v of T appears in the resulting sequence exactly 1+ ¢(v, T') times. The
contour process of T is the function Hr : [0,2(n — 1)] = Rxq defined by setting Hrp (i) =
|w;| for integers i with 0 < i < 2(n — 1), letting Hy(2n) = 0, and extending to [0,2n] by
linear interpolation.

If T=(T,Y) is a branching random walk with underlying tree 7' then we encode the
spatial locations by a function Rt : [0,n] — R given by setting Ry (i) = {(v;y1,T), fori €
{0,...,n — 1}, Rp(n) = 0, and extending to [0, n] by linear interpolation. We also define a
process R : [0,2n] — R by setting Ry (i) = £(w;, T) for integers i with 0 < i < 2(n — 1),
Ry (2n) =0, and extending to [0, 2n] by linear interpolation.

The following result appears somewhat implicitly in Section 3 of [7]. For completeness
we give a proof.

LEMMA 2.1. Fix oy, 9 # 0. Let T = (T,Y) be the branching random walk with Y =
(Y y ev(T)\ OT) such that Y ) = (o; — 2 (c(v,T) — j),j € [¢(v,T)]), v € v(T). Let

Q2

R be the function encoding the spatial locations of T. Then for all t € [0,n),
Re(t) = on Hr(f) ;WT(t).
PROOF. It is sufficient to prove that
Re(i) = on Hp(i) - ;WT@)

for i € {0,1,...,n — 1}. Let i € {0,...,n — 1}. Then Hrp(i) is the number of ancestors
of viy1 in T Further, W (4) is the number of younger siblings of ancestors of v; 1. It follows
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orHr (i) — 2 Wr(i) = on - o= Y cwn -y

(€]
(uuj)€e(T)uj=vips (uuj)€e(T)uj=vige

(u,uj)ee(T)uj=vit1

2.2. Sequential encodings of labeled ordered rooted trees. Given a labeled ordered
rooted tree T = ([n],e(T")), we assign labels to the edges of T as follows. For v € [n] and
i € [c(v,T)], assign label (v, 1) to the edge {v,vi} = {v, o, 1(i)}. The set of all edge labels is
then L(T) = {(v,7) : v € v(T),i € [e(v,T)]}. Given any path P = vgv; ... v from a vertex
vg of 1" to one of its descendants, let mp be the sequence of edge labels along the path from

vo to vg: formally, 7p = wp(T") = ((vo, o), .- ., (Vk—1,Cck—1)), Where cg,...,cr_1 are such
that v; = v;_1¢;j—1 for each j € [k].
We say a sequence d = (dy,...,d,) of non-negative integers is a degree sequence if

Zve[n] d, =n — 1. We say a labeled tree 7" with v(7T) = [n]| has degree sequence d if
c(v,T) =d, for all v € [n]. Write L4 for the set of labeled ordered rooted trees with de-
gree sequence d. For any tree 7' € Ly, it is the case that L(T") = {(v,¢) : v € [n],c € [d,]}.
Write Py for the set of permutations of {(v,c) : v € [n],c € [dy]}; this set has size (n — 1)!.
For a fixed degree sequence d, we will make extensive use of a bijection B : Py — L4 for
d=(dy,...,d,) a degree sequence of length n > 2, which we give below. We first describe
B~1, as it is slightly simpler.

The bijection B~ : Lq — Pq. Input: T € L.

o Let 7 be the subtree of T consisting of the root alone.

e For ¢ >1,if T¢~1 =£ T then let y*) be the smallest label of a vertex in 7" which
is not in 71 let P be the path in T from TU¢— to y©, and let T() be the
subtree of T" spanned by { P(), y(1) .. 41},

* Let /* be the first value for which 7(") =T,

* Let 77 be the concatenation of the sequences mpa), ..., Tpe+, and set B~H(T) =
.

In the example of Figure 3, ¢* = 6 and the paths are P() =4,3,10, P(?) =4, P®) =48,
P@W =5 PO =19and P© =1, so

2.1) = ((4,3), (3, 1), (10,1), (4,2), (4, 1), (8,1), (5,1), (1, 1), (9, 1), (1,2)) .

We next describe B; for this we make use of the fact that to specify a labeled ordered
rooted tree T" with vertex set [n] it suffices to specify the set C(v,t) and the total orderings
oy : C(v,T) = [e(v,T)] for each v € [n].

Informally, this construction can be thought of as a discrete analog of the continuous line-
breaking construction from the second paragraph of Section 1.6. More specifically, given
m=((v1,¢1)y-.., (Vn—1,cn-1)) € Py, certain substrings of 7 will correspond to paths in the
tree B(m). We will list these paths as P!, ... P?)_ As in the continuous line-breaking
construction, for each 7 > 2 we will identify one endpoint of the path P with a vertex in
(PP), ;. In the following formal description we denote the i-th identified vertex by v;,.
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When we identify the endpoint of path P(!) with vertex vj,, we use the second coordinate of
the pair (vj,, ¢j,) to determine the position of the unique child of v;, belonging to P among
the children of v, .

The bijection B : Pq — Lq. Input: 7 = ((vi,¢1), ..., (Vn—1,¢n-1)) € Pq.

* Set m; =min{m € N:m  v;} and let
J1=1inf{j > 1:v; € {my,v1,...,vj_1}} An.

e Fori >1,if j; <n then:
— set mijp1 =min{m >m; :m¢& {v,...,v;} };
— let

Jit1 :inf{j > it v; € {ml,...,mH_l,vl,...,vj_l}}/\n.

e Let*=min{i >1:j,=n}.

* Define a labeled ordered rooted tree T € L4 as follows. For 1 <i<n—1,ifi+1¢&
{j1,-..,Je} thenset v;c; = av_il(ci) :=v;41. If i+ 1 = ji for some 1 < k < ¢* then
set o1 (¢;) = my,.

e Set B(m)=T.

The rightmost tree in Figure 3 is the tree B(m) where 7 is equal to 7 from (2.1).

When needed, we will emphasise the dependence of the quantities m;, j; and £* on 7w by
writing m; (), j;(m) and £*(7). Setting jo = 1 for convenience, we may think of T'= B()
as the union of the paths P(1) ... P() where P; = Vj,_, -..vj,—1m; is the path in T" from
vj,_, to m;. Note that since m; > i for all i € [¢*], vertices 1,. ..,k are contained within the
union of paths P, ... PAC) for all k € [n).

Recall from Section 1.1 that T,, denotes a Bienaymé tree with offspring distribution p
conditioned to have n vertices. Suppose now that D" = (D7,..., D}!) is a sequence of 11D
p-distributed random variables conditioned to have total sum » . ; D =n — 1, and let
IIp» €y Pp-. Then the tree T, has the same law as B(IIp~ ). Furthermore, T,, = (T,,Y),
which we refer to as a (u,v)-branching random walk (conditioned to have size n), has the
same law as (B(IIp»),Y). (Here, conditionally on the underlying tree T, Y = (Y (), v €
v(T)\ OT) are independent random vectors such that if ¢(v, T') = k then Y (*) has distribution
vi). The associated spatial tree (B(Ilp-),¢) is such that £(v1) =0, and for 0 <¢ <n — 1 if
i+ 1 {1, de-}

Uvir) = £(vr) + Y,
and if 1 + 1 = ji, for some 1 < k < ¢*, then
((my) = £(vi) + Y.

In Section 3 we study the above bijective construction of uniform trees with a given de-
terministic degree sequence d; that is, for T'= B(Ilq) for I14 €4 Pq. We note however, that
by conditioning on D™, all results in Section 3 also apply to T,, and, consequently, to the
underlying tree of T, = (T,,Y).

3. Sampling from £4. Fix a degree sequence d = (dy,...,dy). The bijection B applied
to a uniform element I14 €;; Py yields a uniform element 7" = B(Ily) of £4. We can think of
the bijection as constructing 7" from II4 by adding vertices one at a time in order of their first
appearance in a pair (V,C) of I14. Below, we use this perspective to study properties of T, in
particular the law of the sequence of vertices ordered by first appearance in a pair (V,C) of
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114, and the law of the number of vertices contained in the union of the paths p) . pk)

for given k > 1.

3.1. Size-biased random re-ordering. For n > 1 let S,, denote the set of permutations
of [n]. For (k1,...,kn) € N", let ¥ =X, ) be the random permutation of [n] with law
given by

P{X=0}= HZ ko) , foroes,.

We call (ks1y, ..., ksn)) the size-biased random re-ordering of (ki ..., k).

For a degree sequence d, let Ng = |{i € [n] : d; > 0}|. For m = ((v1,¢1),..., (Un,cn)) €
Pq we let 01(m),...,0n,(7) denote the internal vertices in 7' = B(7) ordered by their first
appearance in a pair (v,c¢) in m. When 7 = IIg = ((V4,C1), ..., (Va—1,Cn_1)) €y Pq is
random, we write ‘A/Z-(Hd) = 0;(I14) to reinforce the fact that the order of the vertices is
random. The next lemma states that (Vi(Ilg), ..., Vi, (Il4)) are the vertices corresponding
to a size-biased random reordering of {d; : d; > 0,i € [n]}.

LEMMA 3.1. Fix a degree sequence d = (dy,...,d,) and let 14 €4 Pq. Then for any
permutation (i1, ...,in,) of {i € [n] : d; >0},

7 5 . . di1 di2 diNd
P{(vl(nd),...,de(Hd)):(zl,...,sz)}:n_ln_l_d S T
11 - - j 1

Consequently, the size-biased random reordering of the positive entries of d is equal in dis-
tribution to (d\Z(Hd)’ e dVNd (Hd))‘

PROOF. We show the statement by induction on N4. For Ng = 1, the statement is imme-
diate for all n and for all degree sequences of length n with [{i: d; > 0}| = 1 since if Ng =1
there is a single vertex of positive degree and V; (I1g) = 41.

Next, fix £ € N and suppose the statement holds for all degree sequences d with Ng <
¢. Then fix any degree sequence d = (dy,...,d,) with Ng = ¢ + 1, and any permutation
(i1,...,in,) of {i € [n] : d; > 0}. To specify an element of {7 € Py : (01(7),...,0p11(m)) =
(i1,...,9¢+1)}, it is necessary and sufficient to specify

1. m = (1)1,01) € {(z’1,c) S [dil]};

2. The d;, — 1 values j € {2,3,...,n — 1} for which 7; = (i1, ¢) for some 1 < ¢ <d;,;

3. The order of the d;, — 1 elements of {(i1,c),1 <c<d;, }\{m}inm;

4. The order of the elements of {(i;,c),2<j</¢+1,1<c<d,,} in m, which must ensure

that (62(7), .. ., g1 (1)) = (2, -y ie11)-

By the induction hypothesis applied to the degree sequence (d;,,...,d;,,,,0,...,0) €
Z;Bd” this implies that
{m € Pa: (01(m),..., 0p1(m)) = (i1, - ie41) }|
n—2 d; d;
=d; diy — Dl(n—1—d;,)! 2 e
“<di1_1>(“ N(n h)n—l—dil n_1_2§:1di1‘
d; d; d;
(3.1 =(n—1)!—>2 2 T — ;
n-In-1-di "n-1-" d;

since |Pg| = (n — 1)!, the claim follows. O
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3.2. RepeatsinTg. LetIlq = ((Vi,C1),...,(Vn_1,Cn_1)) € Pq. Recall that Vi (I14),

, Vi, (Ily) are the internal vertices in B(Ilq) ordered by their first appearance in a pair
(V, C) in Hd.

For i € [¢*(I1y)] let M = m¢(I1q) and J& = j&(I14). We introduce this notation to em-

phasise that M{i, oo, M g‘(ﬂd) and J{i, e Jg (1) are random variables. We will see later
that for the random degree sequences D" = (D7, ..., D)) arising in this paper, for & > 1

fixed and for n large, {Vi,...,V;pn} N [k] = 0 with high probability. In this case, for each
i € [k] the first coordinate of the pair (V;on,C ;o) € IIpn~, corresponds to a repeated first
coordinate of IIp~. It is therefore convenient to define a second set of indices which cor-
respond to the indices of II4 for which the first coordinate is a repeat. Specifically, let
=inf{j>1:V;e{Vi,...,Vj_1}} An,and for i > 1, let

JA =inf{j > J:Vie {(Vi,...,Vi1} An.

The next two lemmas describe the laws of J1 and (J i > 2), respectively.

LEMMA 3.2. Fixan integer n > 2 and a degree sequence d = (dy, ..., d,) and let T1q €
Pa. Then for 1 < k < Ny,

_ R R k I (doqy+1
P{J{1>k‘%(Hd),...,VNd(Hd)}:jE[l(1Z 1 7.(11) )>’

n—1—j

and, for k > Ny,

P{J >k | Vi(Ma)..... P, (M) } = 0.

PROOF. Observe that j{l < Ngq + 1 deterministically, so the statement for k > Ny is im-
mediate. To prove the statement for 1 < k < Ng, fix any ordering i1,...,iy, of {i € [n]:
d; > 0}. Then using Bayes’ formula and the fact that |P4| = (n — 1)!, the probability

P LTS k| (V). Vv, () = Gir, i) }

may be expressed as a ratio with denominator

‘{7[': ((vi,ci),i € [Tl]) ePyq: (@1(#),...,@Nd(ﬂ)) = (il,...,iNd)}‘

and numerator

HTF:((’Ui,C@'),i S [n]) S 'Pdt(’f)l(ﬂ'), ...,@Nd(ﬂ')):(il, ...,iNd), (’01, ...,Uk): (il, ,Zk)}|

Equation (3.1) directly yields a formula for the denominator. Also, letting d’ be the degree
n—d;, —...—d;
sequence (djy+1,---,dn,,0,...,0) €Z5, " **, then the numerator is

Hd 7’L —1- )di1+---+dik_k ’ |{7T, € Pa : (@1(77/)7 s 7{7Nd—l€(7r/)) = (ik-‘rlv s 7iNd)}| :

The first term selects c; € [d;,] for each j € [k]; the second, falling factorial term selects the
locations of the remaining entries of = whose first coordinate belongs to {71, ..., }; and the
third term specifies the order of the remaining entries of m € Pg. Equation (3.1) also gives a
formula for this final term, and the lemma then follows by routine algebra. O
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LEMMA 3.3.  Fix a degree sequence d = (dy,...,dy) and let 14 €y Pq. Let i > 1. Then
forn>2 and k such that J¢ + k € [Ny),

P{Jy > Tk | T T V(M) Vi, () }

Ti+k (1 ) Zizl(d@(nd) -1) - z>

— H —
j=J¢
and, for k > Ny,

P{jg-l >k ’ ‘Z(Hd)a"'a‘/}Nd(Hd)} =0.

The proof of Lemma 3.3 is analogous to that of Lemma 3.2 and is therefore omitted.
Finally, a bound we will need in Section 5, whose proof relies on the bijective construction
of T, is the following; its proof is postponed to the appendix.

LEMMA 3.4. Let d = (dy,...,d,) be a degree sequence and let B C [n] be a set of
vertices. Suppose that |B| < K and suppose that maxi<i<, d; < A. Let Bq be the smallest
distance between two vertices in BB that are ancestrally related in T4 = B(Ilq) (with Bq = oo
if no vertices in B are ancestrally related). Then, for any b >0

P{Bdgb}gK<1—<1_n_IﬁbA>b>.

4. Random finite-dimensional distributions. In this section we use the bijection B
to prove the convergence of the random finite-dimensional distributions of the head of the
discrete snake (H,, R,,). We assume throughout this section that y is critical and has variance
02 € (0,00), and that assumption [A1] holds.

Recall that T, is a Bienaymé tree with offspring distribution y conditioned to have n
vertices, and that T,, = (T,,,Y") denotes the conditioned (u,v)-branching random walk. By
Section 2.2, T, has the same distribution as (B(Ilp»),Y"), where D" = (D},...,D;) is a
sequence of 11D p-distributed random variables conditioned to have total sum ;" | D" =
n — 1 and, conditionally on D™, Ip» = ((V1,C1), ..., (Va—1,Cn-1)) €1 Ppn.

Fix k> 1. Let U, ..., U}’ be a uniformly random k-set of indices chosen from [n]. Let
T, (UT,...,U}}) be the subtree of T,, spanned by the root of T,, and the vertices vyy, .. .,
vy, where for i € [n], we recall that v; is the i-th vertex in the lexicographical order of
T,,. (For fixed k, as n — oo, a collection of k 11D Uniform([r]) random variables will be
distinct with probability tending to 1, so we can treat U7, ..., U}’ as indistinguishable from
independent uniform picks from the vertices.) We immediately observe that T,, (U7, ..., U})
has the same distribution as T¥, the subtree of B(IIp~) spanned by the root and the vertices
1,...,k. Since TX is more convenient for our analysis, we will work with it instead. Note
that T is a labeled ordered rooted tree whose leaves are labeled by 1,2, ..., k. Write £~ for
the map from T¥ into R which gives the spatial locations of the vertices, so that (T%, %) is
the spatial tree (T, ¢) restricted to the subtree spanned by the root and the vertices 1,. .., k.

Let T5e denote the Brownian tree encoded by the excursion 2e, and let Uy, . .., U be 11D
Uniform([0, 1]) random variables, independent of e. Recall that 75, = Tae(Us, ..., Uy) de-
notes the subtree of 75 spanned by the images of 0 and Uy, ..., Uy in Tae, thought of as
an ordered rooted tree with leaves labeled by 1,2,..., k and with real-valued edge lengths.
Recall that 7’2’2 has the same distribution as the tree 7% built by Aldous’ line-breaking con-
struction. We now introduce a version of the line-breaking construction which incorporates
spatial locations.
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Line-breaking construction of the Brownian tree with spatial locations

We construct a sequence (7%);>; of trees along with two functions h : [0,00) —
[0,00) and 1: [0,00) — R recursively. Let Ji, Jo,... be the jump times of a Pois-
son point process on [0,00) with intensity ¢d¢ at time ¢, listed in increasing or-
der. Independently, let (B;);>0 be a standard Brownian motion. Start from the tree
T! which consists of the line-segment [0, J;]. Define h(t) = ¢ and 1(t) = B; for
0 <t < Ji. Recursively, for £ > 2, conditionally on J;_1, sample an attachment
point A;_; ~ Uniform([0, J;_1]), independent of (A;);<,—1. Take the completion
of the line segment (J,_1,Ji], and let J; ;| denote the limit point as = | Jj_q.
Identify the points J;_; and Aj_;. This has the effect of gluing the line-segment
(Jx_1,Ji] onto T#~1. We do this with probability 1/2 to the left side and with prob-
ability 1/2 to the right side. This yields 7%. Define h(t) = h(Ay_1) +t — Jx_; and
1(t) =1(Ak—1) + B: — By,_, for t € (Jx_1, Ji] to determine the height and location
processes on the new line-segment.

The planar embedding of 7 is captured by a permutation 7% : [k] — [k] which is such that
7%(1),...,7%(k) is the order in which we observe the leaves when exploring the tree from
left to right. Using the notation U (kl), U (kk) for the increasing ordering of Uy, ..., U as in

Proposition 1.10, we then have

(h(JTk(l)), o DTk )), 1T e 1)) - l(JTk(k)))
(41) g (2eU(l«1>7 ceey 2eU(kk> y \/§I'U(kl> goo ey ﬁrU(’“k)> s
where the equality in distribution of the first k co-ordinates on the two sides is a consequence
of Corollary 22 of Aldous [4], and that of the final £ co-ordinates is a consequence of the
definition of the Brownian snake given at (1.1). So the line-breaking construction indeed
realises the random finite-dimensional distributions of the head of the Brownian snake.

We show that the scaling limit of (T%, (%) is (T*,1| ;,)) in an appropriate sense, which
will allow us to prove the convergence of the random finite-dimensional distributions, along
with a certain amount of extra information which will be useful to us in Section 5 where we
prove tightness.

Recall that the tree Tf; necessarily sits within the first & paths, P1) ..., P®*) in the
discrete line-breaking construction. We need to understand the lengths of these paths, and
the positions at which the paths are glued onto one another. It is convenient to use the in-
dices of the vertices in IIp~ for this purpose rather than the vertex labels themselves. Recall
that JP", JP" ... JP" are the first k indices at which we see either a repeat or an ele-

ment of {1,2,...,k}. Let us henceforth write J* = JP" (and also jf = jiDn) for i > 1.
Then the lengths of the paths P(), ... P®) are given by JU,Jy = Ji, . J) — Jp . For
1 <m <k — 1, the index at which the path P(m+1) attaches onto the subtree constructed
from the first m paths is given by the value i such that V. = V(1 pr) (i.e. we find the index

of the vertex V. within the vector ( Vi(pn), ..., Va, (IIps))). We write A7, for this value
¢ and call this the m-th attachment point. See Figure 4.

Since T¥ is an ordered tree, we will need to understand where the paths p@ .. pk)
attach relative to the pre-existing children of their attachment points. If we are looking to
attach to a vertex which has only one pre-existing child (i.e. for which there has been no
previous repeat) then that vertex must have degree d > 2, and then whether we attach to the
left or to the right of the pre-existing child is simply determined by the relative ordering of
the corresponding second coordinates in the sequence IIp-. If there has been no previous
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Vi(lipn) Va(Ilpn) Va(Tlpn)  Vi(Tlpn) Vs(lpn) Vs(Ipn) Vi(pn)

FIG 4. Illlustration of the first and second attachment points, ATf and Ag.

repeat at this vertex then this pair of second coordinates is chosen uniformly at random with-
out replacement from [d] and, in particular, we attach to the left and right sides each with
probability 1/2. This ceases to be true after the first repeat (not least because then there are
three or more children whose relative ordering we need to understand), but as we shall show
below, we observe a second repeat of any vertex in T* with vanishing probability as n — co.
Let F[',..., F} be random variables taking values in {0,1,2} such that " =1 if pl+1)
attaches at a first repeat and to the left-hand side, F}* = 2 if PU+D) attaches at a first repeat
and to the right-hand side and F[LH = 0 otherwise, for 1 <i < k.

Finally, recall that vertex ‘Z(H pn) has degree D% (TTp) fori < Npn = |{i €[n]: D} >
fl Dn

0}|. Let L"™(0) =0 and let L™ (%) be the spatial location of the Cj-th child of vertex V; in
line-breaking construction B(Ilp. ), for 1 <i<mn — 1.

The following proposition shows that, on rescaling, these quantities converge in distribu-
tion to their analogues in the line-breaking construction of the Brownian tree with spatial
locations.

PROPOSITION 4.1. Fix k> 1. Then
9
4D

as n — oo. Jointly with this convergence, we have that

n n n n n d
(42) (J17J2,’Jk,’ 1,7Ak)H(J1,J2,,Jk,A1,,Ak)

43) (Fy B FR) -5 (B, P, F),

where F1,Fy, ..., Fy are ID random variables, independent of everything else, such that
P{F,=1}=P{F;=2}=1/2and

<L”(Ltn”2J AT = 1)))

nl/4

d
— B(Bia (1, /o)) 205
>0

d
— B(Ba, jo + B((1, Joy+t)A(J 111 Jo) — B, jo) )20
>0

4.4
“ (”((Jf+Ltnl/ﬂ)A(J&rl”)

nl/A
for1 <i<k—1,ineach case for the uniform norm.

As a corollary, we obtain the convergence of the random finite-dimensional distributions
in (1.3).

COROLLARY 4.2. Forany k>1, as n — o0

Hn(nU(kl)) Hn(nU&)) Rn(nU(kl)) Rn(nU(’“k))
N Y T n e L e vF
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d (2 2 2 2
— geU(kl), ey ;eU(kk) y ﬂ ;I'U(kl), ce ,,8 ;I'U(k)c) y

where U(kl)7 U U(kk) are the order statistics of k 11D Uniform([0, 1]) random variables.

PROOF. Let (U}, ...,U;') be a uniformly random k-set chosen from [n], and (U("l’)k, ey

U&)k ) be the order statistics of (U",...,U;"). As argued above, we may straightforwardly
replace nU(kl), e ,nU(kk) by (U("l’)k —1,..., U(T,LC)k —1) at no asymptotic cost. Recall that H,, (7)

gives the distance from the root of the (i + 1)-th vertex visited in a depth-first exploration of
the tree. The random variables

(Hn(Ui" = 1),..., Ho (U — 1))

have the joint law of the distances from the root to the leaves labeled 1,2,...,k in Tfl (these
may be expressed in terms of sums and differences of elements of (J1',...,J}, AT,..., A})
analogously to the definition of h in the line-breaking construction of the Brownian tree with
spatial locations), and

(Ro(UT = 1),..., Rpy(U" — 1)) = (L"(JT — 1),..., L"(JI — 1)).

The effect of ordering the uniforms is simply to apply the same permutation of the entries to
each of (H,(UT' —1),...,H,(U}’ — 1)) and (R, (U = 1),..., R, (U}’ — 1)). This permuta-
tion is straightforwardly induced by the choices (F7', ..., F}' ;). By (4.3), this permutation
then converges in distribution to 7%. But then the claimed convergence follows from Propo-
sition 4.1 using the scaling property of Brownian motion and (4.1). O

We begin by studying the vertex degrees at the start of the bijective construction, and show
that, on the timescale of /7, the degrees that we observe are asymptotically indistinguishable
from TID copies of £. We show further that the subtree T% is constructed on a timescale of
order /n. This allows us to prove (4.2) in Proposition 4.7. To get the convergence of the
spatial locations, we observe that, with the exception of branch points, the displacements
along the ancestral lineages in TX are asymptotically indistinguishable from 11D copies of
Yz 1y.- Combining this with the convergence of the tree allows us to obtain the convergence
of the spatial locations along the branches of the subtree.

4.1. A discrete change of measure. In this subsection, we show that the size-biased ran-
dom re-ordering of the positive entries of D" may be viewed as a vector of IID copies of the
size-biased offspring random variable £ up to a change of measure. We study the behaviour
of the Radon—Nikodym derivative and show that its effect is trivial on the first O(y/n) en-
tries of the vector. Recall that Np» = |[{i € [n] : DI > 0}|. To ease the notation, we write
N, = Np-. Let

D":( ?,...,DTJ{,W)

be the size-biased random re-ordering of the positive entries of D". We note that

An 4 n n
D" L (DR e D i)
Later we will often somewhat abuse notation and write (B?, e ,ﬁ]’{,) in place of
n
(D‘71 (HD'" ), ceey D‘/}Nn (HDH))’

for example in the proof of Proposition 4.7.
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PROPOSITION 4.3.  Let &1,&2,. .., &y be ID random variables with distribution ji. Fur-
ther, let £1,&2, ... be ID samples from the size-biased distribution of 1. Then for 1 <m <n,
and any non-negative measurable function f : 7™ — Ry,

E /(D D),z | =B [f (€ 6n)0" (G Em)]
where for k1,...,kp €N,

n _P{Z?m-&-lgi_ — k} noitl
4.5) O"(ki,....kn)= P{Z 152_71—1} H(ﬂ—l—zzﬁkb')’

ifki+...+kn<n-—1and ©"(ky,...,kp) =0 otherwise.

Proposition 4.3 is a special case of Proposition A.4 that we state and prove in the appendix,
and use in full generality to prove Theorems 1.4 and 1.5 in Section 7. We state only the special
case here as the more general formulation is much more technical and requires definitions that
are only relevant in settings where assumption [A3] holds.

The next lemma shows that the change of measure ©™ appearing in Proposition 4.3 is
asymptotically unimportant provided that m = ©(y/n).

LEMMA 4.4. Let p be a critical offspring distribution with variance o® € (0,00), and

a
let (&;)i>1 be ID samples from the size-biased distribution of ji. Suppose that m = m(n) =
©(y/n). Then as n — co

(H)n(glau')gm) £> 1’

and (©"™(&1,...,&m))n>1 is a uniformly integrable sequence of random variables.

PROOF. By a subsubsequence argument we may assume that m//n — t as n — oo for
some t > 0. Let &y, ..., &, be IID random variables with distribution p. We deal with the ratio
of probabilities in the definition of ©" using the local central limit theorem. Specifically,
since E [¢1] = 1 and Var {¢;} = 02, we have that

- 1 k2
—m-P E —m—1— — -
vn—m { &=n m—i—k} 5 2exp( 202(n )>‘—>0

sup
kez i=m+1
asn — oo, so for k1,...,ky, €N,
p{ 3 Gone- 3o
i=m-+1
:P{ > &-—(n—m):—l—mUZ—Z(ki—l—JQ)}
=m-+1 =1

2

+o(n=1/?).
2ro?(n —m) o)

Similarly, we have that

{Z{Z—n—l} = \/27:74—0(711/2).
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Therefore,
P{Ylni=n—1-3" k}
P{YiLi&i=n—1}
2
1 24> (ki —1—0?
(4.6) =exp | — Fmo”+ Qi (ki o) +o(1).
202(n —m)
Since the random variables &1, . .., &, are IID with mean o2 4 1, by the functional strong law

of large numbers (as stated in Lemma A.1), as n — oo,
1 i

4.7 ——  max ¢ —1—o02)] Z0.

@D Vi 1<i<|ivi) 2.6 )

J=1

Since m = (1 + o(1))t+/n this, in particular, yields that

L+mo? + 3726 — (1 +02))>2 B exp ( t2”2>

202(n —m) 2

(4.8) exp | — ( 5

We claim that, as n — oo,

m o 2 2
(4.9) ( i H:l _ ) P exp <t;> .
s \n—1=-33&
Indeed,
ﬁ( n—i+1 >_exp< ilog(l Eﬁ.;ll(éj—1_g2)+g2(i—1)>>
i1 = = — _ " .
i=1 ”_1_2;:15]' i=1 n—i+l

It follows by Taylor’s theorem and (4.7) that the last expression is equal to

m SilE —1—0 o(i —
exp (Z 267 ) o 1)—1—013(1))

, n—i+1
=1
2|t tvn] —1 2o
(4.10) =exp (U tvn)(ltyn] = 1) +0p(1)> B exp <U) ,
2n 2
establishing (4.9). Combining this with (4.6) and (4.8) yields that
O™l ... Em) D1
To prove uniform integrability, notice that, by applying Proposition 4.3 with f =1,
E [0"(&,..,&m)] =P {Nn > m}.
We claim that this tends to 1 as n — oo. To this end, note that
#{ien] : & >0} 4 Binomial(n, 1 — py).

So by conditioning on the event {37, & = n — 1}, which occurs with probability © (n~1/2),
there are (1+ op(1))n(1 — pp) non-zero entries of (£1,...,&,). Since m = (14 0(1))ty/n it
follows that as n — oo,

P{NHZm}:P{#{ie[n] 16 >0>m

ifi:n—l}—)l.

i=1
Uniform integrability then follows by the generalised Scheffé lemma, see [19, Theorem 5.12].
O]
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Lemma 4.4 implies that if the offspring distribution has finite variance then, on a timescale
of \/n in the bijective construction B(IIp~) of T,,, the degrees we observe are asymptotically
indistiguishable from 11D copies of £. To prove Proposition 4.1, we use this fact in the form
of Proposition 4.5 stated below.

PROPOSITION 4.5. Given ]3”, let Uy,...,U, be independent random variables such

that, for each i € [n], U; is uniformly distributed on [ﬁ”] Further, let Y, ;.- Y5, 17

be independent random variables such that, for each i € [n], Y isa umform entry of a

Dy,U;
Vpn-distributed displacement vector. If [A1] holds then as n — oo,

| vl [ty )
% Z (D;n 1/4 Z Y — (UQt,BBt)tZO,
=1

>0

for the topology of uniform convergence on compact time-intervals, where (By)>0 is a stan-
dard Brownian motion.

PROOF. Fix T > 0 and let F': D([0,T],R)?> — R be a bounded continuous function,
where D([0,77],R) is the space of real-valued functions on [0,7’] that are right-continuous
with left limits equipped with the Skorokhod topology. Let &1, &, ... be IID samples from
the size biased distribution of . Further, independently for i > 1, let U; be a Uniform([¢;])
random variable.

By Proposition 4.3,
[tv/n] [tv/n]
E|F f Z n1/4 Z Y0, LN, > 7y
0<t<T
(4.11)
Lt\fj 1 v _ _
=1 0<t<T

where the random variables (Yg E)izl are independent and, given g}, we have that Yg U,

is a uniform entry of a v, distributed displacement vector. Since E [51] =02+ 1, by the
functional strong law of large numbers (Lemma A.1), as n — oo,

| Al
7n PORGESY 2 (0*)i>0
i=1

>0

inD((0,7),R).
Furthermore, the random variables (Yg U, )i>1 are IID with mean and variance given by

[gl,m} ZMZEYM 0, Var{ &Ul} ZMZE V2] =

It then follows from Donsker’s theorem that as n — oo

| vl )
/4 > Yer, — (BBt)i=0
i=1

t>0
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in D([0,7T],R). Therefore, by the continuity of F', as n — oo,

| Al | Ll
E\F n > & =1, > Y, — E [F ((6*, BBi)o<i<r)] -
i=1 i=1

0<t<T
Combining this with Lemma 4.4 and the boundedness of F' yields that (4.11) converges to
E [F ((0*t, 8B)o<i<r)]

as n — 00, and the result follows. O

4.2. Bijective construction on the timescale \/n. In this subsection we show that the
subtree T is constructed on a timescale of order /7 with high probability. We then prove
that the lengths of the paths which are glued together to form T% converge on rescaling, as
do the positions at which they attach to one another.

We begin by showing that, with high probability, the vertices 1, ...,k do not appear in the
first ©(y/n) entries of IIpx.

LEMMA 4.6. FixT >0and k > 1, and let
Gu (1) = {{TAMp0), . Vi (Mpe) f ({1, K} =0, Ny > [T/}
Then P{G,, n(T)} — 1 as n — oo.

Notice that on the good event G, 1(T), if J* < |Tv/n| then JP" = JP" for all i € [k],
and T* is precisely the tree spanned by the root and the paths PO P%) in the bijective
construction B(IIp~) of T,,.

PROOF. We have
P{G,,(T)} =P {{VI(HD“)a o Virym M)} 0 {1, kY =0, N, > LT\/ﬁJ}

X D} +---+ Dp [Tvn]
n—1-— T\/ﬁmaxlgign D:L

>E —P{N, <|TVn]}.

Let € > 0 and (&;);>1 be a sequence of 11D random variables with distribution p. Then,
} _ P{maxicicn & >evn, 3oL, Si=n—1}
P{3Li&i=n—1}
< nP {fl > 6\/’5, Z?:l &E=n— 1}
= n .
P {Zizl §i=n—1}

Since E [¢?] < oo we have nP {&; > ey/n} — 0 as n — oo. Hence,

nP{& >eyn, 3 &=n—1}
P{)ii&i=n—1}
npP {fl > E\/ﬁ} MaxX,, /n<m<n—1 p {2?22 Li=n—1- m}
< 7 —
P{} i1 &=n—1}
as n — oo. Combining this with (4.12) gives that

1
— max D! %0

V/n 1<i<n

P{max D! >ev/n

1<i<n

(4.12)

0
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and so
D 4o D
A e 3 Y
NLD
as n — oo. Therefore, by the bounded convergence theorem,
E|[(1- Lt P —1
n—1— T\/ﬁmaxlgign D;

as n — oo. The result then follows by noting (as at the end of the proof of Lemma 4.4) that
as n — oo,

P {Binomial(n,1 — uo) < [T/n]} 0. O

P{N, <|TVn]} < P & n 1]

PROPOSITION 4.7. Fix k> 1. Then

(4.13) %(J?,J;L,...,J,?, n LAY S (T Jay s T Ar e Ay
as n — oo, where Ji,Ja, ..., Ji are the first k jump-times of an inhomogeneous Poisson

process of intensity t with respect to the Lebesgue measure at t € R and, for i € [k], condi-
tionally on Jy,...,J;, A; is uniform on [0, J;], independently of Ai,..., A;_1.

PROOF. Fix T'>0.Let 0 <t <--- <t <T and 51 < t1,...,8; < tx. We will prove
that

P{J} <tivn,...,Ji <tp/n, AT < sivn,.. AR < spv/n}

k ty th
— o2k Hsj / / exp(—o?ts/2)dry .. .dry
j=1 0 Tk—1

(414) :P{Jl SO’tl,...Jk Sdtk,Al SO’Sl,...,Ak SO’Sk}.

We will often work conditionally on the random variables Dn = (ﬁ?, . ,57\,) To make

the equations easier to read, we write P 55, for the conditional probability given D"and E P
for the corresponding expectation.

Fix 7" > T. By Skorokhod’s representation theorem, there exists a probability space on
which the uniform convergence

1 [tv/n] R J
(4.15) 7 ; (Dr—1) —= (0*t)o<i<r

0<t<T"
from Proposition 4.5 occurs in the almost sure sense. We work on this probability space for
the rest of the proof. Note, in particular, that if the above convergence occurs almost surely
then it is also the case that
a.s.
Nz rym) — L

We first show that, as n — oo,

nk/2Pf)n {j{l = [tivn], J8 = [tov/n),..., T} = Ltk\/ﬁJ} Ly, > 17vm)

a.s

2% 6%ty .ty exp (—o2t2/2).

(4.16)
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By Lemma 3.1, whenever the bijective construction B(IIp~) of T,, encounters a new vertex,
its degree is distributionally equivalent to the next one on the list (DT,..., D}, ). So by
Lemma 3.2, on the event {N,, > |T'\/n|}, we have

Py, {Ji =tV |
1vn|— /\’Vl t1v/n|—2 y /\n
= eiffJ 1(De _1)L ﬁ (1_ 1=1(D; _1)>

n— [t1v/n] n—1-j

j=1

RO/ exp Lh%ﬂlog 1- L (Dp 1) (D~ 1)
n—[tivn] n—1-j

j=1

n—lefJ n—1—j

By (4.15) and a similar argument to that used in the proof of (4.10), we get that as n — oo,

- s, 252
ViPp, {J = v} s ey % 0t e <—1) -

1 Ltl\/ﬁJ72 j An .
0y (511

J=1

2

We now proceed to prove the joint convergence of the first £ coordinates in (4.16) by

induction. Suppose that the claimed convergence holds for J~f’,. . jﬁl_l. By Lemma 3.3, on
the event {N,, > |T'\/n|},

P { T = Ty = /) = ltmav) | T = [0v/) oo Ty = teav/) |
mVnl—m /A n myv/n|—2 m
femval=m pn gy _p q Y <1 S (Dp 1) — m+1>'

= n— [tmv/n] j:LtHﬁJ

n—1—j

Arguing as above, we obtain

VP, {Jn_ [tmv/n] ‘J1 =[], Ty = [t 1\/>J}1[N,,2Ltm\/ﬁj]

t’V?’L
23 52t exp <—/ UQTdT) .
t

m—1

By induction on m, we get this for all 1 < m < k. Taking the product of the conditional
probabilities, we obtain (4.16).
We now wish to add in the random variables (A7');c(x). We work conditionally on the event

Gx(T). Given also JI' = |t1v/n),..., 0 = |tmy/n), D},...,D% and A7,... A" |,
since N,, > | T\/n], at time J), there are 132” —1-t 1[4p—;) remaining instances of the
vertex X//\; (ITp~) to appear in the bijective construction. So, the repeated vertex that we see is
Vi(Ilpn ), i.e. A, =i, with probability
Dy —1— 3375 Ly
Zl_tme D,:l_l)_mj
for 1 <i < [t,/n| —m. Hence,

Py, {A%, <smvn | Gui(T),JT = [t1v/n], . = [tmv/n), AT, AL,y }
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ZLsme(Dn_ ) }751 1[A;§sm\/ﬂ
STy - —m

This quantity lies in the interval

Z[Sm\fJ(Dn_ ) m-1 Z[Sm\fj(Dn_ )
ST Dy 1) YT Dy 1)~ m

whose end-points do not depend on AT, A%, ..., A" ;. Iterating, we thus obtain that
P, {A’f < s1v/n, AT < s/ | Gui(T), P = [tiv/n), - I = [t nj}

lies in a random interval depending only on lA??, e ﬁm /n|» both of whose end-points con-

verge almost surely to Hi@:l(sm /tm) by (4.15). So the same is true by sandwiching for our
conditional probability which lies in that interval.
Putting everything together, we then have

P{J} <tivn,...,Jp <tpv/n, AT <s1v/n,..., Ap < sp/n}
:P{J{Z Stl\/ﬁa"-ajk; Stk\/ﬁaAl Ssl\/ﬁa"'aAk; Ssk\/ﬁ7gn,k(T)C}
E [Py, {JI'<tivn,....Jp <tpv/n, AT <siv/n,... A} < spvn, G i(T)}] .

The first term on the right-hand side of this equation clearly tends to 0 by Lemma 4.6. Since
the second is the expectation of a conditional probability, it is sufficient to show that the
conditional probability itself tends to exp(—o?t;,/2) H 1 S in distribution. For 1 <m <k
and n > 1, let us write

;o [tmvn] +1

Then we have

Pp, {J7 <tivn,..., Jp <tpv/n, A} <siv/n, .. AR < spv/n, G (T) }
ety
:/om/ Pj. {Arf <1V Ag < sV |Gk (T), JT = [rivnl, ..., Ji = er\/ﬁj}

x nfP s {j{l: lrivnl, .. Jp = er\/ﬁj,gnyk(T)}drk...drl

tT t
:// Pf)n {A? < Slﬁ,...,Ak < Sk\/ﬁ gnjk(T),J{L = Lrlx/ﬁj,...,J]? = LTk\/ﬁJ}
0 Tk—1

X ’I’Lk/QPf)n {17? = L?"l\/ﬁJ,...,:fg = er\/m}1[Nn2LT\/ﬁj]d7"k---d7“1_Em

where E, is an error term with the property that 0 < £, <P, {G,, 1(T)}, and so tends
to 0 in distribution as n — oo. The first term in the product which forms the integrand
tends to an=1 (8m/7m) as n — oo and the second term tends to o7y ... 7 exp(—a?ri/2),
both almost surely. Write g, (71, ..., ) for the integrand above, considered as a function of
r1,...,7,. Then we have just shown that

k
Gn(r1,. .. ) 22 o H smexp(—o2ri/2),
m=1
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It is straightforward to see that this convergence is, in fact, uniform on compacts. Hence,

tr tn
// (1, rg)dry .. dry
0 Tk—1
k tl tk
k HSm // exp(—c?r3/2)dry, ... dry,
m=1 0 Th—1

which yields (4.14). The result follows, since T' > 0 was arbitrary. 0
This completes the proof of (4.2) in Proposition 4.1.

4.3. Displacements at repeats. As shown above, for fixed k£ and large n, T’fL is with
high probability the subtree of B(IIp-) composed of the union of the paths PO .. PH),
Moreover, for i € [k], under the bijective construction, by Proposition 4.5, with the exception
of the first vertex in each path P(), the displacements of the vertices in P(*) away from
their parents are asymptotically indistinguishable from IID copies of uniform entries of a
vg distributed displacement vector. On the other hand, the displacement away from of the

first vertex in P(*) cannot be compared to a random variable with the same distribution as a
uniform entry of a v¢ distributed displacement vector. However, in the following lemma we
will prove that such displacements are Op (1) and so negligible on the scale of nl/4,

We first introduce some notation. Recall that for i € [¢*(IIpn)], vertex Vj» is the i-th
repeated vertex encountered in the bijective construction (B(Ilp»),Y") of T}, (Tn7 Y') (and
hence a branchpoint). For i € [¢*(IIp~)], let A} be the displacement of V» | away from its

parent Vj» in T,.

LEMMA 4.8. For any { > 0, max{|A7|,...,|A}|} is a tight sequence of random vari-
ables for n > 1.

PROOF. We will prove that for all € > 0 there exists N > 0 such that for all n > N,
P{|A?|> N} <e.

To prove the result for |[A%[,...,|A}], note that by Proposition 4.7, since (A;);c[x are
almost surely distinct, we have

P {(A?)z‘e[k] are distinct} — 1
as n — o0o. On the event {(A7');c[i) are distinct} the proof for [AL[,...,[A}] is analogous to
that for |[A7| and so we omit it.
Recall from Proposition 4.7 that on~ Y/ 2J{l i> J1. Recalling also that A7 is such that
Vi = 17A5L (ITpn), it follows that conditionally on 13”?, =k, A} 4 Yy, where U, 4

Uniform([k]) and Y}, g, is distributed as a uniform entry of a displacement vector with law
Vi, independent of D™. Fix T > 0 large. We work on the event {.J]* <T'\/n}. For N > 0 and
K>1,

P {|A}|> N, JP <T+v/n}
gP{f)gPK, J{L§T\/ﬁ}+P{|A”|>N Dy, <K, J7 <Tf}
_ 5 k(k
gP{Dj},PK, J?ST\/E}JFZ A e p (Y| > NYP {1 < 0T}

k=2

k(k—1)ug
ﬂﬂ)P{|yk,Uk| > N}P{J, < aT}‘.

P{\A{‘\>N,f)’}‘?:k,J{LST\/ﬁ} -

K
>
k=2
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We have
P {|AY] > N, DYy =k, J TV} = P{|Viu| > N} P {Dliy =k, J7 <Tv/n |

and so
P {|A?|> N, J} <T+/n}

K
~ k(k—1

<p{Dy >k p<rya)+ S e gy oy

4.17) k=2

K
2
k=2

Since kuy <1 for all £, it follows that (4.17) is at most

- k(k—1
P{ B =k, J{‘gT\/ﬁ}—(ﬂ)MP{JlgaT}‘.

P{ﬁ%>4cJ?§T¢?}+5§QPQQWA>N}
4.18)

+ K max
2<k<K

- 1
P{f%:k”W§IV%}—k%UQN%PLASJT}

Fix e > 0. Since [Yz ;.| is a random variable with support in [0, 00), we may take M =
M (K) > 0 large enough so that

K-1 €
TP{’Y&UQ >N} <7

It remains to prove that for sufficiently large n > 1 and K > 1 the sum of the first and third
terms in (4.18) is at most 3¢ /4. To this end, observe that for i > 1,

Dr—1
Tr—1, 7
>t (D} —1)

Pp. {Al =i, T <TVn|J} = In<i<oplp<rym)-

Therefore, for any k > 2,

H1g¢ng:ﬁy:k

Py D% =k, JP<TVn|JPt=(k—1) - 1 .
D A7 | 1 Jr— " [Jr<T\/n
{ } ST D —1)

=1
It follows that

P{ﬁ%:kJ?gTwﬂ

=(k—1)E H1<ti?i[W:thwﬂvm
i Zj1:1 (Dgn -1) -
{1<i<gp: &=k} 2
=(k—-1)E L Lp<rym©" (& rym ) | 5
BB gy s SR

where the final equality holds by Proposition 4.3.
By Proposition 4.7, Ji* = Op(y/n), and so by a functional law of large numbers (see
Lemma A.1 in the appendix),

[{1<i<Ji: &=k} o b
ik (G- 1) o
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Combining this with Lemma 4.4 we obtain that as n — co

(4.19) P{ﬁﬁ?:k,ﬂ%gTVﬁ}—>Mk;;N%P{Jg§aT}

Since 72 | k(k — 1)uy/0* =1, we can take K > 1 and T > 0 large enough so that

K
k(k—1
PghgaT}E:(UQM*>1Z.
k=2

Further, by (4.19) we can take n > 1 large enough such that

max

D%, = n k(k — 1) €
e P {DA{‘ = k?7 Jl < T\/ﬁ} — T]_I){Jl < UT} <

4K~

For such n and 7', we have P {ﬁj}v; >K, J'< T\/ﬁ} < /2. The result follows. O

4.4. Convergence to the continuous line-breaking construction. We are now ready to
complete the proof of Proposition 4.1.

PROOF OF PROPOSITION 4.1. In view of Proposition 4.7, it remains to prove (4.3) and
(4.4).

For (4.3), we recall from the discussion at the start of Section 4 (where (F[',...,F}')
were defined) that at attachment points which are first repeats, the attachment is to the left
with probability 1/2 and to the right with probability 1/2. By Proposition 4.7, the first &
attachment points are distinct and are, therefore, all first repeats with probability tending to 1
as n — o0o. The statement (4.3) follows.

For (4.4), we must consider the spatial locations of the vertices along the first £ paths in
the bijective construction. We work on the event that the paths P, ... P(¥) terminate in
vertices 1,2, ..., k respectively, which we have already shown holds with high probability as
n — oo. For the first path, we have

Ltn?/2 | A(J7—1)

LMt P AP -1))= > Yooy
Jj=1

and, for1 <i<k—1,

(Tt 2 AT —1)

LI+ [tn2 ) A (JPy — 1)) = LM (AT +i — 2) + AP + > Yoo
J=Jr+1 ’
The desired convergence then follows from Propositions 4.5 and 4.7 and Lemma 4.8. O

5. Tightness. We assume throughout the section that p is critical and has finite variance
02 € (0,00), and that [A1] and [A2] hold.

Let k£ > 1. Recall that T% is the subtree of T,, spanned by the root and the vertices
vyn,...vyr € Ty, where (UT,...,U}}) is a uniformly random k-set sampled from [n] and,
for i € [n], v; is the i-th vertex in the lexicographical order of T,,. In what follows we write
(U, g)k yeees U&)k ) for the increasing rearrangement of (U7, ..., U}"). Further, recall from Sec-

tion 2 that T,, = (T,,,Y) is the (u, v)-branching random walk conditioned to have size n.
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PROPOSITION 5.1.  Suppose that [A1] holds. Then for all v > 0,

(5.1) lim limsupP ¢ max sup |H,(s) — Hy,(t)| > n2 % =0
Fmoo mooon | OSSR e LU -1

and, additionally, if [A2] holds, then

(5.2) lim limsup P ¢ max sup IRy (s) — Ru(t)| >~nt/* 3 = 0.
k=00 n—oo 0sisk g vequns—1,unk, 1]

Under [A1], we have that

() (2
—€e
Vn 0<t<1 0 Jo<i<1

in C([0,1],IR) and so (5.1) holds. It follows that we only need to prove (5.2).

Let us immediately observe that the vertices of the tree T,, either belong to T* or belong
to a subtree hanging off T%. In Proposition 4.1, we showed the convergence of the spatial
locations along the subtree T¥ to those given by a Brownian motion indexed by 7. This

has the consequence that for values s,t € [U, (Tz)k -1,U (7;3]:1) — 1] such that both corresponding

vertices lie in T%, we have that |R,,(s) — R, (t)] is bounded above by the maximum modulus

T?’k of an increment of the location process along the path from Ug)k to Ugfl) in T%,
Moreover, this upper bound converges in distribution on rescaling to the analogous quantity in
the limit tree, which has the same distribution as the maximum modulus Tf of an increment
of B times a Brownian motion run for time Df , where Df is the distance between the ¢th and

(i + 1)st leaves of (2/0)T" in planar order. We thus have that

d 2
max TF = ﬂ\/7 max sup lrs —r¢l.
0<i<k o 0<i<k S,tE[U(I‘,'i),U(ki+1)]

But
k E\ as.
max (U(’L-I-l) - U(Z)) 0

0<i<k

as k — oo and so, since r is uniformly continuous, we may deduce that for any v > 0,

(5.3) lim lim P { max T:-L’k > 7n1/4} = lim P { max Tf > 7} =0.
k—oon—oo | 0<i<k k—oo | 0<i<k
For values s,t € [U, Z)k, (T’;fl)] for some 0 < i < k such that at least one of the corre-

sponding vertices does not lie in 7%, we may bound |R,,(s) — Ry, (t)| by T?’k plus twice the
maximum modulus of the difference in spatial location between the parent in T fl of the root
of a pendant subtree and some other vertex inside the tree. We have already dealt with T?’k,
and so it remains to deal with the pendant subtrees. Before we can do so, we need to do some
truncation of the displacements.

Fix v > 0and 0 € (0,1/4). We will consider three “restrictions” of the branching random
walk T, = (T,,Y), which we denote by T, 5 = (T, Y,,5), T?z,é = (T, Yn%), and T}, =
(T,,Y,)). These branching random walks capture the “typical”, “mid-range”, and “large”
spatial displacements in T),.
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1. (typical displacements): Y, 5 = (er?,v € v(Ty) \ 9T,) is such that for v € v(T,) \
8TTL’ 7

Y,rf;%) — Y(U) ]_HIY(U) ”Oosnl/ék—é] .

2. (mid-range displacements): Y. = (V! S(U),v € v(T,) \ 0T,) is such that for all v €
v(Ty) \ 0T,

)
1[n1/4—5<HY('u) [l oo <yn1/4]-

YJS(’U) v (v

3. (large displacements): Y,/ = (Y;"") v € v(T,,)\ OT,) is such that for v € v(T,,) \ OT,,

Yy =y ® L{jy @) 5yn1/4]-
For v € v(T,) \ 0Ty, the vectors v 6), YJ(S( V) Y ) are all of length ¢(v, T},); however, in
what follows we will not refer to thelr individual entries.

Let R, 5. R} o and R;, denote the functions encoding the spatial locations of the branching

random walks T, s, T? ., and T}, respectively. Then, for all n large enough so that pl/4=0 <

n,0°
/4,
R, = Rn,(g +RZ,6 + RZ

By the triangle inequality, for all v > 0, we then have

max swp |Ra(s) — Rat)]
0sisk, relumsk—1,unt, —1]
G4 S s (Rag(s) — Ruglt)] + 20 gl + 20

Jk
stElUG" —1,UG ) —1]

We deal with each of these three terms separately.

5.1. Large and mid-range displacements. Under assumption [A2], we show that the
probability that there is a displacement in T,, with modulus exceeding yn'/* goes to zero,
so that the contribution of the large displacements is negligible.

PROPOSITION 5.2.  Forall v > 0, as n — o0,
P {|| R}l > m/} =o(1).
PROOF. Let
n

M3 = [{u € o T\ O, V0 > 01

It suffices to prove that P {M,z >0} — 0asn — co. Tothisend, let &y, .. ., &, be 1ID random
variables with distribution . By assumption [A2],

P {[[Ye [loe > yn'/*} =o(n ).
Fixing € > 0, this implies that for n large enough,
(5.5) ]\73 = HZ €ln] : 00 > 7n1/4}‘ =4t Bin (n, E) ,
n

where <; denotes stochastic domination. It follows from a Chernoff bound that there exists
¢ > 0 such that for n sufficiently large,

P {Mg > ne} <exp(—cn®).
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Since P {31 | & =n — 1} = ©(n~"/2), we obtain
P{Mgzng}:P{Mgzng \ Zﬁi:n—l}
i=1
P {MJ > ng}
< m
P{} i &=n-1

Let S) := 2 i1 Sl Ye, || >t /4 and let Sy = > veu(r,) €0 Tn) Ly >yn1/e). Since
E [53] < o0, by [17, Corollary 19.11], both maxj<i<, & and max,ec,(t,)c(v,Tp) are
Op(n'/3), and so

7 =0 <n1/2 exp(—cn€)> .

P {MTZ >nforS) > n1/3+€} <o(l)+P {Sg >nl/3+en m(ax )C(U,Tn) < nl/?’}
vev(T,

So+P S Y vz >n°
vev(Ty)

P {Bin (n, %) > ne} Y

where the final inequality holds by (5.5). Further, for £7,&7, ... independent random vari-

ables such that for each i > 1, &7 is distributed as &; conditional on ||Yz,||co < yn'/%, we
have that
n n—M,’Z
P{Zfi:n—l ‘ S;;,Mg} =P{S)+ > =n-1 ‘ S, M)
i=1 =1
Therefore,
P{M]>0}=P {0 <MY <nf, 8) < n1/3+£} +o(1)
. . n
:P{O<Mg<n€, S < nt/3te Z&:n—l} +0o(1)
i=1
P {0 < M) <nf, 8] < nt/3+e S & =n— 1}
P 6=n—1) (
P {8+ T g —n-1|50.077
" P{> " &=n—1} 1[0<1\73<n57 Sranvme] | T o(1).

By a quantitative local limit theorem (see Lemma A.3 in the appendix), we obtain that as
n — 0o

P(S g en1-s)
P{YiLi&i=n—1}

uniformly over all 0 < m < n¢ and 0 < s < n!/3+<_ It follows that

L,

P (M >0} =P {0< M <n®, 5 <n/3*<}+o(1) <P{M7 >0} +0(1).
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The result follows since for n sufficiently large M, < Bin(n,e/n), and € > 0 is arbitrary.
O

Similarly to the large displacements, the mid-range displacements are also negligible on
the order of n~1/%. However, the argument required to prove this is more refined.

PROPOSITION 5.3.  Fixy > 0. For § > 0 sufficiently small, as n — oo,
P {|I7] slloc >0/} = o(1).

To prove this proposition, we will require some further results pertaining to the positions
of non-typical displacements in the branching random walk T,,. More specifically, we will
need to study the law of the number and positions of the vertices v € v(T,,) \ 9T, such that
1Y ®)|| o > n'/4=2, for fixed, small § > 0. The next lemma pertains to the number of such
vertices.

LEMMA 5.4. For > 0 sufficiently small,

[{o € 0T\ O stch thar [ > m1/479} | = op(n?/12).

PROOF. Let &1,...,&, be 1ID with distribution p. By [A2] there exists C' > 0 such that
P {||Vg, [loo > n'/470} < Cn=1+4 It follows that

An::){ie ] : ||Y51.||00>n1/4_5}‘ <. Bin (n,cn—1+45).

By a Chernoff bound, this implies that for 6 € (0,1/48), and n > 1 sufficiently large, for any
e>0,

P {An > €n1/12} <P {Bin (m Cn—1+46> S €n1/12}
p {Bin <n Cn*““) > Cn® (1 v (%nl/w“ _ 1)) }

=0 (eXp(—n46)) :

and so

P {An > ent/2

zn:fi:nl} :O(nl/Zexp(fn‘m)) =o0(1). O

i=1

We say that two vertices u, v € U are ancestrally related if either u < v or v < u. The fol-
lowing lemma establishes that with high probability there are no ancestrally related vertices
u,v € v(Ty) \ dT, such that || Y || A [|Y @) o > nl/479,

PROPOSITION 5.5.  For § > 0 sufficiently small, as n — oo,

P {Elu,v € Ty, u < v, such that |Y®||oo A |Y )00 > n1/4_6} =o0(1).

The proof of this proposition relies on an application of the technical lemma, Lemma 3.4,
which we prove in the appendix.
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PROOF. We generate T, using the bijective construction B(IIp-) described in Section
2.2. Sample the displacement vectors (Ypr)1<i<n With Ypn = (Ypr 1,...,Ypn pr), and let

5= {icle) - ol )
Then
P {Elu,v € Ty, u < v, such that ||[Y || A V)] > n1/4*5}

<P { max H, () >t\/ﬁ} —i—P{]B\ > 5n1/12} +P { max D;' >Tn1/3}

0<i<n 1<i<n
(5.7)
+P {{lrgaéc Dl <Tn'?|B| < snl/12} N{3i,j €B:i<j,dn(i,j) < t\/ﬁ}}
<i1<n

where, for vertices ¢, j € v(T,), d,, (7, 7) denotes the length of the shortest path between ¢ and

jin B(Ilpn) 4T, Take tand T large enough so that P {maxo<;<, H, (i) > t\/n} <e/4,
and P {maxj<;<, D > Tnt/ 31 < /4. (The latter inequality is possible by [17, Corol-
lary 19.11] since E [53] < o0.) By Lemma 5.4, we may take n large enough so that

P {|B| > sn1/12} < ¢/4. Therefore, for ¢,T" and n sufficiently large, (5.7) is at most
3
ip {{ max D' <Tn'/3,|B| < sn1/12} N{3i,j€B:i<j,dn(i,j) gt\/ﬁ}}.
4 1<i<n

Then by Lemma 3.4 with d = D", K < sn!/12, A <Tn'/3, and b = t\/n, for n sufficiently
large, this is at most

_ tv/n
gz (1o —sIn e :
4 1—n-1—tTn-1/6

The result follows by taking s > 0 small enough and n large enough so that

_ tvn
snt/12 (1 (1= sTn "2 < <
1—n-1—tTn-1/6 4’

which is possible since

_ t/n
snt/12 11— (1= sTn” "/ < §°Tt 1
1—n-1—¢tTn-1/6 1—n—1—¢Tn-1/6’

for n large enough because (1 — )" > 1 —rz forx <1landr > 1. O

LEMMA 5.6. Let v*(T,) Cv(T,) \ 0T, be the set of vertices v € v(T,) \ OT,, such
that ||[Y V)| o < n'/*9 and there exists an ancestor u < v with |Y ||, > n'/*=9. For
d > 0 sufficiently small, v*(T,) = op(n).

PROOF. The result holds if and only if the probability that a uniformly random vertex
in v € v(T,,) is ancestrally related to a vertex u € v(T,,) \ 9T, with [|[Y )| > n!/47% is
op(1). By exchangeability, this holds if and only if the probability that vertex 1 is ancestrally
related to a vertex u € v(T),) \ 9T, with ||Y )|, > n'/4=9 is op(1). To prove this we may
adapt the proof of Proposition 5.5 by including vertex 1 in the set 3. Then by Lemma 5.4,
|B| = op (n'/'?) still holds, and so the proof carries over verbatim. O

As an immediate consequence of Lemma 5.6, with probability 1 — o(1) none of the incre-
ments of the branching random walk Tg s are ancestrally related with high probability, and
Proposition 5.3 follows.
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5.2. Typical displacements. In this subsection we will prove the following proposition.

PROPOSITION 5.7.  Forall v > 0,

lim limsup P { max sup |Rn5(s) — Rys(t)] > Ant/4 % =0.
k=00 n—oo Osisk, relupsk—1,unt, —1]

Notice that R,, 5 is equal in distribution to the function encoding the spatial locations of
the branching random walk with underlying tree T,, and displacements Y0 = (Y”"S’(”) ,U €

v(T,) \ OT,,) such that if v € v(T,,) \ T, has k children, then Y% () has the same distri-
bution as

F 5 s 1/4—6
Vit =i Yeh ) =

(Y, Yig) if maxi<j<p [YVij| <n
(0,...,0) else.

This branching random walk is not globally centered, and in particular has “global” drift
E {Yg o } Thus for all ¢ € [0, n] we have that

Rya(t) £ Rus(®) + B Y2y |- Ha(h),

where R, 5 :10,n] = R is the function encoding the spatial locations of the globally centered

branching random walk (T,,,Y™9%) for which, conditionally on T,,, Y™ = (Y0() 4 ¢
v(Ty,,) \ 0T,,) is a vector of independent random variables, such that if v € v(T,,) \ 9T, has
k children then Y"%(*) has the same distribution as

n5 n,g n,0 n,0 -
V=Y BV | =1 B |Yeu vz

Moreover, by the triangle inequality, for all v > 0,

lim limsupP ¢ max sup |Rn’5(s) — R, 5(t)] > ynt/4
N 5 P T /4
< lim limsupP { max sup |Rp5(s) — Rns(t) > =
k=00 n—oo Osisk, relupsk—1,unt, —1] 2"

(i)

+ limsup P {)E {Y;Ui] ‘ N Hplloo > %nl/‘l}.

n—oo
LEMMA 5.8. It holds that, as n — oo,
‘E { EU: } =O(n=%/12459/3)  and  Var {Yf""?} — B2
g

ngé
This result is a special case of Lemma A.11, which is stated and proved in the appendix.
Since ||Hy||co = Op(1/n), Lemma 5.8 implies that for § sufficiently small,

limsupP{‘E {Y—"‘S}

n—o0 &Ue

wﬂmw>ywﬂ}:a

It follows that to prove Proposition 5.7, it suffices to prove that for all v > 0,

lim limsup P ¢ max sup |Rn75(s) — ng(t)\ > nl/t Y =0.

k=00 n—oo 0sisk telupst—1unt, ~1]
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FIG 5. In black, the tree TEL. In blue, the forest Fffl = (Tﬁ j)jzl' The root of tree sz 3 is displaced ZUJT»L’(S away

from its parent in TEL.

As discussed above, we need to deal with the maximum modulus of the difference in
spatial location (for the branching random walk T, 5) between the parent of the root of a
pendant subtree and a vertex of that subtree. There are

o(TH) = D (e(v,Tn)—1)+1

veV(Tk)

edges in T,, with one endpoint in T and another in T,, \ TX. Conditionally on T%, if we
remove all such edges we obtain a Bienaymé(u) forest conditioned to have n — ]V(T,(f))]
vertices and ¢(T¥) trees. We denote this forest by F¥ = (Tg ;)j>1, where the trees are listed
in decreasing order of size, and | T .| = 0 for j > c(T%). Write || Ry, 5(T% )| o0 for maximum
modulus of the difference in spatial location between the root and any other vertex of Tﬁ} i

The trees (T*

n.j)j>1 are independent Bienaymé trees, conditioned on their sizes. Therefore,

conditionally on F%, we have || R, 5(T* Moo 4 HR‘Tk 1,6/loc- Moreover, displacements on
’ B n,jlr

the tree Tﬁ} j (from the branching random walk T, 5) depend on those in other parts of T,

only through the displacement Z;L"S of the root of Tﬁ ; away from its parent in TE: see

Figure 5.
It follows that

max sup |Rn,5(8) - Rn,é(t)‘

0sisk relupsk—1,unt, —1]

< Yk 4o (H TkH Z?“S).
< pax Y742 max (|| Bos(Tng)|| +1277

Consequently, using (5.3), in order to prove Proposition 5.7, it is sufficient to prove that for
v >0,

lim limsupP{ max : (Hénﬁ(Tﬁ,j)H + |Zv]”v5|> > 7n1/4} =0.
o0

k—oco n—oo 1<j<c(F},

The proof requires two key ingredients: (1) a scaling limit for the sizes of the trees in F£; (2)
quantitative control on the tail of || R,, 5||-c. We begin by establishing (1).
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PROPOSITION 5.9. Asn — oo,

Tk
C( TL) gt]k”
ov/n

where Jy, is Gammal(k, 1/2) distributed. Jointly with this convergence, we have

(5.8)

g

62 [V (TE)]

. d .
(IT5 ;1,5 >1) == (WFl,5 > 1),

where, conditionally on Jy, (|7Jk |, 7 > 1) lists the sizes of the excursions above the past mini-
mum of a Brownian motion stopped on first hitting — Jy, listed in decreasing order.

PRrROOF. By Skorokhod’s representation theorem we may work in a probability space
where the convergence in Proposition 4.7 holds almost surely so that in particular as n — oo,

on Y2 Jn 2% .
Let T > 0 and recall the event

Goi(T) = { {TATpn) . Vi (o) ({1, k) = 0N, > [T/

from Lemma 4.6. On G, (T) N {J* < |Tv/n]}, the tree TF is precisely the subtree of T},
spanned by the root and the vertices 1,. .., k. Therefore, on G, (7)) N {J} < |Tv/n]},
V(Th) _ T
N
Since T > 0 is arbitrary and on~'/272 2% Ji we obtain that n — [V(TE)| = n — op(n).

Hence, we are essentially considering a forest of Bienaymé trees conditioned to have n ver-
tices. We now need to show that the number of trees in such a forest is ~ o+/n.J. We note

that on the event G, (T') N {J;} < T'\/n}, there are Zﬁl—k(f)? — 1)+, D7, subtrees
of T,, whose roots have a parent in TffL, and (k — 1) branch points in Tfl. Therefore, for s > 0,

P {(Tk) > 5, Gui(T), Jp < Tﬁ}

ovn
(5.10)
L [EE i
=F ovn Y Dp=1)+Y Dj—(k=1) | 25, Gui(T), JF <Tv/n
i=1 i=1

a.s.

Since on~/2J 2% J;., by Proposition 4.5,

= ;
o~ ;(Di—n—uk.
Combining this with Lemma 4.6 and Proposition 4.7, we obtain that (5.10) converges to
P{Jy>s,Jpy<oT}.

Then (5.8) follows as T' > 0 is arbitrary. The scaling limit in (5.9) now follows from [27,
Proposition 1.4] and [7, Lemma 11]. J

The control on HRW; |loo needed to prove Proposition 5.7 is given by the next proposition.
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PROPOSITION 5.10.  There exists A > 0 such that for all v > 0, § € (0,1/4), and n > 1,
o A
P {1 Rl > ') < 5

The proof of this proposition is long and somewhat technical, so we postpone it until
Section 6.

PROOF OF PROPOSITION 5.7 ASSUMING PROPOSITION 5.10. By Skorokhod’s repre-
sentation theorem, we may assume that we are working on a probability space where the
convergence in Proposition 4.7 is almost sure. In particular, on /2] [ 2% Jp as n— oo.

As argued above, it remains to show that, for v > 0,

lim limsupP{ max : (Hén’é(Tﬁ’j)H + |ZV]”75|) > 7n1/4} =0.
o0

k—00 n—oo 1< <c(Fr

Since (Tk j)lgjgc(pi) are independent Bienaymé(u) trees conditionally on their sizes, we
obtain

5 k <n,8 1/4
. A >
p{ e ([Rustrs)]+121) 2 m

—E|P (Hé . H ZT.L"5>> 14| Rk (7m0).
I {1<jni%ﬁi‘ﬁ) T3 51,0 OO"H i) Zan T F (2721 |
[c(F® -
<E| ) P{ 113|T¢;,j\,5HOOan/“(v—\Z;“s /n1/4)|Fg,(z;%5)j21}
= |
= 1/4
y n
<E ZP{HRmJHmZ 5 Ffl} ,
i=1

for all n sufficiently large, since |Z;“S| <nt/4=9 forall 1 < j < ¢(T7) and all n > 1. Apply-
ing Proposition 5.10 to each of the conditional probabilities in the above sum, we obtain that
the right-hand side is at most

2
BA_ | [ITE 28 A
(5.11) E E(n = E
j=1

—_

(n—wv«Tﬁ»>2_ | T*
n n— |V (TE)]

)

where ﬁ;\ is a size-biased pick from (]wa» )j>1. Clearly,

n—[V(TH)|
n

<l1.

By Proposition 5.9, as n — oo, fFF]/(n —|V(TF))) N 0*1@ where \fyk\\ is a size-biased
pick from (\’y]’?\,j >1). By [36, Section 8.1], conditionally on Jj,

s
J2 + B?
where B is a N(0,1) random variable independent of .J;,. Combining this with (5.11), we
obtain that

thUPP{ max )(Hén,é(Tfi,j)H +|Z]’-L’5|>27n1/4}§
(o @]

n—oo 1§j§C(Fﬁ

284 B2
E[ ].

o8 J,? + B2
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As k — 00, Jj, 2 co. Therefore, by bounded convergence,

lim limsupP{ max : (Hén"S(TZ’j)H 4 ‘ZUJWS‘) > »ynl/4} =0. O
o0

k—00 n—oo 1<5<c(FE

Assuming Proposition 5.10, Proposition 5.1 now follows from (5.4) by taking ¢ € (0,1/4)
sufficiently small so that Proposition 5.3 holds, and combining that with Propositions 5.2 and
5.7.

6. The maximum spatial location: proof of Proposition 5.10. We assume throughout
this section that g is critical and has finite variance o’ e (0,00), and that [A1] and [A2] hold.

For n > 1, let A®™ = (A A0 ,Ag}l) be the sizes of the subtrees of the root of

T,,, so that Agn) is the size of the subtree rooted at the ¢-th child of the root. We will make
extensive use of the fact that, conditionally on Dn, these are exchangeable random variables
(i.e. their distribution is invariant under permutations of the labels). To prove Proposition
5.10 we will make extensive use of the following consequence of Lemma 25 of Haas and
Miermont [14] which, roughly speaking, tells us that typically only one subtree of a child of
the root is macroscopic and, moreover, the probability of a non-trivial macroscopic split at
the root is on the order of n~1/2.

LEMMA 6.1 (Lemma 25 of [14]). It holds that

Dy AN 2
6.1) E 1—2( n ) =0(n~1?).
=1

In the proof of Proposition 5.10, we encounter terms directly related to the global centering
and global finite variance conditions, respectively. The latter is more challenging to control,
and is the reason for the third moment condition on the offspring distribution. These terms,
and the control we will require on them, are stated in the following technical lemma. Recall
the definition of D™, the size-biased ordering of D™ = (D7, ..., D;"), IID samples random
distribution p conditioned to sum to m — 1.

The proof of Proposition 5.10 is inductive, and requires that we control the maximum
of ]v%fl s When restricted to subtrees of T%. We henceforth use m > 1 to denote the number
of vertices in the underlying tree, T,,, and n > 1 to denote the truncation threshold nt/4=46
on the displacements. More specifically, in this section, we will consider branching random

walks on T, with displacements }v/kn’é, k>1.

LEMMA 6.2. Letn > 1 and m <n. There exists B > 0 such that

Dy / y(m)\ 2
(6.2) E Z( i ) (Y2 )?| <B.

- m
=1

If in addition (u,v) satisfies [A1] and [A2], then there exists B’ > 0 such that

Dy (m) \ 2 1,1/4—6 /

Al s B'n B
6.3 E L YD < .
© ;( m ) Drill =  /m +m1/4
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Condition [A1] pertains to the mean and variance of the displacement of a uniform child
of a vertex with a size-biased number of offspring, YE,Ug- The displacement from the root

of T,, to a uniform child is distributed as Y5 and we have ﬁ{” N € as m — oo.

D™,Usm
However, in order to use the global centering and global finite variance conditions in the
proof of Lemma 6.2, we need something stronger, namely an explicit rate of decay for the
total variation distance between the laws of £ and Dm This is provided by the next lemma.

LEMMA 6.3. As m — oo,

dry (D", €) = Z)P{D;ﬂ: } = P{E=k}| =o(m™7).

PROOF. Let k > 1, and let (S, )m>1 be a random walk with 11D p-distributed increments.
Recall from (1.13) that

~m [ m P{Sn1=m—-1—-k}_ -
P{Dl k}<m—1> P{S,=m—1} P{&=4k}.
Since E[¢] =1 and E [£3] < oo, by Theorem A 2,

Vv2r(m—1)oP{S,_-1=m—1—-k}

2 (o2 1 k3 3k
— ¢ k*/20%(m-1)) (1 3 _ —-1/2
¢ ( +\/m—1603 <03(m—1)3/2 o m—1>>+0(m )
If k = O(m!/*4),

k3 3k
_ —O(m~4
a3(m—1)3/2 ¢ m—l' (m=")
and
Kt Zy K
‘ 0 20%(m—1) e

Hence for k = O(m!/*),

,IC2
\/maP {Sm—l =m—-1— k} =1 QO.Q(T +0(m*1/2).

It follows that for k = O(m!/4),

m \P{Sn_1=m—-1-k} 1_#;_1)"'0(7”71/2) - k2
m—1) P{S,=m-1} 1+ o(m~1/2) 7 202(m—1)

and, consequently,

p{Dpr =k} - <1—2U2(]:n2_1)+0(m_1/2)>P{§_:k}.

Therefore,

g:‘P{f){”_k}—P{E—k}‘
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[m1/4]

=X (s oriene X P{prer)-rie-n|

m1/4J+1
[m*/4] £2 >
—Z(% +o<m—1/2>)P{5=k}+ > |p{Dr=i}-pie=n)
k=|m1/4]+1
SQU?(?E?)]UJFO(W%WH i (P{A’{LZk}JrP{f:k})

k=|m1/4]+1

<om™) 4 (c+1)-PL{E>m!/L,

where the final inequality follows since P {ﬁi" = k:} < cP {£ =k} for all k € [m]. Since

E [€3] < 00, € has a finite second moment. Therefore, P {£ >k} = o(k™2) as k — oo and
soP{¢> m1/4} = o(m~1/2). The result follows. O

The terms (6.2) and (6.3) relate to the variance and mean (respectively) of the displacement
of a uniform child of the root in branching random walk (T, }7”’5). Since this branching
random walk is globally centered, it is reasonable to expect that the mean will be small and
that the second moment will be bounded. A key technical lemma follows.

LEMMA 6.4. There exists a constant C > 0 such that for m <n,

Dy

E |- =2 V5 Lo
Din i=1 it - \/m

PROOF. Let (ﬁi”,g) be a coupling of the degree of the root of T,, and the size-biased
distribution of y. We consider the events {¢ = D"} and {¢ 7é Dm} separately:

T - -
n,d 1 1,0 N
B ZYA < B2V ey || T B DmZ|Y Migznr)

1 i—1 i i=1 i 1 4=1 i

‘1 g T Dm T

“n,8 R n5

(64) ] D0 AT | Y R ol s R
_5 i=1 i Dl =1 i

where the equality holds since

9

3
5 _mlyms] —
IRRE ~EB[Vy ] =0

=

=1

Since \?k"f] <2n!/*=9 forall k > 1 and j € [k], it follows that (6.4) is at most
4t/ A=op {g‘;& f)’ln} .
The result follows from Lemma 6.3 by taking an optimal coupling of (ﬁ{”, £). U

We now proceed to prove Lemma 6.2.
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PROOF OF LEMMA 6.2. We first prove (6.2). Note that by exchangeability of (Agm), ey
A(gf)) and linearity of conditional expectation

m

Dy Al 2 s [ ] Dy s by Al 2
E E m Y5 )| =E EE (Yﬁiw) E m
i=1 ' '

m?

S

where the second inequality follows since P {ﬁm = kz} <cP{£=k}.ByLemma5.8,(6.5)

tends to 32 as n — oo and hence (6.2) holds.
We now proceed to proving (6.3). By linearity and the triangle inequality we have

Dy Alm) 2Vn6
E Z m Yﬁin,i

=1
Dy 1 Dy Dy /) (m)\ 2
1 y 1 y Al
(6.6) <|B|=- Yg;fi +B || = Yg;fi 1— ( J )
Dy Dy i T = \ ™M

By Lemma 6.4, (6.6) is at most

Hm nm 2
Cnl/4=9 1 o 5 NG
4 E| = 1—- i
A/m T Dm Z D7 Z m

1 i=1 =1

Applying the Cauchy—Schwarz inequality to the second term yields an upper bound of

- 27 1/2 ~ 27 1/2
Cnl/4=0 1 i - %: AN
——+E || =— Y2 | E|[1- L
\/m D;rln 7;:1 1 i:l m
1/2 ~ 27 1/2

Dy Dy A(m)

2
Cn1/4—6 1 o 5 (
) <= _ 4E|— 0 )2 E||l1- J
(6 7 - \/m + Dm Z< D{”,i) Z m ’

1 =1 =1

where we have again used the Cauchy—Schwarz inequality on the sum inside the expectation
to get the second inequality. Since P {ﬁﬁ” = k} <cP {f = k:}, by the same methods used
in (6.2), there exists ¢’ > 0 such that (6.7) is at most

m 2
cnl/A=s D" /A (m)
_— E||l1l1- !

— +c ; -

2 1/2
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Lastly, since 22 < z for all 2 € [0, 1], we obtain the bound

~ ~ 1/2
Dr/ am)\? 1/4-5 Drfam)\ 2
A 9 Cnl/ A
E i) v < —— 4 E|1- i
and the result follows by Lemma 6.1. O

We now present the proof of Proposition 5.10.

PROOF OF PROPOSITION 5.10. For n > 1 and m < n, let Rm,mg be the spatial process

of a branching random walk 'i‘m,n = (T, }V/”"s) where the displacement vector of a vertex
vewv(Ty) \ 0T, with k children is distributed as
n,0 n,0
et m ]
Furthermore, let

and

9 A o A
P{R;n5>7n1/4}§—8 and P{R;Ln5>7n1/4}§—8
b b ’7 b b /7
since Proposition 5.10 then follows by taking n = m. We only prove the tail bound for
Rt as the bound for R_ n.o then follows by symmetry.

m,n,o’
Notice that R+ no =0 for all n > 0, and so the claim holds trivially if m = 1. Moreover, at
the cost of takmg A > 0 larger, it is sufficient to prove the result for v > 0 sufficiently large.
We will proceed by induction on m > 2, and hence assume that for 1 <k <m —1andy >0,

o A
P {R,jmS >7n1/4} <
) k) /)/

for all n > k. N
Observe that conditionally on D7 and A(™),

R;néimax{() max {RX(’“ —i—Yg{f’,}}.

1<1<Dm

For the rest of the proof, we write Y/Z” in place of }ufgf _ to ease the notation.
10

Take ug € (0,1) such that for all 0 < u < ug, (1 —u)~® <1+ 8u + 72u?. Then, taking
v > 2/ug (recall this is possible at the cost of taking A > 0 larger), it follows that

P {R;’n’é < fynl/4}

=E |P { max {R;\F(T"’),n,b‘ + }u/in,(s} < 7”1/4

1<i<Dp

Dy, A<m>}

9 ,5
—E HP{ o P

ﬁlnvA(m)a Y/inﬁ} )
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where in the second equality we have used the tower law and the branching property. We will
bound the right-hand side of the above equality by applying induction to each term in the

product. More specifically, taking n = k = Agm) and for the i-th term of the product, by the
induction hypothesis, we obtain

HP{ A s S b/t g

B’in’ (m)’ 5};‘”76 }

[ Dy 1/4 _ yn.6
_ . yn/t =Y (m)y1/4
= E Ul P {RASNL>,TZ,5 S ( (A(m))1/4 ) (A'L )

_ﬁin A(A(m))2
>E H(l—( SN >+

=1

ﬁ{rz A(m) 7 }}inﬁ }

Furthermore, since Hle(l —x)y >1— Zle x; for any non-negative sequence (z;);>1,
we may lower bound the above as

by (m)y2 [ Dy /) (m)\ 2 ons \ 8]
- (7”1/4 _ }/;7175)8 . ,78 n 7”1/4

=1 =1

=3

A (2 pmN oy \ T
>1-_ = i -
B 7 =1 m ynt/4 ,

-3

where the final inequality holds since m < n. Moreover, since v > 2/ug, we have that

V70| /(yn!/4) < ug for any n, and so (1 — Y™ /(ynl/4))=8 < 1 + 8Y™/(yn!/4) +
v ,6

72(Y;"°)?/(v?y/n). Hence,

Dy 7\ (m)\ 2
) A A Al
+ < 1/4 > _ - _ 3
6.8) P{R,, </} =1 Rl ;_1:( - >
Dy 7 (m)\ 2
3_p 155 (A7) s
=1

Dm ne .
(6.10) 10\ﬁ Z( ) gy
1

where we may take the denominator of the final term of the above expression to be '%\/m
rather than v'%,/n as m < n and the expectation in this term is non-negative. Applying (6.1),
(6.2), and (6.3) to bound the expectations in (6.8), (6.10), and (6.9), respectively, we obtain
that there exist constants B, B’, B” > 0 such that

y A AB" 8A (B'nl/* B 72AB
+ < 1/4} >1_ 4 _

P {Rm,n,é =n -5+ Bm  AOni/A ( i m1/4> 10 Jm

A A ( g 8B 8B 723)

>1

>1-+—5——
v BVm
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For v > 0 large enough, the final term in parentheses is positive so the whole expression is at
least 1 — A/~®. The result follows by induction on m. O

7. The hairy tour. In this section we prove Theorems 1.4 and 1.5. In particular, we
show that under assumptions [A1] and [A3] for a given measure 7 with 1 € [0, 2), we have
that (n_l/ 2H,,n~ Y (4_’7)Rn) converges in distribution to a generalisation of the hairy tour
introduced by Janson and Marckert [18] if n = 0, and to a process whose second coordinate
is a pure jump process if n € (0,2). Recall that by [A3], 7 is a Borel measure on R?\ {(0,0)}
such that for for any ¢ > 0, both m(R. x (g,00)) < 0o and 7((e,00) x R;) < 00, and that
for all Borel sets A C R% \ {(0,0)} for which w(0A) =0,

ri=np {1 (max Yg max Y, ) € A)} — m(A)
r \1<i<e SV i<i<¢

as r — oo, where Y =Y}, V0and Y, = (=Y}, ) V0. The measure 7 will be the intensity

measure for a P01sson point process Wthh drives the second coordinate of the limit.

Recall that T,, = (T,,,Y) is such that given T,,, Y = (Y*) v € v(T,,) \ 9T,,) is a collec-
tion of independent random vectors, where if v € v(T),) \ GTn has k children then Y (*) has
distribution v. Observe that, for fixed n € [0,2), by assumption [A3], if the measure 7 has
non-zero mass then

max HY Voo = Op (n/1).
'UG'U
Fix v > 0,6 € (0,1/(4—n)), and suppose that n > 1 is sufficiently large so that n*/(4="1=9 <
An/ (4= As in the proof of tightness for Theorem 1.1, and more specifically as in Section
5, in order to prove Theorems 1.4 and 1.5, we will need to consider three “restrictions” of the
branching random walk T',. These restrictions are a generalisation of those used in Section
5 from the case 7 = 0 to that of general 7 € [0, 2); the modified definitions are given below.

We denote the restrictions of Ty, by Ty 5 = (Tn,Y5), T) 5 = (Tn,Y,)s), and Ty, =
(T,, Y, ). Again, these branching random walks will respectively capture the “typical”, “mid-
range”, and “large” displacements in T',,, as follows:

1. (typical displacements): For all v € v(T),) \ 9T,
YTSZS) = Y(v)1[|IY(“)Hmﬁn”““”)‘é];
2. (mid-range displacements): For all v € v(T),) \ 9T,
Y:s(v) — Y(U

)1[n1/(4—’7)—5<HY<")||oo§'yn1/(4—")];
3. (large displacements): For all v € v(T,,) \ 9T,

YO =Y Oy samiva-n).

We note that, informally, taking + | 0 in T}, captures all displacements of the largest order.
We define R, 5, RZ} s5»and R}, to be the functions encoding the spatial locations of the vertices
of Ty, 5,T) 5, and T, respectively.

Before stlldying the convergence of the functions R, s, R; 5> and R}, we will prove con-
vergence upon rescaling of the values of the large displacements. For v € v(T),) \ 9T, let

YeH . =0v max Y and Y®):=0v max (-Y)
j€le(v,T,)] 7 j€le(v, T, 7

be the largest positive and negative terms (respectively) in the displacement vector Y@ from
v to its children and, for v € 9T, set Y1) =Y (=) = (. For a finite multiset S C R?, by
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“the decreasing ordering of S” we mean the vector (si,...,s,,) which lists the elements of
S in decreasing order of their largest coordinate, breaking ties in decreasing order of their
smallest coordinate. Let L,)"” be the decreasing ordering of the multiset

(7.1) {(Y(v’+)a Y(U’_))l[uww||oo>yn1/<4—n)], ve U(Tn)} ;

concatenated with an infinite sequence with all entries (0,0).

LEMMA 7.1.  Fix vy > 0 and suppose that [A1] holds and [A3] holds for a given measure
m withn € [0,2). Then as n — oo,
L?{V d
nyy
aija—m b

in {oo, where L7 is the decreasing ordering of the points of a Poisson process on R2>0 with

intensity 7(dx,dy)1((z\y)>~) concatenated with an infinite sequence with all entries (0,0).
PROOF. Let (&, > 1) be 11D samples from the offspring distribution x. Further, fori > 1,
sample Y¢, independently and let

Y. i=0VmaxYe ; and Y, :=0V max(—Yg ;).
& jele] o & je[m( &)

By definition, the multiset {(V () Y (7)) v € v(T,)} is distributed as {(Yg,Y{),z €
[n]} conditioned on the event that > " | & =n — 1.
For n > 1, let L;}"” be the decreasing ordering of

{<Y§’ Ye LY, lwamt/am), 1€ [n]} :
concatenated with an infinite sequence with all entries (0,0). We will first show that
(7.2) n_l/(4_77)ZZKY i> LY

in £, as n — oo. To this end, note that by [A3], for any x,y > 0 such that  V y > y and such
that 7(({z} X [y, 00)) U ([z,00) x {y})) =0,

nP {Yg+ > ant/(4=m), Yo > ynl/(4_”)} — m((z,00) X (y,00)),
as n — oo and, moreover, 7((x,00) X (y,00)) < co. Therefore,
Hz €n] : Y;“ > gnt/G=m) Y; > ynl/(4—7;)}‘
< Binomial (nP {Yg+ > gnt/ (=) Yo > ynt/(4=n) })

(7.3) ~4, Poisson(r((x, 00) x (y,0))),

and (7.2) follows from the fact that a Poisson process on R? is determined by its distribution
on half-infinite rectangles and the continuity of the function x,y — x V y, z A y that we use
to order the multisets.

We now show that the convergence in (7.2) still holds when we condition on ;" ;| & =
n — 1. We note that the remainder of this proof is similar to the end of the proof of Proposition
5.2.

Let M, be the number of elements in LI which are not equal to (0,0). Note that by

(7.3), the sequence (M,)),>1 is tight. Further, let S := 2 icn] §i1]|Ye, [l oo >n1/a-m]. Since
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&1,...& are 1D, the law of > | & depends on L7 solely through M;] and ). To be pre-
cise, let £, &5, ... be independent random variables such that for each i > 1, £ is distributed
as &; conditional on ||, [|oo < yn'/(4=™. Then,

n R—M;{
(7.4) P{Z&:k’i?ﬂ}:P ST+ ) gﬁ:k‘sg, M)
=1 =1

Let F': /o — R be a bounded measurable function. Then, by analogous arguments to
those used to prove (5.6),

n
E[F(L7)]=E F(LZ77)1[M3<7L5, Sy <ni/3+e Zfl =n-—1

L i=1

+o(1)

E F(LQL”Y)l[Z;L:l&:niL M:{<n5, §3<n1/3+£]:| n (1)
=— 0
P &—n—1)
EZ,WH

TN __ .
bE [F(L” M sr  eimn—1, M2<ne, Fi<ni/ore]

- PO & =n1) oll)

p {Zy—Ml en 13 | M <nt, 51 < n1/3+6}
P{3 " &=n—1}

where the last equality holds by (7.4). By a quantitative local limit theorem (see Lemma A.3
in the appendix), we obtain that as n — oo

P(S g en1-s)
P{YiLi&=n—1}

uniformly over all m < n¢ and s < n!/3+¢_ It follows that

—E |F(L})] +o(1),

L,

E[F(L}")]=E [F(L17)] +o().
The result then follows by (7.2). L]

In the remainder of the section, we continue to use L™7 to refer to a random vector with
the distribution given in Lemma 7.1.

To prove Theorems 1.4 and 1.5, we use similar methods to those used to prove Theorem
1.1. First, we will prove convergence of the branching random walk restricted to the subtree
spanned by k uniform vertices, by showing that the convergence from Proposition 4.1 holds
jointly with that in Lemma 7.1, and that the limits are independent. This, in particular, implies
the convergence of the random finite-dimensional distributions in Theorems 1.4 and 1.5.
The independence is the key issue here, and in order to obtain it, we require adaptations of
Proposition 4.3 and Lemma 4.4 to the setting of n-dependent offspring distributions. The
required technical results may be found in the appendix.

Following this, using similar techniques to those used in Sections 5 and 6 to prove tightness
for the discrete snake in Theorem 1.1, and applying the aforementioned joint convergence,
we will show that a discrete snake comprised solely of the “typical” displacements converges
to the head of the BSBE on rescaling by n~ V4 if 1 =0, and to 0 on rescaling by n~1/ (A=)
if n € (0,2). Furthermore, this discrete snake is asymptotically independent of the large dis-
placements. In Section 7.2 we show that for 7 € [0,2) the mid-range displacements make
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only a vanishing contribution to the head of the discrete snake on the scale of n'/(4=")_ Next,
by a small variant of Lemma 5.6, we deduce that the large displacements appear near the
leaves. We apply this result to prove Lemma 7.11, which states that the discrete snake associ-
ated with the branching random walk T, obtained by pruning sub-branching random walks
rooted at vertices with large displacements in T,, converges upon rescaling by n =Y/ (4= to
the same limit as that of the “typical displacement” discrete snake (with the limit depend-
ing on whether n =0 or 7 € (0,2)). Theorems 1.4 and 1.5 then follow by showing that the
branching random walk obtained by regrafting these pruned sub-branching random walks to
uniform leaves of T, has the same law as T,.

The following proposition establishes the convergence of the branching random walk re-
stricted to the subtree spanned by & uniform vertices, as well as the its asymptotic indepen-
dence from the large displacements.

PROPOSITION 7.2.  Fix v > 0 and suppose that [A1] holds and [A3] holds for a given
measure ™ withm € [0,2). Fix k > 1. Then

7

as n — oo. Jointly with this convergence, we have that

n n n n n d
(J17J2,...’Jk,’ 1,7Ak)H(J1,J2,,Jk,A1,,Ak)

(Fr,Fp,... . FM)-% (Fy, By, ... Fp),

where F1,F5, ..., Fy are 1ID random variables, independent of everything else, such that
P{F,=1}=P{F,=2}=1/2and

L™([tn'/2| A (J7 - 1)) d
< nl/4 ' 0 — B(Bin(s /)05

L™M(Jf + [tn' ) A (T2 — 1)) d
( Z TS — BBasfo + B /o) +0n0i /o) ~ Bljo))zo
>0
for1 <1 < k—1, ineach case for the uniform norm. Moreover, jointly with this convergence,
L:}Lv’y d
_n ny
a1

in £oo, where L7 is independent of all the other limiting random variables.

PROOF. Fix k> 1 and v > 0 and write
Vo= (J1 Iy IR AL AL FT FS L FY
(L™(Ltn' 2] A (I = 1))ez0), (LT + [0 2]) A (T3 = 1))e0), -
(L™ ((Jfey + [t 2 ]) A (T = 1)))ez0)

for the vector containing all variables that, in Proposition 4.1, have already been shown to
converge jointly under rescaling when we equip the first 3% entries with the Euclidean topol-
ogy on R, the last k entries with the topology of uniform convergence, and the whole vector
with the product topology. Then, let g be an R-valued bounded continuous function (for this
topology), and h : £,, — R be another bounded continuous function. By Proposition 4.1 and
Lemma 7.1, it suffices to prove that

(7.5) E[g(Va)h(L}7)] = Elg(Vi)| E[A(L77)] | =0

n
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as n — 0o.

Let (M;"”7,S77) have the joint distribution of the number of vertices with a large dis-
placement, ZveT" 1[Hy<v>”>7n1/<47ﬁ>], and the total number of children of such vertices,
> ver, €V, Trn) 1)y |syni/@a-n). Fix € € (0,1/6) and define the good event

G1 = { MM < n, S < pl/3tey,
By analogous arguments to those used to prove (5.6), G occurs with high probability. Now

recall that on='/2.J0 4y J, as n— o0o. Fix T > 0 and let G be the (good) event that JJ* <
T'\/n. (We observe that by choosing T large we may make P {G>} as close to 1 as we like,
uniformly in n sufficiently large.) Then,

E [g(Va)M(L])] = E [g(Va)R(L]7)1(g,ng,)] + (1),
where o(1) is to be understood as an error that tends to 0 as n — oo and then 7" — oo.
Let 7,77 denote the o-algebra generated by the degrees and displacement vectors of the

vertices v with ||[Y (|| > yn!/(4=1)_ We see that G; and L, are measurable with respect to
Fi7, and so

E [9(Va)M( L)) 1ig,ng,)] = E [E [9(Va) g, | 7] R(L7 )1 g,] -

Therefore, since g and h are bounded, to prove (7.5) it suffices to show that as n — oo and
T — o0,

(7.6) E [9(Vi) 16, | F27] g, ~ Blg(Va)] | B 0.

To prove (7.6), we will use the measure change between a size-biased random array and
a vector of 1ID size-biased random variables which may be found in Proposition A.4 be-
low. To this end, let £&™ denote a random variable with distribution u, conditioned not to
yield a large displacement vector (i.e. conditioned on maxi<;<gn \ng\ < ﬂynl/ (4*’7)), and
let 1™ denote the distribution of £™. Using similar notation to that in Proposition A.4, write
ry, for the value of M,]"7, s, for the value of S;” and dy,...,d, for the degrees of the
vertices v with [|[Y(*)|| > yn!/(4="_ Then, let £" ,,,...,&" be 1D samples from x" and
write Z = (Z1,...,2,) = (diy.ooydr, &8 415+, &), Further, conditionally given Z, let
¥ = %2 be the random permutation in (A.1), so that (Zx 1), ..., Zx(n)) is a size-biased
random re-ordering of Z. Also define 7, (X) = min{j € [n] : £(j) € [r,]}. Finally, write
N=N,,, ={ie{rm+1,....,n}:&" >0}

Note that conditionally on "7, the remaining vertex degrees are distributed as AP
&, conditionedon ! 4 + -+ & =n — 1 — s,. Therefore,

E [9(Va)1g, | FI]

=E |E |g(Va)1g,

n
&l S 5?=n—1—sn,f;z»’1 ‘f“'”] .

i:Tn +1

By (A.18), 7., (X) > T'\/n with high probability. Furthermore, by a Chernoff bound, N >
T'\/n with high probability. It follows that

E E Q(Vn)l[gg] é.rrfn—i-l?' .. 7527 Z 5;’1 =n—1- Sn’]:gﬂ] ‘ ]:;’1777]
i=r,+1
=E |E |g(Vi)lig s yiim, 5)5 Ty |Sraits - & D& =n—1- Sn,fﬁ”] -7'73’7]

i=r,+1
+op(1).
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Now observe that, on the event G, Tﬁ contains at most 7'y/n vertices, and further on the event
7. () > T'/n, none of these vertices have a displacement exceeding yn'/(4~"). This im-
plies that g(Vi,) 16,1 (N> ym,r. (2)>7ym) Only depends on &7 ..., & and F7” through

Zs 1y, Zs(rym)) @nd B(1), ..., 3(|T/n]). Therefore,

d

=E (E |g(Va)lig) Yinsrymm, ()

+0P(1).

=E |E |g(Va)1g,

(Z26) scyirymy C@)ieyrvw j]] N>y, (o)
+op (1)7

where the last equality is implied by the fact that the events N > T'v/n and 7, (2) > T'\/n are

measurable with respect to Zx1),. .., Zs(|rym)) 2(1);- .., ([ Tv/n]). However, observe

that g(V;,)1(g,) is independent of ¥(1),...,3(|Tv/n]) given Zs 1y, . .., Zs(|1y/m))> and s

E [E [g(Vn)l[g21

-

(ZZ(Z))ZE[LT\/NJ] ) (E(Z))ZQ[LT\/]VJ]] l[NZT\/ﬁ,Tm (%)

]

We now apply the measure change from Proposition A.4 to obtain that, for £, &5, ... 1ID
samples from the size-biased law of ™, (7.7) is equal to

E{L, . ’ng\/m:| @Z’n”"s” (g?, e ?EILT\/EJ) ‘ fg7’y:| )

where the inner conditional expectation of g(V, )1[g2] is now thought of as a measurable
functional of the 11D random variables £7, ..., £" rm) in place of Zyv,1y, ..., Zy(1,/m))- This
implies that

E [9(Va)lig,) | F7] g,

(17) =E [E [g(vn)ygﬂ

(Zz(i))ieuwm]} LNST /i, (2)>T ]

B [E [g<vn>1[g2] é?,-..,é’me] QL (@, ,swp\ ] 16, + op(1).
By applying Lemma A.5 on G; (which occurs with high probability),
O (& ) 1

as n — oo and (O (£7,. ’E?T\/EJ))HZO is uniformly integrable, so (7.8) is equal to

17+ e

E [E [g(Vn)l[gz] f?,‘--,ffT\/m}

Since E [g(V )1,

... & ' m J] does not depend on F;]"”, it follows that

E {E [g(vnﬂ[%]

g,w} - [E [Q(Vn)l[gz]

g??aé?j\/ﬁd g?a?é?j\/ﬁjj” .
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By Corollary A.10, the total variation distance between (€7, ... 7€fT NG J) and 11D size-biased

samples from p, henceforth denoted by (51, e ,5 |Tv/7) ), tends to 0 as n — oo. Therefore,
since g is bounded,

Finally, by Lemma 4.4 and Proposition 4.3, this is in turn equal to

E [E {g(vn)ygg]

E [E [g(vnn[gg] ﬁ?,...,ﬁ@m] 1[NHZT\/HJ]] +o(1),

where we recall that N,, = |{i € [n] : D} > 0}|. Again, since the probability of G, and
N,, > | T\/n] occurring tends to 1 as n — oo and subsequently 7" — oo, we see that

b {gm)l{ga]’m,...,wa] Lpv, oy | = BlaVa)] + ol1),
which proves (7.6). The result follows. O
7.1. Typical displacements. Fix n € [0,2) and ¢ € (0,1/(10 —4n)) C (0,1/(4 —n)). In
this section we will study the function encoding the spatial locations of the branching random

walk T, 5 = (T, Y, 5), namely Ry, 5: [0,n] = R.

PROPOSITION 7.3.  Fix v > 0 and suppose that [A1] holds and [A3] holds for a given
measure w with 1 € [0,2). Let § € (0,1/(10 — 4n)). If n =0, then

H,(nt) R,s(nt LY\ 4 2 2
([t ) ) (2 fB)
0<t<1

0<t<1

as n — oo, in C([0,1],R?) x L. Furthermore, L*7 is independent of ((et,rt))o<t<1.
Ifne€(0,2), then

H,(nt) R,s(nt) LY d 2
2 S — — 0 LT],’Y
(( Vi at/em ) /) 0" ) pcrer ’

in C([0,1],R?) x £oo, where L7 is independent of (e;)o<i<1.

PROOF. The convergence of the random finite-dimensional distributions follows from
Proposition 7.2 exactly as Corollary 4.2 follows from Proposition 4.1, but now with the ad-
ditional independence from L™7.

We will obtain tightness (now on the scale of n'/(#=7)) via arguments very similar to those
in Section 5, where we replace the truncations with those defined in Section 7. In particular,
the key point is that we must show the analogue of Proposition 5.7, which states that

lim limsup P ¢ max sup |Rn.s(s) — Rns(t)] > N AS S}

k—o00 n—oo 0<i<k st€[U =100 —1]

Fix 6 € (0,1/(10 —4n)). Foralln > 1 and k£ > 1 let Ykn75 € R be such that

(th, ey th) if maxi<;<k |Yk,j‘ < nl/(4—’q)—6’

Y = (v YY) =
k ( k,1 kk) (0,...,0) else.
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As discussed in Section 6, the displacements of the branching random walk T, 5 are not nec-
essarily globally centered and so may not satisfy [A1]. Thus to prove the result, we will need
to instead consider the re-centered branching random walk (T},, Y, 5) Where conditionally on

T,,, the entries of Y*s = (V' ’5(”), v €v(T,)\ dT,) are independent random vectors, such
thatif v € v(T},) \ 0T, has k children then Y, ’(S(U) has the same distribution as
n,0 n,0
v B[]
The function R s : [0,n] — R encoding the spatial locations of (T,,,Y,” 5) is such that for all
t €10,n],

* d n,d
(7.9) “ ()L Ry s(t) — E {YE’UE] CHy (1),
By Lemma A.11,

n,0
‘E [YéUJ

—0 ((nl/(4—n)—5)1—2(4—n)/3) '

Since (n~Y/2H,,(nt))o<i<1 N 2 (e)o<t<1 as n — oo in C([0, 1], R), it then follows that

[ Hnloo

(7.10) )

n,0 | P,
B [YE,UJ -0

as long as ¢ > 0 satisfies

(59 (25 -

Rearranging, this is equivalent to requiring that § < (10 — 4n)~!. For these values of J, we
then have

* d
sup |Ry, 5(t) = Ry 5(t)] — 0,
t€(0,1]
and so there is no asymptotic cost in doing this re-centering. Arguing again exactly as in
Section 35, it is sufficient to prove the analogue of Lemma 5.10, which states that there exists
A > 0 such that for any v >0, 6 € (0,1/(4 —n)) and n > 1 we have

% _ A
P {18 slloe > ¥/} < 5
It is straightforward to verify that the proof of Lemma 5.10 given in Section 6 generalises
immediately to this setting, on replacing n'/4 by n!/(4=7). O

7.2. Mid-range and large displacements. We will adapt the proof of Proposition 5.3 to
the case where [A3] holds instead of [A2]. The proof of Proposition 5.3 uses Lemma A.12 to
show that, with high probability, there are no vertices with a mid-range or large displacement
that are ancestrally related. To apply that lemma, it is sufficient to bound both the maximum
degree in the tree and the number of vertices with a mid-range or large displacement, with
high probability. The required bound on the maximal degree follows from the assumption
that E [5 3] < o0o. Therefore, for the adaptation, we need to obtain the same control on the
number of mid-range displacements under [A3] as we obtained under [A2] in Lemma 5.4.

LEMMA 7.4.  Suppose that [A3] holds for a given measure m and n € [0,2). For § >0
sufficiently small,

HU € v(T,) \ 0Ty, such that |Y V)| o > nl/(4—n)—5}‘ — op(n'/12).
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PROOF. Let &1, ...,&, be IID with distribution u. Let « € (0,1) be such that w({z} x
R4)=7n(R4+ x {z})=0. Then, by [A3],

nl—@-nsp {||Y51 oo > nl/(4*n)*5} < pl-U-mip {HY§1 [ fml/(4*n)*5}
= 7(((#,00) x Ry) U(Ry x (z,00))) < 00.

This in particular implies that there exists C' > 0 such that P {||Y§1 oo > nt/ (4_’7)_5} <
Cn~1+(4=m3 for all n > 1. It follows that

A, = ‘{z eln] « [|¥e lloo > nl/(4_”)_5}‘ <, Bin <n,Cn_l+(4_’7)6>.

By a Chernoff bound, this implies that for § € (0,(12(4 — n))~!), and n > 1 sufficiently
large, for any € > 0,

P {An > 5n1/12} <P {Bin (n, Cn*1+(4*77)5> > ml/lz}
p {Bin (n cn—1+<4—”>5) > O (1 n (%nl/ 12-(4-m)s _ 1)) }

=0 (exp(—n(‘l*”)a)) ,

SO

P {An > enl/12

z":& =n-— 1} =0 <n1/2 exp(—n(4_n)6)) =o(1). O

i=1

We now obtain the following result on the mid-range displacements under [A3] with a
proof that is analogous to that of Proposition 5.3; we omit the details.

PROPOSITION 7.5. Fix v > 0 and suppose that [A3] holds for a given measure m and
n € 0,2). For 6 > 0 sufficiently small, as n — oo,

P {||R] slloe >0} = o(1).

In the remainder of this section we will study the function encoding the spatial locations of
the “large-displacement” branching random walk T,, = (T,,,Y,)), namely R, : [0,n] — R.

Let = be a Poisson process on [0,1] x R2 \ {(0,0)} with intensity dt ® 7(dz, dy), and let
=7 be the restriction of = to [0,1] x (R% \ ([0,7] x [0,7])). Also, recall the definition of the
function U from just before Theorem 1.4.

PROPOSITION 7.6. Fix v > 0 and suppose that [A1] holds and that [A3] holds for a
given measure m and 1 € [0,2). Let § € (O, 6%1 A ﬁ).
If n =0 then as n — oo,

H,(nt) R, t A4 2 2
(( \/(g )7 7?5? )> 7U <F1€/47®>> i> (O_eth O'rt> 7U(0757)
n 0<t<1 n 0<t<1

with convergence in the first coordinate in C([0,1],R?), and convergence in the second coor-
dinate with respect to the Hausdorff topology on non-empty compact subsets. Furthermore,
U(0,E7) is independent of (e;,r, 0 <t <1).
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Ifn € (0,2) then as n — oo,

(( vn T nl/U=m ogtgl’U nl/(4*n)’® - Uet,O OStgl’U(O’H)

with convergence in the first coordinate in in C([0, 1], R?), and convergence in the second co-
ordinate with respect to the Hausdorf{f topology on non-empty compact subsets. Furthermore,
U(0,Z7) is independent of (e;,0 <t < 1).

We first prove Theorems 1.4 and 1.5 assuming Proposition 7.6.

PROOF OF THEOREMS 1.4 AND 1.5 ASSUMING PROPOSITION 7.6. For v and 4 as in
Proposition 7.6,

(Rn(nt)> B (Rn,(;(m)+ R%(nt)) N R) 5(nt)
W/ ) o~ \nt/Gen e ) T e .

By Proposition 7.6, as n — oo, U(n~"/“DR)(n-),0) N U(0,Z7) with respect to the
Hausdorff topology on non-empty compact subsets, jointly with convergence

<R<t>> {6[ ity =0,

nl/(4=n) if n € (0,2)

in C([0,1],IR?) where, for n =0, U(0,Z") and (r;)o<¢<1 are independent. Therefore,

U(Rn,a<n~) L R ®> a, {U(ﬁﬁr,av) ity =0,
U(0,27)

nl/(d=n) = pl/(d-n)’ ifn € (0,2).

Note that U (0, Z) is a compact set by our assumptions on 7, and that U (0,27) 2% U/ (0, )
in the Hausdorff sense as v | 0. We have

Rn(n) Rn,&(n') R;Yb(n) —1/(4—n)
o <U (nl/(4—n) ’®> v <n1/(4—n) + nl/(4—n)’® S 15 loc

and, by Proposition 7.5,

hmhmsupP{HR slloo > /(4= )} =0.

We may now apply the principle of accompanying laws [6, Theorem 3.2] in order to obtain

that
() = e o
n AT U(0,2) if n € (0,2),
which yields Theorems 1.4 and 1.5. O

The remainder of this section is devoted to the proof of Proposition 7.6. We will need a
notion of pruning and grafting of branching random walks. We refer to Figure 6 as a visual
aid in understanding the following three definitions.
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DEFINITION 7.7 (Pruning branching random walks). Let T = (7,Y) be a branching
random walk with displacements Y = (Y(*) v € v(T) \ 9T). Let v € v(T) and T*) be the
subtree of 7" rooted at v. The sub-branching random walk of T rooted at v is the branching
random walk T(") = (T(") Y") with displacements Y’ = (Y’'(") o € v(T™)) \ 0T™)). Also,
T is the branching random walk obtained by removing all descendants of v from 7". More
generally, for v = (v1,...,v;) asequence of distinct vertices in v(7") such that no two vertices

in v are ancestrally related, we set TV = (T(U), v € v), and define T inductively as Tt —
(TT(Ulv“uvk‘,—l))T'Uk,.

DEFINITION 7.8 (Grafting branching random walks). For branching random walks T =
(T,Y) and T/ = (T",Y"), and for a leaf L € 0T, let T®; T = (T &; T,Y &; Y’) be the
branching random walk defined by setting 7" @; 7" = T U IT" and, for v € v(T &; T") \
O(T & T"), setting

y® if T)\ 0T
(Y@ZY/)(U): T'UG'U( )\8 9
Y/ if y = [u for some u € v(T") \ dT".
More generally, for branching random walks T, T!,..., T* and distinct leaves [1,...,l; €

OT, define T @;, 4, (T, ..., T*) recursively over k as
T @l17~~-alk (T17 s 7Tk) = (T @lum,lk—l (T17 s 7Tk71)) @i, Tk

The previous definitions imply that for a branching random walk T = (7,Y") and v € v(T),
TTU @v T(U) — T’

and, more generally, for a sequence of distinct vertices v = (v1,...,vg) of T such that no two
vertices in v are ancestrally related in 7', that TTY @, TV = T.

We next use the above definitions to define a map that prunes the sub-branching ran-
dom walks of branching random walks that are rooted at ancestrally minimal vertices v with
|Y)||o > 7. See Figure 6 for an illustration of the coming definition.

DEFINITION 7.9. For a branching random walk T = (7,Y) and for 7 > 0, let v, =
(v1,...,vm) be the set of vertices v € v(T') such that ||V ()|, > 7 and for all ancestors
u =, |[Y®| <7, listed in depth-first order. Define a map f, by

T2 (T (T, T,

where the second coordinate is a multiset with elements T(*), ... T(®=) which are the
branching random walks rooted at the vertices vy, ..., Un,.
For 7 > 0, let

VT (Ty) = {v € o(Tp)\ 0T : [[Y V]| > 7, and Y@ o0 < 7 Vu < u} .

We will apply f; to T,, and then study the law of T, conditional on f,(T,). Ob-
serve that, given f(T,), T, is determined by v"(T,). We will show that conditional on
f+(Ty), v (Ty) is distributed as a uniformly random subset of leaves in (f(Ty));. We
make this formal in the next lemma.

LEMMA 7.10. Let 7 > 0 and write f;(T,) = (T,,{TL,...,T™}). Fix m > 1 and let
Y €y Sm, where Sy, is the symmetric group of order m. Further, let (L1,...,Ly,) be a
uniformly random vector of leaves in T), listed in depth-first order. Then, given f;(T,,), T,
is equal in distribution to

T, &r,,..L0, (T>M )y,

n
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T(Ul)

T(W)
AEENO0IOl 1 ]

FIG 6. On top, a spatial tree. We denote the associated branching walk by T. On the bottom left, we depict
f7(T) = (TTW, {T(vl),T(W) 1), which is obtained from T by pruning the sub-branching walks of T that have
a displacement with absolute value exceeding 7 in their first generation. On the bottom right is a spatial tree
obtained by grafting the branching walks (f7(T))g to leaves of (f7(T))1. T and T(2) 10 leaves of TV,

PROOF. Let (t/,{t!,...,t™}) be in the support of f,(T,,). We will first show that
(7.11)

A ) = {t' T DA™Y (1. L) leaves in ts T € Sm} ,

where on the right-hand side, (I1,...,l,,) are listed in depth-first order. Following this, we
will show that the law of T, conditional on its degrees and displacement vectors assigns
equal mass to all elements of the right-hand set in (7.11), and that each element of the right-
hand set corresponds to the same number of sets of leaves (I1,...,l,,) listed in depth-first
order and permutations 7.

For the inclusion of the left-hand set in the right-hand set, observe that if for some spatial
tree t it holds that f,(t) = (t/, {t!,...,t™}) then (I1,...,l,,), the minimal vertices in t that
have a displacement vector with sup-norm lower bounded by 7 listed in depth-first order,

are leaves in t’. Thus there is some 7 € S, such that for all i = 1,...,m, t™® = t()_ This
implies that t =t' @;, ;. (£t ... 7)),
For the other inclusion, it is straightforward to see that for leaves (ly,...,l,) in t/,

listed in depth-first order, and m € S,,, it holds that f-(t' &, ;. (t”(l),...,t“(m)) =
', {th, ..., t™}).

We now show that the law of T,, conditional on its degrees and displacement vectors
assigns equal mass to all elements of the right-hand set. This follows from the observation
that, conditional on its degrees and displacement vectors, T, is uniform on all branching
random walks with those degrees and displacement vectors. Each element in

sbm

(7.12) {t’ Sty (DA™Y (1, ) leaves in T € Sm}

with lq,. .., [, listed in depth-first order has the same degrees and displacement vectors.
Finally, we show that each element of (7.12) corresponds to the same number of sets of
leaves (l1,...,ly) and permutations 7w € S,,,. To this end, note that every vertex in a spatial
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tree t with a displacement vector whose sup-norm is at least 7 has a non-zero number of
children, so for each t in the set (7.12), we can recognise (I1,...,l,) as the vertices v that
are leaves in t' and not leaves in t; thus, the choice of (l1,...,l,,) is unique. Moreover,
if the multiset {tl, ...,t™} contains j different spatial trees with multiplicities my,...,m;
respectively, then t corresponds to m!/(m4!...m;!) different permutations 7. This number
does not depend on t, and the statement follows. O

For n > 1, let 7, = n/(4="=9_ Further, let T/, = (T’,,Y”) denote the first coordinate of
fr.(Ty), and F}' = (T,(lv))vewn (1, denote the second coordinate of f- (T;), where we
assume that the trees in F}, are ordered according to the depth-first order of their roots in
T;,. We require one further lemma to prove Proposition 7.6.

LEMMA 7.11. Fix v > 0. Suppose that [A1] holds and that [A3] holds for a given
measure ™ and n € [0,2). For n > 1, let H] be the height function of T] and R), be the
function encoding the spatial locations of T),. Extend their domains to [0,n] by setting
H! (t) = R.,(t) =0 forall t > |T,|. If n =0, then as n — oo,

/ / 0,7
(7.13) Hn(nt) ) Rn (nt) ) Ln ) i> geta 6\/51‘15 aLO,,y
Vn ntt Jocicr A a g

0<t<1

and if n € (0,2), then

Y / 7Y
ory (B B0Y ) (Rew) ),
\/ﬁ n /(4=n) 0<t<1 n /(4=n) o 0<t<1

with convergence in the first coordinate in C([0, 1], R?) endowed with the topology of uniform
convergence, and the convergence in the second coordinate in .

PROOF. We prove (7.13). The proof of (7.14) then follows by identical arguments. By
Proposition 7.3 it suffices to prove that as n — oo,

(7.15) sup {n™?|H,(j) = HyG)| v 0~ R () = R G | B 0.
1<j<n

We also prove (7.15) using Proposition 7.3. Fix € > 0. The sample paths of both e and r are
almost surely continuous so, since [0, 1] is compact, they are in fact almost surely uniformly
continuous. This implies that there exists p > 0 so that

2 2
P sup B \/>rs — By =1t
0<s<t<1,|s—t|<p o g

Then, the convergence in Proposition 7.3 implies that for n sufficiently large, the probability
that the event

5, ::{ . {anuf) — Hy(0)], [Bns(k) — Rus(0) } >€}

0<k<l<n,|k—L|<pn n'/? nt/4 -

2 2
—es— —e
g g

V

> 5/2} <e/2.

occurs is less than ¢.
Next, let

v*(Ty) = {u €v(Tp) \ Ty : [|[Y]|oe <048 Fu < v with ||[Y W] > n1/4—5} .

By identical methods as those used to prove Lemma 5.6, it can be seen that v*(T,,) = op(n)
and so for n sufficiently large, P {|T}| <n — pn} <e.



DISCRETE SNAKES WITH GLOBALLY CENTERED DISPLACEMENTS 63

Now suppose that neither of the (unlikely, bad) events {|T/,| <n — pn} or B, hold. Ob-
serve that H), and R/, can respectively be obtained from H,, and R,, 5 by “skipping” all the
vertices in v*(T,,). To be precise, for 1 < k < |T},|, let P, (k) be the position of the k-th
vertex that is not in v*(T),) in the depth-first order of T},. Then,

(Hn(Pn(k))anﬁ(Pn(k))) fork=1,..., |Tln|a

(HL (), R, (k) = { 0.0) for k> [T |

By our assumption that n — | T}, | < pn, we have | P, (k) — k| < pn for all k; by our assumption
that

sup
0<k</(<n,|k—L|<pn

{ |Hn(k) - Hn(€)| v ’Rnﬁ(k) - Rnﬁ(g)‘ } <e,

nl/2 nl/4

we then also have

(7.16) sup

{ [ Ha(k) = HA(R)] | |Rns(k) = B () } <e
0<k<n |

Jn /4

Since € > 0 was arbitrary, the result follows. O

With Lemma 7.11 in hand, we proceed to proving Proposition 7.6. In the proof, the pair
(T),,FY") is as in Lemma 7.11. Observe that by Lemma 7.10, given f, (T},), we can ob-
tain an object with the same law as T,, by grafting the branching random walks in F}" at
uniformly random leaves of the first coordinate of f, (T),).

PROOF OF PROPOSITION 7.6. Letn > 1 be large enough so that n'/(4=1=0 < ~p1/(4=n),
Then if v € v(T,) \ 0T, is such that ||V ()| > vn/*#=) it also holds that ||Y ()5, >
n'/(4=m=3_ The proof of Proposition 5.5 can be adapted so that under [A3] for a given
measure 7 and 7 € [0,2), for § > 0 sufficiently small, as n — oo

P {au,v € Ty, u < v, such that [|Y @ |[o A Y| > n1/<4—n>—6} — o(1).

If follows that at the cost of throwing away an event of asymptotically vanishing probability,
we may work on the event that there are no ancestrally related vertices u, v € v(T;,) such that
both ||Y (V)| > n!/4=m=0 and ||V (W)|| o, > nl/E=m=0,

By Skorokhod’s representation theorem, we may work on a probability space where the
convergence in Lemma 7.11 holds almost surely.

We now use Lemma 7.10 to study the asymptotic law of R}, conditional on (T, F5’).
Lemma 7.10 implies that given (T, FP"), we can obtain an object with the law of T, by
grafting each of the branching random walks in F}" onto uniformly random leaves in T,.
In fact, in order to obtain the (conditional) law of R;, we only need to sample the positions
of the vertices in v € v(T,,) \ dT,, whose displacement vectors Y (*) satisfy that || Y (*)||o, >
fynl/ (4_77), since the trees of FE' attach to these vertices in exchangeable random order. We
denote the branching random walks in F2' by T(®) . T(@m) (ordered according to the
depth-first order of their roots vy,...,vy, € Tp). By symmetry we may assume that for
1 <j < M,, the largest and smallest displacement at the root of (i) (.e., Y @it) and
Y (7)) are described by the j-th entry of L.

We claim that as n — oo, M, i> M for some finite, random variable M. Indeed, as
n — oo, n~ VA= 1T 25 10y Furthermore, since > 0, almost surely L7 has finitely
many non-zero terms and each non-zero entry of n~ /(4= L7 is at /> distance at least y
from (0, 0), there are finite random variables M and N such that L;}” has M non-zero terms
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forall n > N large enough; i.e., the number of vertices v € v(T,,) \ T, such that || Y (*)|| o, >
Ant/(4=1) is equal to M.

Now, for k > 1, let L], (k) denote the number of leaves in T/, which are among the first
k vertices in the depth-first order of the vertices of T,,. Then £/, (k) is bounded from above
by the number of down-steps of the Lukasiewicz path W, (k) of T,, by time k. It is bounded
from below by this same number minus |7, \ 77| which is o(n) by (7.13).

Therefore, by Lemma A.1, as n — oo,

<E§L(WJ)>0§SI Py (1ot)oerer

n

so that the positions of M,, uniform leaves in T/, in depth-first order converge upon rescaling
by n~! to M independent uniform samples from [0,1], which we denote by Uy, ..., Uy
respectively. For all 1 < j < M,,, we graft T(%) (which has size o(n) since T/, has size
n — o(n) by (7.13)) onto the j-th such leaf of T/, using the operation in Definition 7.8.

The branching random walk T(®5) contains exactly one vertex (namely the root) with dis-
placement vector HY(“) oo > yn /(4= (since we assumed that such vertices are not ances-
trally related) and the largest and smallest displacements of this vertex are given by L7 (j).
Therefore, asymptotically, n~ /(=" R} will contain a line segment from (U, —Yj_) to

(Uj, =Y;"). This implies that if n = 0

H/ / % 2 2
(( T\L/(gt)’Rnl(Zt)> U ( ?/4,@)) d (oet’ﬁ Urt) JU0,27) ],
" Ost=l1 " 0<t<1

and if € (0,2)

Hynt) R nt) RN o (2 _
<< Vi Tnl/t=m 0§t§17U m’w — Eet’o Ogtg’U(O’u) :

The result then follows from (7.15). ]

APPENDIX: STANDARD RESULTS AND REMAINING PROOFS

A.1. Standard results. In this section we provide standard results which we use
throughout this work without proof. We start by stating a functional strong law of large num-
bers for sums of 11D non-negative random variables that we use at multiple points in proofs
of convergence of finite-dimensional distributions.

LEMMA A.1. Let X1, Xas,... be ID random variables with X1 > 0 almost surely and
E[X1] = p < oo. Then, for any a, 1 oo,

lant]
S Xit>0| 25 (ut,t>0),
=1

1

an
uniformly on compact sets as n — oo.

The next result is a generalised local central limit theorem, from Theorem 13, Chapter VII
of Petrov [35], which we use to prove tightness in Theorem 1.1.

THEOREM A.2 (Theorem 13, Chapter VII of Petrov [35]). Let (X,,)n>1 be a sequence
of NID integer-valued random variables. Suppose that E[X1] =0, Var{X;} = 02 > 0,
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E UXll?’] < o0, and the maximal span of the distribution of X, is equal to 1. Let S, =
>y Xi. Then,

2 2 1 ks 3k
/ _ _ —k*/(20°n 3 1/2
2mnoP{S, =k} =e / ) <1+\/ﬁﬁr3 (73723/2 U\/ﬁ>> ofn ! )

uniformly in k € 7, where 3 is the third central moment of X7 .

The last result is a quantitative local central limit theorem proved in [3, Lemma 5.5] for
k =1, which we use in the proof of Theorems 1.4 and 1.5. The generalisation to k£ > 1 is
standard.

LEMMA A.3. Fixn,>0, 0<~ <1/2 and k € N. Then, there exist constants C =
C(n,B,v,k) and M = M (n, 5,7, k) so that for all random variables X on Z>( that satisfy
the following conditions:

1. the greatest common divisor of the support of X is 1;
2. P{X=0}>vand P{X =k} >~;
3. E[X?] <nand

4. E[X?] <5,
it holds that for all m > M
m
¢ —mE[X] C
wup [ VimP S X =0 b g (LB ) O
ez {; ' v Var{X}m vm
where X1, Xo, ..., are 1D copies of X, and ¢(t) = e /2 s the standard normal density.

A.2. Supporting results from the introduction.

PROOF OF LEMMA 1.3. We argue by contradiction. Fix 7" > 0. Without loss of gener-
ality, assume that 7({z} x Ry) =9 > 0 for some = > 0. We show that this implies that
m((x/2,00) x Ry) > T, which contradicts the requirement that 7((z/2,00) x Ry) < o0
because 7" > 0 was chosen arbitrarily. Fix 0 < & < /4 small enough that §[ | > T and
m({x —e,x+¢c} x Ry) =0. Define Ag = (v — ¢,z + €), so that by [A3],

rFA-np {i lnglzag}(f}/g; € Ao} —m(AgxRy) >0 asr— oo.
Then, letting J = | | — 1, for j € {1,...,J}, we can find 0; € (0, 1] such that A; := 0;(x —
gx+¢e)C(r—(2j+ 1),z — (2§ — 1)) and w({6;(x —¢),0;(z +¢)} x Ry) =0. By
definition, Ay, ..., A are pairwise disjoint, and by our choice for J, Up<j<sA; C (/2,2 +
g), so m((z/2,00) x Ry) >3 ;< ym(A; x Ry). Moreover, setting r = 0;s in the above
limit shows that

1 _
34_’7P{S 1IEZa<)<£Y§ € 9]'(17—6,173—1—6)} — 0] 47(Ag x Ry) > as s — oo,

But [A3] implies that

1
4—n - + . _ )
s P{Slrg?gxsifg’zeej(x e,m—l—e)}%ﬂ(A] x R),

so((x/2,00) x Ry) > (J +1)0 > T, which implies the claim. O
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PROOF OF PROPOSITION 1.2. To ease notation, we write n/2 instead of [n/2] through-
out the proof.

First observe that, by assumption, there exist €,d > 0 such that, for &;, ..., &, 1ID samples
from p,

limsup P { max max |Ye, ;| > 5n1/4} > €.
00 1<i<ni1<j<g, o7

By the central limit theorem, we may pick K large enough that

n/2
liminf P{ n/2 — Kn'/? <) "¢ <n/2+ Kn'/? 3 >1-¢/2,
n—o00 P

so that by a union bound
n/2
limsupP { max max |Yg, ;| >dn'/* n/2 — Kn'/2 < Z&‘ <n/2+Kn'?% >e/2.

n—00 1<i<n 1<5<¢; =y
1=
Denote the event inside the probability by £,. We see that

P{ max max|Y-(U)| > 5n1/4} = P{ max max |Ypn ;| > 6n1/4}
vev(T,\OT, j>1 7 1<i<n1<j<Dn 3

n/2

=P Ypr j| > on'/*, n/2— Kn'? <Y " DP <n/2+ Kn'/?
- 1;1235/21%?2%?| Dim]‘ n 777’/ n _Zz; i _n/ + n

P& {3 &=n—1}}
P{) L &=n—1}
n n/2
B E [1[5"}1) {Zi:n/2+1§i =n—1->77&|&,... 7§n/2,Y517~~~,Y5,L/2H
P{} L &i=n—1}

: n
ming, /91 Kni/2<m<n/2—14+Knt/2 P {Zi:n/2+1 §&i= m}

P{L G=n—1}

By the local central limit theorem, there exist constants ¢, C' > 0 such that

>P{&}

n
lim inf n'/? min P Z Li=mp>c
n—00 n/2—1—-Kn'/2<m<n/2—14+Kn!/2 )
i=n/2+1
n
and limsupn'/?P {Z‘f’ =n— 1} <C.
n—oo .
=1
Thus, as claimed
. 1/4 ec
limsupP { max max [Ypn» ;| >on > —>0. O
N0 1<i<n 1<j<Dr i 2C

A.3. Measure change. For n > 1 let S,, denote the set of permutations of [n]. For
(K1, k) €N, let ¥ =X, 1) be the random permutation of [n] with law given by

N
P{E:U}:llni, foro € S,.
i=1 Z]:Z kU(])
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We call (ks (1), - - kxyn)) the size-biased random re-ordering of (ki ..., ky). It will be con-
venient to extend this definition to vectors (k1, ..., k;) that contain 0-valued entries. We start
with a size-biased random re-ordering of the non-zero entries of (k1, ..., k;) and then append
to this the correct number of zeroes. Formally, if (k1,. .., k) € ZZ, has N > 0 non-zero en-
tries, let ¥y, 1, be the random permutation of [n] with a

N
Ko (i)

! N ’
=1 ijl Ko (j)
for 0 € S, and still refer to (ks(1),...kx(,)) as the size-biased random re-ordering of

(k1,.... k).
For a permutation o € S, and r € {0, 1,...,n} define

1
(A1) P {2 =0 =

(o) = {min{j €n]:0(j)€elr]} ifre]ln],
' n+1 ifr=0.

As discussed in Section 4, the proof of Theorem 1.1 relies on establishing a change of
measure, (4.5), which relates the size-biased random re-ordering of the positive entries of the
degree sequence of T, and 11D samples from the offspring distribution. The proofs of Theo-
rems 1.4 and 1.5 rely on establishing a similar change of measure, which is a generalisation
of (4.5) to the situation where instead of an IID sequence, the first r elements are non-zero
and are fixed in advance; the whole sequence is conditioned to have sum n — 1; and we con-
sider the first m elements of the size-biased random reordering of the sequence. Specifically,

let m,n,r,s € Z>o with m,r, s <n, and 1 be a distribution on Zx>. For k1,...,k, € N, we
define
@M(kl,...,km):@Z’T’s(k’l,...,km)
(A.2)
P{X et Xy ,=n—1—5-Y" k —r—i+1
B i) LN 1P i) | s
P{Xi+ - +X,—p=n—-1-s} i:1n_1_2j:1kj

if k1 +--- 4+ kpn <n —1—s, and otherwise O, (k1,...,ky) =0, where (X;,7 > 1) are
11D random variables with distribution y. We note that when » = s =0, and p is a critical
offspring distribution, we recover (4.5).

PROPOSITION A4. Fixn,r,s € Lo withr,s <n, and dy,...,d, e Nwith Y| | d; =
s. Let ju be a distribution on Z>o and (X;,i > 1) be 1ID random variables with distribution fu.
Further, let

N=Np,=|{ie{r+1,...,n}: X; >0}/

Let 7 = (Z1,...,Zp) = (d1,...,dr, Xs11,...,Xp), and conditionally given Z, lety = Yz
be given by (A.1). Finally, let (X;,i € [n]) be 1ID samples from the size-biased distribution
of X1. Suppose that E [X1] < co. Then for any m € [n — r| and any function f : N — R, if
P{X,y1+...+Xp=n—1—135)}>0, then

E\f (Zsays - Zsmy) Ynsm L )sm) | Xr1 -+ Xp=n—1—5
(A.3)
=E[f(X1,....Xn)0,(X1,...,Xn)] .

where ©,(X1,... X)) =057 (X1,... X ) is as in (A.2).
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We observe that when r # 0, 7,.(X) > m implies that N > m because all positive entries
occur before zero-valued entries in the size-biased random reordering. However, when r = 0,
the former event is vacuously true for all m € [n], but we still enforce that N > m in (A.3).
It follows that Proposition 4.3 is the special case when r =0, s = 0 and X1, Xo,... are IID
samples from the offspring distribution .

PROOF. In this proof, forn > 1, and » > 1, we let

n]r ={(n1,...,n.) €{1,...,n}" : n;#n; forall i # j}.
Furthermore, for a set A we write A, for the set of ordered sequences (s1,. .., s,) of r distinct
elements of A. We also let ; =P {X; =i} for i € Z>.

We first prove the proposition assuming that y = 0; we will later generalise this by con-
ditioning on the number of non-zero entries of Z and sampling a size-biased re-ordering of
only these entries. When ji9 = 0, we have P {N =n} = 1, so the indicator 1{y>,) in (A.3)
equals 1 and may be ignored.

For o € Sy, we write Zg = (Z,(1),- -, Zo(n)) and o~ '[r] = (671(1),...,07(r)). Ob-
serve that for m € [n — r|, we have the equality of events

{(r(Z) >m} = {7 ] € ((n]\[m]),} .

It is thus useful to determine the law of (Zx;, ¥~ 1[r]). Note that for any k = (ki ..., kn) € N”
and j = (ji,...,jr) € [n],, if (K, ) is in the support of (Zg, ¥~ 1[r]) then kj, = d; for each
i € [r]. For such (K, ),

P{Zgzk’,z—l[r]:j}: 3 P{Zg:E,E:a}

c€8, 0 r]=]

(A.4) :HZ
J=1 J

> p{Z-F}

O'GSW,ZO'fl[T]:;

Since we fixed o~ ![r], the sum (A.4) ranges over exactly (n — r)! elements of S,, and each
term of the sum is equal to
I

]G[n]\{]1,,]7}

Hence, for any k € N" and je 7],
(A.5)

pz-isi=ih-oon (D) (T ) ()
[ i=1 2J=1 "

Jje n]\{]lvzjr}

Now, fix m € [n —r] and k1, ..., k,, € N. Note that it suffices to prove (A.3) when f : N —
R has the form

(A.6) Fzsszm) = [ [ Lsimrs

SO we now restrict our attention to this case. Since

> Zsg Zd+ZX—s+ ZXZ,
1€[n]

1=r+1 1=r+1
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forany k1, ..., kn € N, by summing over the possible values of Zs;;;, 1) - - -, Zx(n), We can
use (A.5) to find that
(A.7)

P{(Zg(l),...,ZE(m)):(k:l,...,km),rr(z) >m, Xi:n—l—s}

i=r+1

=X > Uz nen P {Zo= (b ko) 27 ] =

(k15 kn)ENT=™ Fe ([n]\[m]),

(n—) (1}%)(Un_1—zzﬁm)

Z L k=n—] (Hl[k.n:di]> H < H Z )
ie([ 7= =ik

(Bm+15eee5kn ) ENP i=1 €([n\[mD\ {71, Jr} i=m+1
JE([n\[m])-

Using that kuy, = P {X1 =k} E[X] for all k € N, writing n’ = n — m, and re-indexing the
above sum, this yields that (A.7) is equal to

— —  on—r—i+1
P{(X1,...Xm)=(k1,.... k) VE[X1]™ 7 n' — )
{(x1 )= (k1 )} E[X4] (Z-Hln—l—Z}:llkj)( )

T k/
Z 1[2?;1162:”—1—2211&] (Hl[k;fdi]) H Hk; H Z
(K,eokl, ) ENT =1 i€/ \{j1,sdr } i€[n] £=j=i K
Je[n,]r

Now, define 7/ = (di,...,dr, Xy41,..., Xn_m) and, conditionally given 7' lety = ¥ be
given by (A.1). Applying (A.5) to Z’ and 5/, we thus find that (A.7) equals

P{(X1,....Xm) = (k1,.... k }H( —tl E[X1]>

n*1*2§:11k‘j
S sy P {2 =R )] =T
(kg, ,k )GN"
JE[H}
_ _ i n—1—i+1
—P{(X1,.. ., Xm) = (k1 hom) } < _ E[Xl])
z'l;Il n_l_zj':llkj

P{nZZ’w) —n—1 —Zm:k}
=1 =1

Finally, since the sum of the entries of Z’Z, is unaffected by the random reordering and is the
same as s + > 1" X; = s + 20" X;, we deduce that (A7) equals

P{(X1,... . Xp)=(ki,....k }H( —itl E[X1]>

i—1
n—1-=301k;
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Dividing the above expression by P { 377" X; = n — 1 — s} yields the statement when 119 =
0, in the special case that f has the form given in (A.6), and thus for general f.

For the general case with pg > 0, we let p =1 — pg. Further, we let X;,Xs,... be IID
copies of X conditioned to be positive. Notice that E [X;] = p~'E[X1] and that the size-
biased distributions of X1 and of X; are identical. We let )Ail, )Aig, ... denote 1ID samples
from the size-biased distribution of X . Finally, fix m’ > 0 and define

Z'=(Z,,.... 2. )= (d,. .. de, Xy, o, Kpnr)

and conditionally given Z/, let &/ = Y5, be given by (A.1).
Now fix m € [n — r| with m < m/. Forkl,.. k. € N, we have that

P{(Zz(l),...,ZE(m)) = (k}l,...,km),Tr(Z) >m, Z Xi=n—1-s
1=r+1

N = m’}
(A.8)

:P{(Z,Z’(l)77 /E/(m)):(k’l,...,k?m), 7'7»(2,)>m, Z Xlzn—l—s}

i=r+1
By the proof of the case where 119 =0, if k; +--- + k;;, <n — 1 — s this is equal to
P{ Xl,...,im):(k:l,...,k:m)}

m —i+1
{ S x, _n_l_s_zk}ﬂ(n_l_i11%E[Xﬂ>,

1=m+1 =1

and otherwise is equal to 0. For the remainder of the proof we may thus assume that k; +
ok, <n—1—s. SinceX; 2 X, and E [X1] = p~'E[X]] this is in turn equal to
P{ Yla"'yym) :(klvakm)}

(A.9) {Z Xi=n—1-s ik}H( m—itl E[X})

: - AT eT i i—1 -
i=m+1 i=1 n_l_zjzlkj

It then follows from (A.8) and (A.9) that

P{(ZE(1)7...,ZZ(m)): (k1. km), N >m, 7.(X) >m, Z Xi=n-— 15}
i=r+1

=P{(X1,....Xp) = k1, k) }

(A.10)
— P{N= m'} g IR m —i+1
mfz::mp {1;1)( —n—1-s ZkZ}H<n—1—Z§;ﬁkjE[X1])'

Notice now that N < Binomial(n — 7, p). So using the change of variable £ = m’ —m and
letting M/ be a Binomial(n — (r 4+ m), p), by routine algebra we obtain that (A.10) equals

n—(r+m) m—+/ r—i4+1
> P{MzE}P{ > X, —n—l—s—Zk} H( - z“kE[Xl]>
n— j=1%i

/=0 i=m’—{+1 i=1
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n—(r+m) 4 m m .
—r— 1
- ¥ P{MzE}P{ZXi:nlsZk:l}-H< nore E[Xﬂ)
=0 =1 i=1 i=1 ”*1*2]‘:11@'
& - i n—r—i+1
=P Xi:n—l—s— kz‘ - E[X1]>
i—1

Since Zf‘i 1 X 4 Z?;f”m X, dividing the above expression (which is equal to (A.10))
by P {Z?;{ Xi=n—-1- 5} yields the result for the special case that f has the form given
in (A.6), and thus for general f. O

The next proposition gives conditions under which the change of measure ©),"* appearing
in (A.2) is asymptotically unimportant in the specific case when m = ©(y/n) and (X;,i > 1)
are 11D samples from the offspring distribution  conditioned to yield a displacement vector
such that maxi<;<x, \YXM j] < fynl/ (4=7) This then allows us to use the measure change in
the proofs of Theorems 1.4 and 1.5.

LEMMA A.5. Let ji be a critical offspring distribution with variance o* € (0,00), and let
v = (v )k>1 be such that [A1] holds and [A3] holds for a given measure w with ) € [0,2). Fix
~v > 0. Let € denote a random variable with distribution i, and for n > 1 let £™ be distributed
as &, conditioned to not yield a displacement vector with maxi<;<gen |Yen 5| > an/(‘l_”).
Further, let " denote the distribution of ", and let £, &5, ... be 1ID samples from the size-
biased law of ™.

Finally, fix e € (0,1/6) and let (ry,)n>1 and (sp)n>1 be sequences such that for all n > 1,
T < 1E, Sy <03t andn — 1 — s, is in the support of Yo, &

Suppose that m = ©(y/n). Then as n — oo,

(A.11) o (€, ... 6 B,
and (O, (€7, .., &%) n>1 is a uniformly integrable sequence of random variables.

The proof of Lemma A.5 is very similar to that of Lemma 4.4. However, in this case
instead of the standard local central limit theorem, we will require a quantitative local central
limit theorem in order to get uniform estimates on local probabilities for the family of random
variables {¢",n > 1}.

LEMMA A.6. Let yi be a critical offspring distribution with variance o € (0,00), and
let v = (v)>1 be such that [A1] holds and [A3] holds for a given measure  withn € [0, 2).
Let v > 0. Further, let £ denote a random variable with distribution 1y and for n > 1 let " =
(&'s1 > 1) be 1ID copies of § each conditioned to satisfy {maxi<;<gr [Yer i| < Ant/A=mY,
Then there exist C; N > 0 and M such that for all m,n > N,

m "=k% — B 3
ﬂ’{;g’ } ¢<War{fﬂm)

where ¢(t) = e~'/2 is the standard normal density.

<
vm’

sup
keZ

<

This lemma is immediate from Lemma A.3 as soon as we show that the family {¢", n > 1}
satisfies the conditions of that lemma. This is verified in Lemmas A.7 and A.8.

LEMMA A.7. For all n sufficiently large, the support of £ has greatest common divi-
sor 1.
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PROOF. By assumption, the support of ¢ has greatest common divisor 1, so we can find
an M such that the greatest common divisor of the support of & restricted to {0, ..., M} is 1.
Since yn'/4=" > M for n sufficiently large, the result follows. O

LEMMA A.8. Asn— oo,

(A.12) E [(g”)ﬂ SB[ forj=1,2,3
and
(A.13) [E["] - 1]=0(n"?/?).

PROOF. For j € {1,2,3} we have

B[] =3 WP e — k)
k=1

o P{¢=k} B 1 4
- kz;k]P {maxi<j<e |[Ye | <ynt/(-m} - (1 +0 <n)> E[¢'],

where the final equality follows by assumption [A3]. By the bounded convergence theorem,
as n — oo,

B [(gn)]} 2 E [5]] -E [gjl[maxls&é |Ys,z‘\>7n1/(4_’7)]] —E [ﬁj] ’

where we have used assumption [A3] again. (A.12) follows.
To get the more precise lower bound for 7 =1 in (A.13), observe that

E (€1 fmas, < [ | >om/ o) | < 0'/7P {1H<1a<xg Yeil >yt n)} +E [E1igoms] -

The first term on the right-hand side of this inequality is O(n~2/3) by [A3]. Also, E [¢3] < oo
and so the second term is also O(n~%/3), thus establishing (A.13). O

The last tool that we need to prove Lemma A.5 is an upper bound on the total variation
distance between &' and £ where £, a sample from the size-biased law of £.

LEMMA A.9. Let X be a random variable taking values in N such that E [X] > 0 and
E [X?] < cc. Let (E)n>1 be a sequence of events with P {€,} =1 — O(1/n). Let X,, be
distributed as X conditional on &,,. Let X,, have the size-biased law of X,, and let X have
the size-biased law of X. Then,

drv(Xn, X) = Z|P{X =k} -P{X =k}|=0n"3).
PROOF. By definition,

FP X = k,E,)
E [X1f,]

kP {X =k}
E [X]

(A.14) P{X,=k}= ,and P{X =k} =
Since E [X?3] < oo we have that P { X > n1/3} =o(n~!) as n — oo and so Holder’s in-
equality yields that

2/3

E [X]-[X>n1/3]] <E [X?’} 1/?)P{X>nl/3} = o(n2/3).
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Next,
E [X1je] <n'PP{E} +E [X1jxops] = O(n~2/3),

sothat E[X1¢,] = E[X]+O(n~2/3) and the difference between the denominators in (A.14)
is O(n=2/3). It follows that

> IP{X= k) - P (X =k)]

-

k=1

< m (Z kP {X =k,€ }) +0(n™%3)

nl/3

S EP{X =k, E} + B [X1yspus)] | +0(n)
k=1

k:P{X k, &) KP{X =k}
E [X1j.] E[X]

=B [X1[5

n\BPLEY  E[X1ixspis)

< +O(n"2/3.
E[X1g)]  E[X1g]] )

The first term in the last line is also is O(n~2/3) since P {£5} = O(1/n). O
This lemma has the following corollary.

COROLLARY A.10. Let yu be a critical offspring distribution with variance o* € (0,00),
and let v = (vy)g>1 be such that [A1] holds and [A3] holds for a given measure m with
n € [0,2). Fix v > 0. Let & denote a random variable with distribution ;i and let £1,&s, . .. be
11D samples from the size-biased law of &. For n > 1 let ™ be distributed as &, conditioned to
not yield a displacement vector with maxi<j<en |Yen ;| > An A=) Fyrther, let i denote
the distribution of ™, and let £V, &5, ... be 1ID samples from the size-biased law of ™. Then

form =0(v/n),

dTV((g?a e 75':711)7 (513 e 75771)) = O(n_1/6)'

PROOF. By [A3], £} is obtained from £ by conditioning on an event which occurs with
probability 1 — O(1/n). Therefore, by Lemma A.9, the total variation distance between &7
and &1 is O(n~%/3). Since m = ©(y/n), the conclusion follows. O

We now prove Lemma A.5. Since the proof is very similar to that of Lemma 4.4 we will
be brief.

PROOF OF LEMMA A.5. As in the proof of Lemma 4.4, we may assume that there exists
t > 0 such that m/+/n — t as n — cc.

Suppose that k1, . .., k;, € Z>¢. Then by almost identical techniques to those used to prove
(4.6) (replacing the local central limit theorem by Lemma A.6), we obtain that

P {Z?:(rn—i-m)-i-l 5’7 =n—1-s,— Zznll kl}
P {Z?zrn+1 =n—1-s,}




74

L4 8y —1n+mo?+ 30 (ki — (1+0?))
V202(n — (rp, +m))

2
(A.15) =exp | — ( ) +o(1) +o(1).

Recall that, for i € [m], &; is sample from the size-biased distribution of §. We claim that
instead of substituting £7,...,£" in the place of ki, ...,k;, we can substitute &, ..., &n.
Indeed, by Corollary A.10, the total variation distance between € &0 and &, ..., &,
tends to 0 as n — oo. Therefore, by (4.8), we obtain that (A.15) tends to exp(—(t?0?)/2) in
probability as n — oco. This convergence is analogous to (4.8) in the proof of Lemma 4.4.

It remains to establish an analogue of (4.9), i.e.,

(A.16)

S n—rp—i+1 mixr [ n—rp—i+1 t202>
— —E["] | =E[¢" xp | — |,
ﬂ(n—l—Z;;ié? : ]> ) H< B @)%p( 2

asn — oo. By Lemma A.8,
E[¢"]=E[{]+0(n ) =1+0n™??),

and so, since m = (1 + o(1))t/n, we obtain that E[¢"]™ =1 + o(1). Therefore (A.16)
follows from (4.9). ~
We now prove uniform integrability of the family (€ (£",...,&%))n>1. Again, by

the generalised Scheffé lemma [19, Theorem 5.12], since O}, (£7,..., &%) 5 1 it suffices
to show that E [©7:** (£7,...,£%)] — 1 as n — oo. By Proposition A.4 with f =1,
B B n
(A17) B[OW (@, . )] =P {N Smr, (D) >m| S &=n—1- sn} ,
i=r,+1

where =% > with Z = (Z1,...,Z,) = (d1,-..,dy,,&" 11, ..., £") such that di = s,,, and
da,...d, = 0. (Indeed, any fixed choice of dy,...,d, with 2121 d; = s, would suffice.)
To see that the probability on the right-hand side of (A.17) tends to 1 as n — oo, first
note that N 4 Binomial(n — 7,1 — uo) where 7, < n°. So even after conditioning on
the event {d 1" &' =n —1— s,}, which occurs with probability O(n~1/2), there are
(1+o0p(1))(n—rn)(1— po) non-zero entries of (! 4, ...,&). Therefore, to prove uniform
integrability it remains to show that 7, () = wp (f ).
To see this, observe that for any k € [n],

P{Trn(z):k—i-l’(Zz(l),...,ZE(k)),Trn ) >k} = ST 7 Zz
i=k+1

Since Z contains (1 + op(1))(n —r,)(1 — o) + 1 positive entries, this denominator is (1 +
op(1))(n —ry)(1 — pp) + 1 uniformly over all £ < m = O(y/n), and all labeled random
reorderings of Z. Moreover, since s, = o(y/n) by assumption,

P {r, (2)=k+1|7,(Z) >k} =o(n'/?),

uniformly across all £ < m. The claim follows by summing these probabilities over k < m,
since by the above P {7,. (£) >k} = (1 — o(n~'/2))¥, and in particular for T > 0,

(A.18) P {7 (2)>Tyn}=(1-on 12TV

which tends to 1 as n — oo. O
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A.4. Backstage at the hairy tour. To control the restrictions of the discrete snake intro-
duced in the proofs of Theorems 1.1, 1.4 and 1.5 we require a couple of technical lemmas.
The first of these results shows that if we truncate the displacements of the discrete snake by
nt/(4=m=9 then the global moments agree with assumption [A1] in the limit.

Fix n € (0,2],and 6 € (0,1/(4 —n)). Forn>1,and k > 1 let

Yo ymd oyl Yty Yeg) if maxi<jcp |Yi | < nt/G=m=0,
k _(k”l’”" kk)_ 0 else.

LEMMA A.11. Asn — oo, it holds that

‘E { 4 UJ =0 ((nl/(47”)75)172(47")/3) and Var ( n5> — B2

&Ue
PROOF. First, observe that by Holder’s inequality, there exists a constant ¢ > 0 such that

2/3
< 371/3 < ey—2(4-)/3.
P{lngax Vel >y} E[¢’] {lrgag Yeil >y} <cy

Then, by global centering,

N O —
< / P {’%,Ugl[maxxxf|Y£’,7‘,|>n1/(47"’)75} > y} dy
0 <i<
< pl/U=m- 5P{max Ye;l>n 1/(4=n)= 6}
1<i<e "
o0
+/ P{maX|Y£Z|>y}dy
nl/(a—n)—s 1<i<
< o(pl/A-m—1—2¢4-n)/3 _ ¢ [ —2(4—n>/3+1r°
< efn ) Tl

—0 ((nl/(4—n)—5)1—2(4—n)/3) ,

as claimed.
As for the variance,

var (127) = | (v22) | - (B ])
EUs) &,Us &Us

2
_E[Y

EUs [maX1< i<g|Ye | <nt/(=m= 5}} - E [Yg,Ug’l[maxlgisé\Yé,i|§nl/(4_”)_5]

2 | _ p2
SB[ ] =5
as n — 0o, by dominated convergence and the result for the mean. O

The above lemma pertains to snakes where the displacements which are above n!/(4=7)-9
are all set to 0. The next lemma in this section will help us to understand the asymptotics
of the head of the discrete snake where displacements which are below n'/(4="=9 are set
to 0. More specifically, we present a tail bound for the size of a set of marked vertices in
random trees, which we apply in Proposition 5.5 where the marked vertices pertain to vertices
vewv(T,)\ 8T, for which ||Y )| > nl/(A=1=9,
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LEMMA A.12. Letd = (di,...,d,) be adegree sequence, fix B C [n] and write K = |B|,
and A = maxi<;<n d;. Let By be the smallest distance between two vertices in B that are
ancestrally related in Tqg = B(Ily) (with Bq = o0 if no vertices in BB are ancestrally related).

Then, for any b > (0
KA’
<bhl < 1= .
P{Bd_b}_K<1 (1 n—l—bA))

PROOF. It suffices to show the statement for integer b since for general b, P {Bq < b} =
P {B4 < |b]} and the upper bound is increasing in b.

Fix a degree sequence and a set 3. Without loss of generality, assume that B={n — K +
1,...,n}.

For v € [n], let p(v) be the parent of v in Tq (with p(v) = v if v is the root of Tq). Also
set pU(v) = v and recursively for k£ > 1 define the k-th ancestor of v as p*(v) = p(pF~1(v)).

We will show that

(A.19) P{{pl(n),...,pb(n)}ﬂ{n—K—i—1,...,n—1}:@} > <1

after which the statement follows by symmetry and the union bound.

We will prove (A.19) by induction. To ease notation, write p* = p¥(n) for & > 0. For (i, c)
such that i € [n], ¢ € [d;] write II; (i, c) for the position of (,c) in I14.

We will define a sequence of o-algebras (F});>o such that for each k > 1, Fy, is the o-
algebra generated by the first £ ancestors of n and the positions of their corresponding entries
in Il4. Let, 7o = o(II;" (n,¢) : ¢ € [dy]) contain the information on the position of vertex n
in Hd.

If d, = 0 and {II]"(n,c) : ¢ € [d,]} = 0 then n is the final vertex in the final path of the
line-breaking construction, and the last entry of I gives its parent. Thus, in this case, we
reveal IIy(n — 1) and we have I14(n — 1) = (p',¢’) for some ¢’ € [dy:]. Then, we reveal all
other entries of the form (p!,¢), ¢ € [d1] in Il and this yields F;.

If d,, > 0, then set mo = min{II;*(n,c) : ¢ € [d,]}. If mo = 1 then n is the root of Ty
SO pz =n for all /> 1, and so we let F, = Fy for all £ > 1. Otherwise, the entry before the
first occurrence of an entry of the form (n, ¢), ¢ € [d,,] in I14 gives the parent of n so then we
obtain Fj as follows. We reveal IIq(mgo — 1). In that case I1q(mo — 1) = (p!, ) for some
¢’ € [dy]. Secondly, we reveal all other entries of the form (p',¢),c € [dy:] in I14 and this
yields Fi.

For k£ > 1, given Fy, let

my = min{II; ' (p¥,¢) : c € [dye]}.

KA Y
n—1—bA )"’

If my, =1 then pk is the root of Ty so pé = p¥ and we take F; = F}, for all £ > k. If mj, > 1,
we obtain F_ | as follows. First, we reveal ITq(my, — 1). In that case I1q(my, — 1) = (p**1,¢)
for some ¢’ € [dy+1]. Secondly, we reveal all other entries of the form (p*T,¢), c € [dy+1]
in I14 and this yields Fj1.

Now, observe that, for k£ > 0, given Fy, the unrevealed entries of II4 occur in an order
given by a uniformly random permutation. So given Fy, if my > 1 the k-th ancestor of n is
the first coordinate of a uniformly random sample from

{(i,0) i € M\, ..., "} c € [di]}
and
P{pk+l€{n—K+1w--vn_1} fk,{pl,...,pk}ﬂ{n—K—i—1,...,n—1}=®}
dn_K+1+"'+dnfl< KA
n=1-Yigdy ~n-1l-(k+1)A
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If my, = 1 then the conditional probability above is 0 so the inequality also holds.
Therefore, we see inductively that

P n{n—K+1 n_1}—®}>f[ P LC
p,...,D yeeey = _k:1 n_l_kA

1_K7A '
n—1—bA)
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