
Contemporary Mathematics

Quantum Heisenberg models and their probabilistic
representations

Christina Goldschmidt, Daniel Ueltschi, and Peter Windridge

Abstract. These notes give a mathematical introduction to two seemingly

unrelated topics: (i) quantum spin systems and their cycle and loop representa-

tions, due to Tóth and Aizenman-Nachtergaele; (ii) coagulation-fragmentation
stochastic processes. These topics are nonetheless related, as we argue that

the lengths of cycles and loops satisfy an effective coagulation-fragmentation
process. This suggests that their joint distribution is Poisson-Dirichlet. These

ideas are far from being proved, but they are backed by several rigorous results,

notably of Dyson-Lieb-Simon and Schramm.
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1. Introduction

We review cycle and loop models that arise from quantum Heisenberg spin
systems. The loops and cycles are geometric objects defined on graphs. The main
goal is to understand properties such as their length in large graphs.

The cycle model was introduced by Tóth as a probabilistic representation of
the Heisenberg ferromagnet [45], while the loop model is due to Aizenman and
Nachtergaele and is related to the Heisenberg antiferromagnet [1]. Both models are
built on the random stirring process of Harris [27] and have an additional geometric
weight of the form ϑ#cycles or ϑ#loops with parameter ϑ = 2. Recently, Schramm
studied the cycle model on the complete graph and with ϑ = 1 (that is, without
this factor) [41]. He showed in particular that cycle lengths are generated by a
split-merge process (or “coagulation-fragmentation”), and that the cycle lengths
are distributed as Poisson-Dirichlet with parameter 1.

The graphs of physical relevance are regular lattices such as Zd (or large finite
boxes in Zd), and the factor 2#objects need be present. What should we expect in this
case? A few hints come from the models of spatial random permutations, which also
involve one-dimensional objects living in higher dimensional spaces. The average
length of the longest cycle in lattice permutations was computed numerically in
[24]. In retrospect, it suggests that the cycle lengths have the Poisson-Dirichlet
distribution. In the “annealed” model where positions are averaged, this was proved
in [8]; the mechanisms at work there (i.e., Bose-Einstein condensation and non-
spatial random permutations with Ewens distribution) seem very specific, though.

We study the cycle and loop models in Zd with the help of a stochastic process
whose invariant measure is identical to the original measure with weight ϑ#cycles or
ϑ#loops, and which leads to an effective split-merge process for the cycle (or loop)
lengths. The rates at which the splits and the merges take place depends on ϑ. This
allows to identify the invariant measure, which turns out to be Poisson-Dirichlet
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with parameter ϑ. While we cannot make these ideas mathematically rigorous,
they are compatible with existing results.

As mentioned above, cycle and loop models are closely related to Heisenberg
models. In particular, the cycle and loop geometry is reflected in some important
quantum observables. The latter have been the focus of intense study by math-
ematical and condensed matter physicists, who have used imagination and clever
observations to obtain remarkable results in the last few decades. Most relevant to
us is the theorem of Mermin and Wagner about the absence of magnetic order in
one and two dimensions [35], and the theorem of Dyson, Lieb, and Simon, about
the existence of magnetic order in the antiferromagnetic model in dimensions 5 and
more [16]. We review these results and explain their implications for cycle and loop
models.

Many a mathematician is disoriented when wandering in the realm of quantum
spin systems. The landscape of 2×2 matrices and finite-dimensional Hilbert spaces
looks safe and easy. Yet, the proofs of many innocent statements are elusive, and one
feels quickly lost. It has seemed to us a useful task to provide a detailed introduction
to the Heisenberg models in both their quantum and statistical mechanical aspects.
We also need notions of stochastic processes, split-merge, and Poisson-Dirichlet.
The latter two are little known outside of probability and are not readily accessible
to mathematical physicists and analysts, since the language and the perspective of
those domains are quite different (see e.g. the dictionary of [19], p. 314, between
analysts’ language and probabilists’ “dialect”). In these notes, we have attempted
to introduce those different notions in a self-contained fashion.

1.1. Guide to notation. The following objects play a central role in these
notes.

Λ = (V, E) A finite graph with undirected edges.
ρΛ,β(dω) Probability measure for Poisson point processes on [0, β] (β >

0) attached to each edge of Λ (defined in §3.1).
C(ω),L(ω) Cycle and loop configurations constructed from the edges in ω

(§3.1).
γ A cycle (or loop) in C(ω) (or L(ω)).
ϑ > 0 A geometric weight for the number of cycles and loops in a

configuration.
∆1 Countable partitions of [0, 1] with parts in decreasing order,

i.e. {p1 ≥ p2 ≥ . . . ≥ 0 :
∑
i pi = 1}.

PDθ The Poisson-Dirichlet distribution with parameter θ > 0 on
∆1 (§7.2).

(Xt, t ≥ 0) A stochastic process with invariant measure given by our cycle
and loop models (§8.2).

2. Hilbert space, spin operators, Heisenberg Hamiltonian

We review the setting for quantum lattice spin systems described by Heisen-
berg models. Spin systems are relevant for the study of electronic properties of
condensed matter. Atoms form a regular lattice and they host localized electrons,
that are characterized only by their spin. Interactions are restricted to neighboring
spins. One is interested in equilibrium properties of large systems. There are two
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closely related quantum Heisenberg models, that describe ferromagnets and anti-
ferromagnets, respectively. The material is standard and the interested reader is
encouraged to look in the references [40, 43, 36, 17] for further information.

2.1. Graphs and Hilbert space. Let Λ = (V, E) be a graph, where V is a
finite set of vertices and E is the set of “edges”, i.e. unordered pairs in V ×V. From
a physical perspective, relevant graphs are regular graphs such as Zd (or a finite box
in Zd) with nearest-neighbor edges, but it is mathematically advantageous to allow
for more general graphs. We restrict ourselves to spin- 1

2 systems, mainly because
the stochastic representations only work in this case.

To each site x ∈ V is associated a 2-dimensional Hilbert space Hx = C2. It is
convenient to use Dirac’s notation of “bra”, 〈·|, and “ket”, |·〉, in which we identify

| 12 〉 =
(

1
0

)
, | − 1

2 〉 =
(

0
1

)
. (2.1)

The notation 〈f |g〉 means the inner product; we use the convention that it is linear
in the second variable (and antilinear in the first). Occasionally, we also write
〈f |A|g〉 for 〈f |Ag〉. The Hilbert space of a quantum spin system on Λ is the tensor
product

H(V) =
⊗
x∈Λ

Hx, (2.2)

which is the 2|V| dimensional space spanned by elements of the form ⊗x∈Vfx with
fx ∈ Hx. The inner product between two such vectors is defined by〈

⊗x∈Vfx
∣∣∣⊗x∈V gx〉

H(V)
=
∏
x∈Λ

〈fx|gx〉Hx . (2.3)

The inner product above extends by (anti)linearity to the other vectors, which are
all linear combinations of vectors of the form ⊗x∈Vfx.

The basis (2.1) of C2 has a natural extension in H(V); namely, given s(V) =
(sx)x∈V with sx = ± 1

2 , let

|s(V)〉 =
⊗
x∈Λ

|sx〉. (2.4)

These elements are orthonormal, i.e.

〈s(V)|s̃(V)〉 =
∏
x∈V
〈sx|s̃x〉 =

∏
x∈V

δsx,s̃x , (2.5)

where δ is Kronecker’s symbol, δab = 1 if a = b, 0 otherwise.

2.2. Spin operators. In the quantum world physical relevant quantities are
called observables and they are represented by self-adjoint operators. The operators
for the observable properties of our spin 1/2 particles are called the Pauli matrices,
defined by.

S(1) = 1
2

(
0 1
1 0

)
, S(2) = 1

2

(
0 −i
i 0

)
, S(3) = 1

2

(
1 0
0 −1

)
. (2.6)

We interpret S(i) as the spin component in the ith direction. The matrices are
clearly Hermitian and satisfy the relations

[S(1), S(2)] = iS(3), [S(2), S(3)] = iS(1), [S(3), S(1)] = iS(2). (2.7)
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These operators have natural extensions of the spin operators in H(V). Let
x ∈ V, and write H(V) = Hx ⊗H(V\{x}). We define the operators S(i)

x indexed by
x ∈ V by

S(i)
x = S(i) ⊗ IdV\{x}. (2.8)

The commutation relations (2.7) extend to the operators S(i)
x , namely

[S(1)
x , S(2)

y ] = iδxyS(3)
x , (2.9)

and all other relations obtained by cyclic permutations of (123). It is indeed not
hard to check that the matrix elements 〈s(V)|·|s̃(V)〉 of both sides are identical for all
s(V) ∈ {− 1

2 ,
1
2}
V . It is customary to introduce the notation ~Sx = (S(1)

x , S
(2)
x , S

(3)
x ),

and
~Sx · ~Sy = S(1)

x S(1)
y + S(2)

x S(2)
y + S(3)

x S(3)
y . (2.10)

Note that operators of the form S
(i)
x S

(j)
y , with x 6= y, act in H(V) = Hx ⊗ Hy ⊗

H(V\{x,y}) as follows

S(i)
x S(j)

y = S(i) ⊗ S(j) ⊗ IdV\{x,y}. (2.11)

In the case x = y, and using (S(i)
x )2 = 1

4IdV , we get

~S2
x = (S(1)

x )2 + (S(2)
x )2 + (S(3)

x )2 = 3
4IdV . (2.12)

Lemma 2.1. Consider ~Sx · ~Sy in Hx⊗Hy. It is self-adjoint, and its eigenvalues
and eigenvectors are

• − 3
4 is an eigenvalue with multiplicity 1; the eigenvector is 1√

2
(| 12 ,−

1
2 〉 −

| − 1
2 ,

1
2 〉).

• 1
4 is an eigenvalue with multiplicity 3; the three orthonormal eigenvectors
are

| 12 ,
1
2 〉, | − 1

2 ,−
1
2 〉,

1√
2

(
| 12 ,−

1
2 〉+ | − 1

2 ,
1
2 〉
)
.

The eigenvector corresponding to − 3
4 is called a “singlet state” by physicists,

while the eigenvectors for 1
4 are called “triplet states”.

Proof. We have for all a, b = ± 1
2 ,

S(1)
x S(1)

y |a, b〉 = 1
4 | − a,−b〉,

S(2)
x S(2)

y |a, b〉 = −ab| − a,−b〉,

S(3)
x S(3)

y |a, b〉 = ab|a, b〉.

(2.13)

The lemma follows from straightforward linear algebra. �

2.3. Hamiltonians and magnetization. We can now introduce the Heisen-
berg Hamiltonians. These self-adjoint operators represent the energy of the system.

H ferro
Λ,h = −

∑
{x,y}∈E

~Sx · ~Sy − h
∑
x∈V

S(3)
x ,

Hanti
Λ,h = +

∑
{x,y}∈E

~Sx · ~Sy − h
∑
x∈V

S(3)
x .

(2.14)
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Next, let MΛ be the operator that represents the magnetization in the 3rd direction.

M
(3)
Λ =

∑
x∈V

S(3)
x . (2.15)

Lemma 2.2. Hamiltonian and magnetization operators commute,

[HΛ,h,MΛ] = 0.

Proof. This follows from the commutation relations (2.9). Namely, using the
fact that S(i)

x and S
(3)
y commute for x 6= y,

[HΛ,h,MΛ] =
∑

{x,y}∈E,z∈V

[~Sx · ~Sy, S(3)
z ]

=
∑
{x,y}∈E

(
[S(1)
x S(1)

y , S(3)
x ] + [S(1)

x S(1)
y , S(3)

y ] + [S(2)
x S(2)

y , S(3)
x ] + [S(2)

x S(2)
y , S(3)

y ]
)
.

(2.16)

The first commutator is

[S(1)
x S(1)

y , S(3)
x ] = [S(1)

x , S(3)
x ]S(1)

y = −iS(2)
x S(1)

y , (2.17)

and the others are similar. We get

[HΛ,h,MΛ] = i
∑
{x,y}∈E

(
−S(2)

x S(1)
y − S(1)

x S(2)
y + S(1)

x S(2)
y + S(2)

x S(1)
y

)
= 0. (2.18)

�

2.4. Gibbs states and free energy. The equilibrium states of quantum
statistical mechanics are given by Gibbs states 〈·〉Λ,β,h. These are nonnegative
linear functionals on the space of operators in H(V) of the form

〈A〉Λ,β,h =
1

ZΛ(β, h)
TrA e−βHΛ,h , (2.19)

where the normalization
ZΛ(β, h) = Tr e−βHΛ,h . (2.20)

is called the partition function. Here, Tr represents the usual matrix trace.
There are deep reasons for the Gibbs states to describe equilibrium states but

we will not dwell on them here. We now introduce the free energy FΛ(β, h). Its
physical motivation is that it provides a connection to thermodynamics. It is a kind
of generating function and it is therefore useful mathematically. The definition of
the free energy in our case is

FΛ(β, h) = − 1
β

logZΛ(β, h). (2.21)

Lemma 2.3. The function βFΛ(β, h) is concave in (β, βh).

Proof. We rather check that −FΛ is convex, which is the case if the matrix(
∂2βFΛ
∂β2

∂2βFΛ
∂β∂(βh)

∂2βFΛ
∂β∂(βh)

∂2βFΛ
∂(βh)2

)
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is positive definite. Let us write 〈·〉 instead of 〈·〉Λ,β,h. We have

∂2

∂β2
βFΛ(β, h) = −

〈
(HΛ,0 − 〈HΛ,0〉)2

〉
,

∂2

∂(βh)2
βFΛ(β, h) = −

〈
(MΛ − 〈MΛ〉)2

〉
,

∂2

∂β∂(βh)
βFΛ(β, h) =

〈
(HΛ,0 − 〈HΛ,0〉)(MΛ − 〈MΛ〉)

〉
.

(2.22)

Then FΛ is convex if〈
(HΛ,0 − 〈HΛ,0〉)(MΛ − 〈MΛ〉)

〉2 ≤ 〈(HΛ,0 − 〈HΛ,0〉)2
〉〈

(MΛ − 〈MΛ〉)2
〉
. (2.23)

It is not hard to check that the map (A,B) 7→ 〈A∗B〉 is an inner product on the
space of operators that commute with HΛ,h. Then

|〈A∗B〉|2 ≤ 〈A∗A〉〈B∗B〉 (2.24)

by the Cauchy-Schwarz inequality, and this implies (2.23) in particular. �

Concave functions are continuous. But it is useful to establish that FΛ(β, h) is
uniformly continuous on compact domains.

Lemma 2.4.∣∣βFΛ(β, h)− β′FΛ(β′, h′)
∣∣ ≤ |β − β′|( 3

4 |E|+
|h|
2 |V|) + 1

2β|h− h
′||V|.

Proof. We have

βFΛ(β, h)− β′FΛ(β′, h) =
∫ β

β′

d
ds
sFΛ(s, h)ds =

∫ β

β′
〈HΛ,h〉Λ,s,hds. (2.25)

We can also check that βFΛ(β, h)−βFΛ(β, h′) =
∫ h
h′
〈MΛ〉Λ,β,sds. The result follows

from |〈A〉Λ,β,h| ≤ ‖A‖ for any operator A, and from ‖~Sx · ~Sy‖ = 3
4 (cf Lemma 2.1)

and ‖S(3)
x ‖ = 1

2 . �

2.5. Symmetries. In quantum statistical mechanics, a symmetry is repre-
sented by a unitary transformation that leaves the Hamiltonian invariant. It follows
that (finite volume) Gibbs states also possess the symmetry. However, infinite vol-
ume states may lose it. This is called symmetry breaking and is a manifestation of
a phase transition. We only mention the “spin flip” symmetry here, corresponding
to the unitary operator

U |s(V)〉 = | − s(V)〉. (2.26)

One can check that U−1S
(i)
x S

(i)
y U = S

(i)
x S

(i)
y and U−1S

(3)
x U = −S(3)

x . It follows
that

U−1HΛ,hU = HΛ,−h. (2.27)

This applies to both the ferromagnetic and antiferromagnetic Hamiltonians. It
follows that FΛ(β,−h) = FΛ(β, h), so the free energy is symmetric as a function of
h.
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3. Stochastic representations

Stochastic representations of quantum lattice models go back to Ginibre, who
used a Peierls contour argument to prove the occurrence of phase transitions in
anisotropic models [25]. Conlon and Solovej introduced a random walk represen-
tation for the ferromagnetic model and used it to get an upper bound on the free
energy [12]. A different representation was introduced by Tóth, who improved
the previous bound [45]. Further work on quantum models using similar repre-
sentations include the quantum Pirogov-Sinai theory [10, 14] and Ising models in
transverse magnetic field [28, 13, 26].

A major advantage of Tóth’s representation is that spin correlations have nat-
ural probabilistic expressions, being given by the probability that two sites belong
to the same cycle (see below for details). A similar representation was introduced
by Aizenman and Nachtergaele for the antiferromagnetic model, who used it to
study properties of spin chains [1]. The random objects are a bit different (loops
instead of cycles), but it also has the advantage that spin correlations are given by
the probability of belonging to the same loop.

Both Tóth’s and Aizenman-Nachtergaele’s representations involve a Poisson
process on the edges of the graph. The measure is modified by a function of
suitable geometric objects (“cycles” or “loops”). We first describe the two models
in Section 3.1, and we relate them later to the Heisenberg models in Sections 3.3
and 3.4.

3.1. Poisson edge process, cycles and loops. Recall that Λ = (V, E) is
a finite undirected graph. We attach to each edge a Poisson process on [0, β] of
unit intensity (see §7.2.1 for the definition of a Poisson point process). The Poisson
processes for different edges are independent. A realization of this “Poisson edge
process” is a finite sequence of pairs

ω =
(
(e1, t1), . . . , (ek, tk)

)
. (3.1)

Each pair is called a bridge. The number of bridges across each edge is Poisson
distributed with mean |E| and the total number of bridges is Poisson with mean
β|E|. Conditional on there being k bridges, the times are uniformly distributed in
{0 < t1 < t2 < . . . < tk < β} and the edges are chosen uniformly from E . The
corresponding measure is denoted ρΛ,β(dω).

To each realization ω there is a configuration of cycles and configuration of
loops. The mathematical definitions are a bit cumbersome but the geometric ideas
are simpler and more elegant. The reader is encouraged to look at Figure 1 for an
illustration.

We consider the cylinder V × [0, β]per. A cycle is a closed trajectory on this
space; that is, it is a function γ : [0, L] → V × [0, β]per such that, with γ(τ) =
(x(τ), t(τ)):

• γ(τ) is piecewise continuous; if it is continuous in interval I ⊂ [0, L], then
x(τ) is constant and d

dτ t(τ) = 1 in I.
• γ(τ) is discontinuous at τ iff the pair (e, t) belongs to ω, where t = t(τ)

and e is the edge {γ(τ−), γ(τ+)}.
We choose L to be the smallest positive number such that γ(L) = γ(0). Then L
is the length of the cycle; it corresponds to the sum of the vertical legs in Figure
1 and it is a multiple of β. Let us make the cycles semi-continuous by assigning
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cycles loops

A B A ABBA

Figure 1. Top: an edge Poisson configuration ω on V × [0, β]per.
Bottom left: its associated cycle configuration. Bottom right: its
associated loop configuration. We see that C(ω) = 3 and L(ω) = 5.

the value γ(τ) = γ(τ−) at the points of discontinuity. We identify cycles whose
support is identical. Then to each ω corresponds a configuration of cycles C(ω)
whose supports form a partition of the cylinder V × [0, β]per. The number of cycles
is |C(ω)|.

Loops are similar, but we now suppose that the graph is bipartite. The orien-
tation is reversed on the B sublattice. We still consider the cylinder V × [0, β]per.
A loop is a closed trajectory on this space; that is, it is a function γ : [0, L] →
V × [0, β]per such that, with γ(τ) = (x(τ), t(τ)):

• γ(τ) is piecewise continuous; if it is continuous in interval I ⊂ [0, L], then
x(τ) is constant and, in I,

d
dτ
t(τ) =

{
1 if x(τ) belongs to the A sublattice,
−1 if x(τ) belongs to the B sublattice.

(3.2)

• γ(τ) is discontinuous at τ iff the pair (e, t) belongs to ω, where t = t(τ)
and e is the edge {γ(τ−), γ(τ+)}.

We choose L to be the smallest positive number such that γ(L) = γ(0). Then L
is the length of the loop; it corresponds to the sum of the vertical legs in Figure
1 (as for cycles), but it is not a multiple of β in general (contrary to cycles). We
also make the loops semi-continuous by assigning the value γ(τ) = γ(τ−) at the
points of discontinuity. Identifying loops whose support is identical, to each ω
corresponds a configuration of loops L(ω) whose supports form a partition of the
cylinder V × [0, β]per. The number of loops is |L(ω)|.
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As we’ll see, the relevant probability measures for the Heisenberg models (with
h = 0) are proportional to 2|C(ω)|ρE, β2

(dω) and 2|L(ω)|ρE,β(dω).

3.2. Duhamel expansion. We first state and prove Duhamel’s formula. It
is a variant of the Trotter product formula that is usually used to derive stochastic
representations.

Proposition 3.1. Let A,B be n× n matrices. Then

eA+B = eA +
∫ 1

0

etAB e(1−t)(A+B) dt

=
∑
k≥0

∫
0<t1<···<tk<1

dt1 . . . dtk et1AB e(t2−t1)AB . . . B e(1−tk)A .

Proof. Let F (s) be the matrix-valued function

F (s) = esA +
∫ s

0

etAB e(s−t)(A+B) dt. (3.3)

We show that, for all s,
es(A+B) = F (s). (3.4)

The derivative of F (s) is

F ′(s) = esAA+ esAB +
∫ s

0

etAB e(s−t)(A+B) (A+B)dt = F (s)(A+B). (3.5)

On the other hand, the derivative of es(A+B) is es(A+B) (A + B). The identity
(3.4) clearly holds for s = 0, and both sides satisfy the same differential equation.
They are then equal for all s.

We can iterate Duhamel’s formula N times so as to get

eA+B =
N∑
k=0

∫
0<t1<···<tk<1

dt1 . . . dtk et1AB e(t2−t1)AB . . . B e(1−tk)A

+
∫

0<t1<···<tN<1

dt1 . . . dtk et1AB e(t2−t1)AB . . . B
[

e(1−tN )(A+B) − e(1−tN )A
]
.

(3.6)

Using ‖ etA ‖ ≤ et‖A‖ , the last term is less than 2 e‖A‖+‖B‖ ‖B‖
N

N ! and so it vanishes

in the limit N → ∞. The summand is less than e‖A‖ ‖B‖
k

k! so that the sum is
absolutely convergent. �

Our goal is to perform a Duhamel’s expansion of the Gibbs operator e−βHΛ,h ,
where the Hamiltonian is given by a sum of terms indexed by the edges and by
vertices. The following corollary applies to this case.

Corollary 3.2. Let A and (he), e ∈ E, be matrices in H(V). Then

eβ(A+
P
e∈E he) =

∫
dρE,β(ω) et1A he1 e(t2−t1)A he2 . . . hek e(β−tk)A ,

where (t1, e1), . . . , (tk, ek) are the bridges in ω.



HEISENBERG MODELS AND THEIR PROBABILISTIC REPRESENTATIONS 11

Proof. We can expand the right side by summing over the number of events
k, integrate over 0 < t1 < · · · < tk < β for the times of occurrence, and sum over
edges e1, . . . , ek ∈ E . After the change of variables t′i = ti/β, we recognize the
second line of Proposition 3.1. �

3.3. Tóth’s representation of the ferromagnet. It is convenient to in-
troduce the operator Tx,y that transposes the spins at x and y. In Hx ⊗ Hy, the
operator acts as follows:

Tx,y|a, b〉 = |b, a〉, a, b = ± 1
2 . (3.7)

This rule extends to general vectors by linearity, and it extends toH(V) by tensoring
it with IdV\{x,y}. Using Lemma 2.1, it is not hard to check that

~Sx · ~Sy = 1
2Tx,y −

1
4Id{x,y}. (3.8)

Recall that C(ω) is the set of cycles of ω, and let γx ∈ C(ω) denote the cycle
that intersects {x}×{0} (which is henceforth abbreviated x×{0}. Let L(γ) denote
the (vertical) length of the cycle γ; it is always a multiple of β

2 in the theorem
below.

Theorem 3.3 (Tóth’s representation of the ferromagnet). The partition func-
tion, the average magnetization, and the two-point correlation function have the
following expressions.

Zferro
Λ (β, h) = e−

β
4 |E|

∫
dρE, β2 (ω)

∏
γ∈C(ω)

(
2 cosh(hL(γ))

)
,

TrS(3)
x e−βH

ferro
Λ,h = 1

2 e−
β
4 |E|

∫
dρE, β2 (ω)

∏
γ∈C(ω)

(
2 cosh(hL(γ))

)
tanh(hL(γx)),

TrS(3)
x S(3)

y e−βH
ferro
Λ,h = 1

4 e−
β
4 |E|

∫
dρE, β2 (ω)

∏
γ∈C(ω)

(
2 cosh(hL(γ))

)
×

{
1 if γx = γy,

tanh(hL(γx)) tanh(hL(γy)) if γx 6= γy.

1
2

1
2

1
2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2
1
2

1
2

1
2

1
2

1
2

Figure 2. Each cycle is characterized by a given spin.
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Proof. The partition function can be expanded using Corollary 3.2 so as to
get

Zferro
Λ (β, h) = e−

β
4 |E| Tr e

β
2 (2hMΛ+

P
e Te)

= e−
β
4 |E|

∫
dρE, β2 (ω)

∑
s(V)

〈s(V)| e2t1hMΛ Te1 . . . Tek e2( β2−tk)hMΛ |s(V)〉,

(3.9)

where (e1, t1), . . . , (ek, tk) are the times and the edges of ω. Observe that the vectors
|s(V)〉 are eigenvectors of etMΛ . It is not hard to see that the matrix element above
is zero unless each cycle is characterized by a single spin value (see illustration in
Figure 2). If the matrix element is not zero, then it is equal to

〈s(V)| e2t1hMΛ Te1 . . . Tek e2( β2−tk)hMΛ |s(V)〉 =
∏

γ∈C(ω)

e2hL(γ)s(γ)
(3.10)

with s(γ) the spin of the cycle γ. After summing over s(γ) = ± 1
2 , each cycle

contributes ehL(γ) + e−hL(γ) = 2 cosh(hL(γ)), and we obtain the expression for
the partition function.

The expression that involves S(3)
x is similar, except that the cycle γx that con-

tains x × {0} contributes 1
2 ehL(γx) − 1

2 e−hL(γx) = sinh(hL(γx)). Since the factor
2 cosh(hL(γx)) appears in the expression, it must be corrected by the hyperbolic
tangent.

Finally, the expression that involves S(3)
x S

(3)
y has two terms, whether x × {0}

and y × {0} find themselves in the same cycle or not. In the first case, we get
1
2 cosh(hL(γxy)), but in the second case we get sinh(hL(γx)) sinh(hL(γy)), which
eventually gives the hyperbolic tangents. �

It is convenient to rewrite a bit the cycle weights. Using 2 cosh(hL(γ)) =
ehL(γ) (1 + e−2hL(γ) ) and

∑
γ∈C(ω) L(γ) = β

2 |V|, the relevant probability measure
for the cycle representation can be written

PCΛ,β,h(dω) = Zferro
Λ (β, h)−1 e−

β
4 |E|+

β
2 h|V| dρE, β2 (dω)

∏
γ∈C(ω)

(
1 + e−2hL(γ)

)
(3.11)

This form makes it easier to see the effect of the external field h ≥ 0. Notice that
the product over cycles simplifies to 2|C(ω)| when the external field strength vanishes
(i.e. h = 0). We write EΛ,β,h for the expectation with respect to PCΛ,β,h. Then, in
terms of the cycle model, the expectation of the spin operators and correlations are
given by

〈S(3)
x 〉Λ,β,h = 1

2ECΛ,β,h
(
tanh(hL(γx))

)
(3.12)

and

〈S(3)
x S(3)

y 〉Λ,β,h = 1
4PCΛ,β,h(γx = γy)+

1
4ECΛ,β,h

[
1γx 6=γy tanh(hL(γx)) tanh(hL(γy))

]
.

(3.13)

In the case h = 0, we see that 〈S(3)
x 〉Λ,β,0 = 0, as already noted from the spin flip

symmetry, and
〈S(3)
x S(3)

y 〉Λ,β,0 = 1
4PCΛ,β,h(γx = γy). (3.14)

That is, the spin-spin correlation of two sites x and y is proportional to the proba-
bility that the sites lie in the same cycle.
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3.4. Aizenman-Nachtergaele’s representation of the antiferromagnet.
The antiferromagnetic model only differs from the ferromagnetic model by a sign,
but it leads to deep changes. As the transposition operator now carries a negative
sign in the Hamiltonian, a possibility is to turn the measure corresponding to (3.11)
into a signed measure, with an extra factor (−1)k where k = k(ω) is the number
of transpositions. That means descending from the heights of probability theory
down to... well, to measure theory. This fate can fortunately be avoided thanks to
the observations of Aizenman and Nachtergaele [1].

Their representation is restricted to bipartite graphs. A graph is bipartite if
the set of vertices V can be partitioned into two sets VA and VB such that edges
only connect the A set to the B set:

{x, y} ∈ E =⇒ (x, y) ∈ VA × VB or (x, y) ∈ VB × VA. (3.15)

This class contains many relevant cases, such as finite boxes in Zd; periodic bound-
ary conditions are allowed provided the side lengths are even. In the following, we
use the notation

(−1)x =

{
1 if x ∈ VA,

−1 if x ∈ VB.
(3.16)

Instead of the transposition operator, we consider the projection operator P (0)
xy

onto the singlet state described in Lemma 2.1. Its action on the basis is

P (0)
xy |a, a〉 = 0, P (0)

xy |a,−a〉 = 1
2 |a,−a〉 −

1
2 | − a, a〉, (3.17)

for all a = ± 1
2 . Further, it follows from Lemma 2.1 that

~Sx · ~Sy = Id{x,y} − P(0)
xy . (3.18)

Recall that L(ω) is the set of loops of ω. Let γx denote the loop that contains
x × {0}. We do not need notation for the loops that do not intersect the t = 0
plane. Also, it is not the lengths of the loops which are important but their winding
number w(γ).

Theorem 3.4 (Aizenman-Nachtergaele’s representation of the antiferromag-
net). Assume that Λ is a bipartite graph. The partition function, the average mag-
netization, and the two-point correlation function have the following expressions.

Zanti
Λ (β, h) = e−β|E|

∫
dρE, β2 (ω)

∏
γ∈L(ω)

(
2 cosh( 1

2βhw(γ))
)
,

TrS(3)
x e−βH

anti
Λ,h = 1

2 (−1)x e−β|E|
∫

dρE, β2 (ω)∏
γ∈L(ω)

(
2 cosh( 1

2βhw(γ))
)

tanh( 1
2βhw(γx)),

TrS(3)
x S(3)

y e−βH
anti
Λ,h = 1

4 (−1)x(−1)y e−β|E|
∫

dρE, β2 (ω)

∏
γ∈L(ω)

(
2 cosh( 1

2βhw(γ))
){1 if γx = γy,

tanh( 1
2βhw(γx)) tanh(1

2βhw(γy)) if γx 6= γy.

When h = 0, we get the simpler factor 2|L(ω)|.
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Figure 3. Each loop is characterized by a given spin, but the
value alternate according to whether the site belongs to the A or
B sublattice.

Proof. As before, we expand the partition function using Corollary 3.2 and
we get

Zanti
Λ (β, h) = e−β|E| Tr e

β
2 (2hMΛ+

P
e 2P (0)

e )

= e−β|E|
∫

dρE, β2 (ω)
∑
s(V)

〈s(V)| e2t1hMΛ 2P (0)
e1 . . . 2P (0)

ek
e2( β2−tk)hMΛ |s(V)〉,

(3.19)

where (e1, t1), . . . , (ek, tk) are the times and the edges of ω. Notice that

etMΛ |s(V)〉 = et〈s
(V)|MΛ|s(V)〉 . (3.20)

In Dirac’s notation, the resolution of the identity is

IdV =
∑

s(V)∈{− 1
2 ,

1
2}V
|s(V)〉〈s(V)|. (3.21)

We insert it at the right of each operator P (0)
e and we obtain

Zanti
Λ (β, h) = e−β|E|

∫
dρE, β2 (ω)

∑
s
(V)
1 ,...,s

(V)
k

e2t1h〈s(V)
1 |MΛ|s(V)

1 〉 〈s(V)
1 |2P (0)

e1 |s
(V)
2 〉

e2(t2−t1)h〈s(V)
2 |MΛ|s(V)

2 〉 〈s(V)
2 |2P (0)

e2 |s
(V)
3 〉 . . . 〈s

(V)
k |2P

(0)
ek
|s(V)

1 〉 e2(β−tkh〈s(V)
1 |MΛ|s(V)

1 〉 .
(3.22)

Let us see that this long expression can be conveniently expressed in the language of
loops. We can interpret ω and s(V)

1 , . . . , s
(V)
k as a spin configuration s in V×[0, β]per.

It is constant in time except possibly at (ei, ti). By (3.17), the product

〈s(V)
1 |2P (0)

e1 |s
(V)
2 〉 . . . 〈s

(V)
k |2P

(0)
ek
|s(V)

1 〉

differs from 0 iff the value of (−1)xs(x, t) is constant on each loop (see illustration
in Figure 3). In this case, its value is ±1, as each bridge contributes +1 if the spins
are constant, and −1 if they flip. Let us actually check that it is always +1. If the
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bridge separates two loops with spins a and b, the factor is

(−1)a−b = eiπ2 a e−iπ2 b . (3.23)

Looking at the loop γ with spin a, there is a factor eiπ2 a for each jump A→B (of
the form pq) and a factor e−iπ2 a for each jump B→A (of the form xy). Since there
is an identical number of both types of jumps, these factors precisely cancel.

The product

e2t1h〈s(V)
1 |MΛ|s(V)

1 〉 e2(t2−t1)h〈s(V)
2 |MΛ|s(V)

2 〉 . . . e2(β−tkh〈s(V)
1 |MΛ|s(V)

1 〉

also factorizes according to loops. The contribution of a loop γ with spin a is
e2hLA(γ)a−2hLB(γ)a , where LA, LB are the vertical lengths of γ on the A and B
sublattices. We have

LA(γ)− LB(γ) = β
2w(γ). (3.24)

The contribution is therefore eβhw(γ)a . Summing over a = ± 1
2 , we get the hyper-

bolic cosine of the expression for the partition function of Theorem 3.4.
The expression that involves S(3)

x is similar; the only difference is that the loop
that contains x×{0} contributes (−1)x sinh( 1

2βhw(γ)) instead of 2 cosh( 1
2βhw(γ)),

hence the hyperbolic tangent. Finally, the expression that involves S
(3)
x S

(3)
y is

similar but we need to treat separately the cases where x×{0} and y×{0} belong
or do not belong to the same loop. �

4. Thermodynamic limit and phase transitions

Phase transitions are cooperative phenomena where a small change of the ex-
ternal parameters results in drastic modifications of the properties of the system.
There was some confusion in the early days of statistical mechanics as to whether
the formalism contained the possibility of describing phase transitions, as all finite
volume quantities are smooth. It was eventually realized that the proper formalism
involves a thermodynamic limit where the system size tends to infinity, in such a
way that the local behavior remains largely unaffected. The proofs of the existence
of thermodynamic limits were fundamental contributions to the mathematical the-
ory of phase transitions, and they were pioneered by Fisher and Ruelle in the 1960’s,
see [40] for more references.

We show that the free energy converges in the thermodynamic limit along
a sequence of boxes in Zd of increasing size (Section 4.1). We discuss various
characterizations of ferromagnetic phase transitions in Section 4.2, and magnetic
long-range order in Section 4.3. In Section 4.4 we consider the relations between
the magnetisation in the quantum models and the lengths of the cycles and loops.

4.1. Thermodynamic limit. Despite our professed intention to treat arbi-
trary graphs, we now restrict ourselves to a very specific case, namely that of a
sequence of cubes whose side lengths tends to infinity. Since FΛ(β, h) scales like
the volume of the system, we define the mean free energy fΛ to be

fΛ(β, h) =
1
|V|

FΛ(β, h). (4.1)

We consider the sequence of graphs Λn = (Vn, En) where Vn = {1, . . . , n}d and En
is the set of nearest-neighbors, i.e., {x, y} ∈ En iff ‖x− y‖ = 1.
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Theorem 4.1 (Thermodynamic limit of the free energy). The sequence (fΛn(β, h))n≥1

converges pointwise to a function f(β, h), uniformly on compact sets.

r

m
n

Figure 4. The large box of size n is decomposed in kd boxes of
size m; there are no more than drnd−1 remaining sites.

Proof. We consider the ferromagnetic model, but the modifications for the
antiferromagnetic models are straightforward. We use a subadditive argument.
Notice the inequality Tr eA+B ≥ Tr eA that holds for all self-adjoint operators
A,B with B ≥ 0. (It follows e.g. from the minimax principle, or from Klein’s
inequality.) We also rewrite the Hamiltonian so as to have only positive definite
terms. Namely, let

hx,y = −~Sx · ~Sy + 1
4Id. (4.2)

Then
ZΛ(β, h) = e−

β
4 |E| Tr exp

(
β
∑
{x,y}∈E

hx,y + βh
∑
x∈V

S(3)
x

)
. (4.3)

Let m,n, k, r be integers such that n = km+ r and 0 ≤ r < m. The box Vn is the
disjoint union of kd boxes of size m, and of some remaining sites (less than nd−1r),
see Figure 4 for an illustration. We get an inequality for the partition function in
Λn by dismissing all hx,y where {x, y} are not inside a single box of size m. The
boxes Vm become independent, and

ZΛn(β, h) ≥ e−
β
4 |En|

[
TrH(Vm) exp

(
β

∑
{x,y}∈Em

hx,y + βh
∑
x∈Vm

S(3)
x

)]kd
= [ZΛm(β, h)]k

d

e−
β
4 |En| ek

d β
4 |Em| .

(4.4)

We have neglected the contribution of eβhS
(3)
x for x outside the boxes Vm, which is

possible because their traces are greater than 1. It is not hard to check that

|En| ≤ kd|Em|+ kddmd−1 + dnd−1r. (4.5)

We then obtain a subbaditive relation for the free energy, up to error terms that
will soon disappear:

fΛn(β, h) ≤ (km)d

nd
fΛm(β, h) +

kddmd−1

nd
+
dr

n
. (4.6)
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Then

lim sup
n→∞

fΛn(β, h) ≤ fΛm(β, h) +
d

m
. (4.7)

Taking the lim inf over m in the right side, we see that it is larger or equal to the
lim sup, and the limit necessarily exists.

Uniform convergence on compact intervals follows from Lemma 2.4 (which im-
plies that (fΛn) is equicontinuous) and the Arzelà-Ascoli theorem (see e.g. Theorem
4.4 in Folland [19]). �

Corollary 4.2 (Thermodynamic limit with periodic boundary conditions).
Let (Λper

n ) be the sequence of cubes in Zd of size n with periodic boundary conditions
and nearest-neighbor edges. Then (fΛper

n
(β, h))n≥1 converges pointwise to the same

function f(β, h) as in Theorem 4.1, uniformly on compact sets.

The proof follows from |fΛper
n

(β, h)− fΛn(β, h)| ≤ 3d
4n , which is not too hard to

prove, and Theorem 4.1.

4.2. Ferromagnetic phase transition. In statistical physics, an order pa-
rameter is a quantity that allows one to identify a phase, typically because it
vanishing in all phases except one. We consider three different order parameters,
the first two will be shown to be equivalent, and the last one to be smaller than
the first two.

• Thermodynamic magnetization. This is equal to (the negative of)
the right-derivative of f(β, h) with respect to h. We’re looking for a jump
in the derivative, which is referred to as a first-order phase transition.
Let m∗th(β) denote the corresponding order parameter, which, because f
is concave, is equal to

m∗th(β) = − sup
h>0

f(β, h)− f(β, 0)
h

. (4.8)

• Residual magnetization. Imagine placing the ferromagnet in an exter-
nal magnetic field, so that it becomes magnetized. Now gradually turn
off the external field. Does the system still display global magnetization?
Mathematically, the relevant order parameter is

m∗res(β) = lim
h→0+

lim inf
n→∞

1
nd
〈MΛn〉Λn,β,h. (4.9)

(We see below that the lim inf can be replaced by the lim sup without
affecting m∗res.)

• Spontaneous magnetization at h = 0. Since 〈MΛ〉 = 0 (because of the
spin flip symmetry), we rather consider

m∗sp(β) = lim inf
n→∞

1
nd
〈|MΛn |〉Λn,β,0. (4.10)

Here, |MΛ| denotes the absolute value of the matrix MΛ.
A more handy quantity, however, is the expectation of M2

Λ, which can be expressed
in term of the two-point correlation function, see below. It is equivalent to m∗sp:

Lemma 4.3. 〈 |MΛ|
|V|
〉2

Λ,β,0
≤
〈(
MΛ
|V|
)2〉

Λ,β,0
≤ 1

2

〈 |MΛ|
|V|
〉

Λ,β,0
.
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Proof. For the first inequality, use |MΛ| = |MΛ|Id and use the Cauchy-
Schwarz inequality (2.24). For the second inequality, observe that |MΛ| ≤ 1

2 |V|Id
implies that M2

Λ ≤ 1
2 |V||MΛ|, and use the fact that the Gibbs state is a positive

linear functional. �

f

h

Figure 5. Qualitative graphs of the free energy f(β, h) as a func-
tion of h, for β large (top) and β small (bottom).

The three order parameters above are related as follows:

Proposition 4.4.

m∗th(β) = m∗res(β) ≥ 1
2m
∗
sp(β).

Proof of m∗th = m∗res. We prove that whenever fn is a sequence of differen-
tiable concave functions that converge pointwise to the (necessarily concave) func-
tion f , then

D+f(0) = lim
h→0+

lim sup
n→∞

f ′n(h) = lim
h→0+

lim inf
n→∞

f ′n(h). (4.11)

Up to the signs, the left side is equal to m∗th and the right side to m∗res and we
obtain the identity in Proposition 4.4. The proof of (4.11) follows from the general
properties

lim sup
i

(
inf
j
aij
)
≤ inf

j

(
lim sup

i
aij
)
,

lim inf
i

(
sup
j
aij
)
≥ sup

j

(
lim inf

i
aij
)
,

(4.12)

and from the following expressions for left- and right-derivatives of concave func-
tions:

D−f(h) = inf
s>0

f(h)− f(h− s)
s

, D+f(h) = sup
s>0

f(h+ s)− f(h)
s

. (4.13)

With these observations, the proof is straightforward. For h > 0,

D+f(0) ≥ D−f(h) = inf
s>0

lim sup
n→∞

fn(h)− fn(h− s)
s

≥ lim sup
n→∞

f ′n(h)

≥ lim inf
n→∞

f ′n(h) ≥ sup
s>0

lim inf
n→∞

fn(h+ s)− fn(h)
s

= D+f(h).
(4.14)

Since right-derivatives are right-continuous, the last term converges to D+f(0) as
h→ 0+. This proves Eq. (4.11). �
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Proof of m∗res ≥ 1
2m
∗
sp. Let h > 0, and let {ϕj} be an orthonormal set of

eigenvectors of HΛn,0 and MΛn with eigenvalues ej and mj , respectively. Because
of the spin flip symmetry, we have

〈MΛn〉Λn,β,h =

∑
j:mj>0mj e−βej

(
eβhmj − e−βhmj

)∑
j:mj>0 e−βej

(
eβhmj + e−βhmj

)
+
∑
j:mj=0 e−βej

≥
∑
j:mj>0mj e−βej+βhmj

(
1− e−2βhmj

)
2
∑
j:mj>0 e−βej+βhmj +

∑
j:mj=0 e−βej

.

(4.15)

After division by nd, we only need to consider those j with mj ∼ nd, in which case
e−2βhmj ≈ 0. We can therefore replace the bracket by 1 under the limit n → ∞.
On the other hand, consider the function G(h) = 1

β log Tr e−βHΛn,0+βh|MΛn | . One
can check that it is convex in h, so G′(h) ≥ G′(0). Its derivative can be expanded
as above, so that

G′(h) =

∑
j |mj | e−βej+βh|mj |∑
j e−βej+βh|mj |

. (4.16)

It is identical to twice the second line of (4.15) (without the bracket). Then

m∗res(β) ≥ 1
2 lim
h→0+

lim inf
n→∞

1
nd
G′(h) ≥ 1

2 lim inf
n→∞

1
nd
G′(0) = 1

2m
∗
sp(β). (4.17)

�

4.3. Antiferromagnetic phase transition. While ferromagnets favor align-
ment of the spins, antiferromagnets favor staggered phases, where spins are aligned
on one sublattice and aligned in the opposite direction on the other sublattice. The
external magnetic field does not play much of a rôle. One could mirror the ferro-
magnetic situation by introducing a non-physical staggered magnetic field of the
kind h

∑
x∈V(−1)xS(3)

x , which would lead to counterparts of the order parameters
m∗th and m∗res. We content ourselves with turning off the external magnetic field,
i.e. we set h = 0, and with looking at magnetic long-range order. For x, y ∈ V, we
introduce the correlation function

σΛ,β(x, y) = (−1)x(−1)y〈S(3)
x S(3)

y 〉Λ,β,0. (4.18)

One question is whether

σ2 = lim inf
n→∞

1
|Vn|2

∑
x,y∈Vn

σΛ,β(x, y) (4.19)

differs from 0. A related question is whether the correlation function does not decay
to 0 as the distance between x and y tends to infinity. One says that the system
exhibits long-range order if this happens.

In Zd and for β large enough, it is well-known that there is no long-range order
and that the correlation function decays exponentially with ‖x − y‖. Long-range
order is expected in dimension d ≥ 3 but not in d = 1, 2. This is discussed in more
details in Section 5.

4.4. Phase transitions in cycle and loop models. We clarify in this sec-
tion the relations between the order parameters of the quantum systems and the
nature of cycles and loops. This gives probabilistic interpretation to the quantum
results. We introduce two quantities, that apply simultaneously to cycles and loops.
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• The fraction of vertices in infinite cycles/loops:

η∞(β, h) = lim
K→∞

lim inf
n→∞

1
nd

EΛn,β,h

(
#{x ∈ Vn : L(γx) > K}

)
. (4.20)

• The fraction of vertices in macroscopic cycles/loops:

ηmacro(β, h) = lim
ε→0+

lim inf
n→∞

1
nd

EΛn,β,h

(
#{x ∈ Vn : L(γx) > εnd}

)
. (4.21)

It is clear that η∞(β, h) ≥ ηmacro(β, h). These two quantities relate to magnetiza-
tion and long-range order as follows. The first two statements deal with cycles, the
third statement for loops.

Proposition 4.5.

(a) m∗res(β) ≥ 1
2 lim
h→0+

η∞(β, h).

(b) m∗sp(β) > 0 ⇐⇒ ηmacro(β, 0) > 0.
(c) σ(β) > 0 ⇐⇒ ηmacro(β, 0) > 0.

Proof. Let

m(β, h) = lim inf
n→∞

〈S(3)
0 〉Λn,β,h. (4.22)

We use tanhx ≥ tanhK · 1x>K , which holds for any K, and Theorem 3.3, so as to
get

m(β, h) ≥ 1
2 tanh(βhK) lim inf

n→∞
PΛn,β,h(L(γ0) > K). (4.23)

Taking K →∞, we get m(β, h) ≥ 1
2η∞(β, h). We now take h→ 0+ to obtain (a).

For (b), we observe that, since the vertices of Λn are exchangeable,

1
n2d
〈MΛn〉Λn,β,0 =

1
2β

EΛn,β,0

(L(γ0)
nd

)
. (4.24)

It follows from Lemma 4.3 that

m∗sp(β) > 0 ⇐⇒ lim inf
n→∞

EΛn,β,0

(L(γ0)
nd

)
> 0. (4.25)

On the other hand, we have

ηmacro(β, 0) = lim
ε→0+

lim inf
n→∞

PΛn,β,0

(L(γ0)
nd

> ε
)
. (4.26)

The result is then clear.
The claim (c) is identical to (b), with loops instead of cycles. �

The proposition suggests that m∗th and m∗res are related to the existence of
infinite cycles, while m∗sp is related to the occurrence of macroscopic cycles. The
question is whether a phase exists where a positive fraction of vertices belongs
to mesoscopic cycles or loops. Such a phase could have something to do with
the Berezinskĭı-Kosterlitz-Thouless transition [6, 33], which has been rigorously
established in the classical XY model [23]. It is not expected in the Heisenberg
model, though. The Mermin-Wagner theorem (Section 5.1) rules out any kind of
infinite cycles or loops in one and two dimensions.
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5. Rigorous results for the quantum models

Quantum lattice systems have seen a considerable amount of studies in past
decades and the effort is not abating. Physicists are interested in properties of the
ground state (i.e., the eigenvector of the Hamiltonian with lowest eigenvalue), in
their dynamical behavior, and about the existence and nature of phase transitions.
Out of many results, we only discuss two in this section, that have been chosen
because of their direct relevance of the understanding of the cycle and loop models:
the Mermin-Wagner about the absence of spontaneous magnetization in one and
two dimensions, and the claim of Dyson, Lieb, and Simon, about the existence of
long-range order in the antiferromagnetic model.

5.1. Mermin-Wagner theorem. This fundamental result of condensed mat-
ter physics states that a continuous symmetry cannot be broken in one and two
dimensions [35]. In particular, there are no spontaneous magnetization or long-
range order in the Heisenberg models.

Theorem 5.1. Let (Λper
n ) be the sequence of cubic boxes in Zd with periodic

boundary conditions and diverging size n. For d = 1 or 2, and for any β,

m∗res(β) = 0.

By Proposition 4.4, all three ferromagnetic order parameters are zero, and there
are no infinite cycles by Proposition 4.5 in the cycle model that corresponds to the
Heisenberg ferromagnet. The theorem can also be stated for the staggered magnetic
field discussed in Section 4.3. One could establish antiferromagnetic counterparts
to Lemma 4.3 and Proposition 4.4, and therefore prove that η∞(β) is also zero in
the loop model that corresponds to the Heisenberg antiferromagnet.

An open quesetion is whether the theorem can be extended to more general
measures of the form

θ|C(ω)|dρE,β(ω) and θ|L(ω)|dρE,β(ω)

(up to normalizations), for values of θ other than θ = 2. The case 3|L(ω)| can
actually be viewed as the representation of a ferromagnetic model with Hamiltonian
−
∑
{x,y}∈E(~Sx · ~Sy)2, see [1], and the Mermin-Wagner theorem certainly holds in

that case.
The theorem may not apply when θ is too large, and the system is in a phase

with many loops, similar to the one studied in [11].
We present the standard proof [40] that is based on Bogolubov’s inequality.

Proposition 5.2 (Bogolubov’s inequality). Let β > 0 and A,B,H be operators
on a finite-dimensional Hilbert space, with H self-adjoint. Then∣∣Tr [A,B] e−βH

∣∣2 ≤ 1
2βTr (AA∗ +A∗A) e−βH Tr

[
[B,H], B∗

]
e−βH .

Proof. We only sketch the proof, see [40] for more details. Let {ϕi} be an
orthonormal set of eigenvectors of H and {ei} the corresponding eigenvalues. We
introduce the following inner product:

(A,C) =
∑

i,j:ei 6=ej

〈ϕi, A∗ϕj〉〈ϕj , Cϕi〉
e−βej − e−βei

ei − ej
. (5.1)

One can check that
(A,A) ≤ 1

2βTr (AA∗ +A∗A) e−β . (5.2)
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We choose C = [B∗, H], and we check that

Tr [A,B] e−βH = (A,C) (5.3)

and
Tr
[
[B,H], B∗

]
e−βH = (C,C). (5.4)

Inserting (5.3) and (5.4) in the Cauchy-Schwarz inequality of the inner product
(5.1), and using (5.2), we get Bogolubov’s inequality. �

Proof of Theorem 5.1. Let mn(β, h) = n−d〈MΛn〉Λn,β,h. Let

S(±)
x = 1√

2
(S(1)
x ± iS(2)

x ). (5.5)

One easily checks that
[S(+)
x , S(−)

x ] = S(3)
x . (5.6)

It is convenient to label the sites of Λper
n as follows

Vn = {x ∈ Zd : −n2 < xi ≤ n
2 , i = 1, . . . , d}. (5.7)

En is again the set of nearest-neighbors in Vn with periodic boundary conditions.
For k ∈ 2π

n Vn, we introduce

S(·)(k) =
∑
x∈Vn

e−ikx S(·)
x , (5.8)

where kx denotes the inner product in Rd. Then, using (5.6),

〈[S(+)(k), S(−)(−k)]〉Λn,β,h =
∑

x,y∈Vn

e−ikx eiky 〈[S(+)
x , S(−)

y ]〉Λn,β,h = ndmn(β, h).

(5.9)

This will be the left side of Bogolubov’s inequality. For the right side, tedious but
straightforward calculations (expansions, commutation relations) give〈[

[S(+)(k), HΛn ], S(−)(−k)
]〉

Λn,β,h

= 2
∑

x,y:{x,y}∈En

(1− eik(x−y) )
〈
S(−)
x S(+)

y + S(3)
x S(3)

y

〉
Λn,β,h

+ hndmn(β, h). (5.10)

Despite the appearances, this expression is real and positive for any k, as can be
seen from (5.4). We get an upper bound by adding the same quantity, but with
−k. This yields

4
∑

x,y:{x,y}∈En

(1− cos k(x− y))
〈
S(−)
x S(+)

y + S(3)
x S(3)

y

〉
Λn,β,h

+ 2hndmn(β, h).

From Cauchy-Schwarz’s inequality and ‖S(±)
x ‖ = 1√

2
(which is easy to check using

Pauli matrices) we have∣∣〈S(−)
x S(+)

y + S(3)
x S(3)

y

〉
Λn,β,h

∣∣ ≤ 3
4 . (5.11)

Let us introduce the “dispersion relation” of the lattice

ε(k) =
d∑
i=1

(1− cos ki). (5.12)

Inserting all this stuff in Bogolubov’s inequality, we get

ndmn(β, h)2

3ε(k) + |hmn(β, h)|
≤ β

〈
S(+)(k)S(−)(−k) + S(−)(−k)S(+)(k)

〉
Λn,β,h

. (5.13)
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Summing over all k ∈ 2π
n Vn, and using

∑
k e−ik(x−y) = δx,y, we have∑

k

〈
S(+)(k)S(−)(−k) + S(−)(−k)S(+)(k)

〉
Λn,β,h

= nd
∑
x∈Vn

〈
S(+)
x S(−)

x + S(−)
x S(+)

x

〉
Λn,β,h

= 1
2n

d. (5.14)

Then
mn(β, h)2 1

nd

∑
k∈ 2π

n Vn

1
3ε(k) + |hmn(β, h)|

≤ 1
2β. (5.15)

As n→∞, we get a Riemann sum,

m(β, h)2

∫
[−π,π]d

dk
3ε(k) + |hmn(β, h)|

≤ 1
2β. (5.16)

Since ε(k) ≈ k2 around k = 0, the integral diverges when h → 0, so m(β, h) must
go to 0. �

Notice that the integral remains finite in d ≥ 3; the argument only applies to
d = 1, 2.

5.2. Dyson-Lieb-Simon theorem of existence of long-range order. Fol-
lowing the proof of Fröhlich, Simon, and Spencer, of a phase transition in the
classical Heisenberg model [22], Dyson, Lieb, and Simon, proved the existence of
long-range order in several quantum lattice models, including the antiferromagnetic
quantum Heisenberg model in dimensions d ≥ 5 [16]. Those articles use the “re-
flection positivity” method, which was systematized and extended in [20, 21]. We
recommend the Prague notes of Tóth [46] and of Biskup [9] for excellent introduc-
tions to the topic. See also the notes of Nachtergaele [36].

Recall the definition of σ in Eq. (4.19).

Theorem 5.3 (Dyson-Lieb-Simon). Let (Λper
n ) be the sequence of cubic boxes

in Zd, d ≥ 5, with even side lengths and periodic boundary conditions. There exists
β0 < ∞ and η > 0 such that, for all β > β0, the Heisenberg antiferromagnet has
long-range order,

σ(β) > 0.

Clearly, this theorem has remarkable consequences for the loop model with
weights 2|L(ω)|. Indeed, there are macroscopic loops, ηmacro(β) > 0, provided that
β is large enough. The proof of [16] barely fails in d = 4; the result is expected to
hold for all d ≥ 3, though.

Despite many efforts and false hopes, there is no corresponding result for the
Heisenberg ferromagnet, hence for the cycle model.

The proof of Theorem 5.3 is long and difficult and we are not discussing it here.
The interested reader is invited to look at [16, 20, 46].

6. Rigorous results for cycle and loop models

The cycle and loop representations in Theorems 3.3 and 3.4 are interesting in
their own right and can be studied using purely probabilistic techniques. Without
the physical motivation, the external magnetic field is less relevant and more of
an annoyance. We prefer to switch it off. The models in this simpler situation
are defined below, with the small generalisation that the geometric weight on the
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number of cycles or loops is arbitrary. This is analogous to how, for example, one
obtains the random cluster or FK representation of the Ising model.

6.1. Cycle and loop models. As usual we suppose Λ = (V, E) is a finite
undirected graph. Recall that the Poisson edge measure ρΛ,β , β > 0 for Λ is
obtained by attaching independent Poisson point processes on [0, β] to each edge.

On each realization ω of the Poisson edge process, we define cycles C(ω) and
loops L(ω) as in §3.1. The random cycle and loop model is obtained via a change of
measure in which the number of cycles or loops receives a geometric weight ϑ > 0.
That is, the probability measures of interest are

PCΛ,β(dω) = ZCΛ(β)−1ϑ|C(ω)|ρE,β(dω),

PLΛ,β(dω) = ZLΛ (β)−1ϑ|L(ω)|ρE,β(dω),
(6.1)

where Z ·Λ(β) are the appropriate normalisations. As remarked above, ϑ = 2 is the
physically relevant choice in both these measures.

The main question deals with the possible occurrence of cycles or loops of
diverging lengths. Recall the definitions of the fraction of vertices in infinite cy-
cles/loops, η∞(β), and the fraction of vertices in macroscopic cycles/loops, ηmacro(β),
that were defined in Section 4.4. (We drop the dependence in h, since h = 0 here.)
In the case where the graph is a cubic box in Zd with periodic boundary conditions,
and ϑ = 2, the Mermin-Wagner theorem essentially ruled out infinite cycles in one
and two dimensions, and the theorem of Dyson-Lieb-Simon showed that macro-
scopic loops are present in d ≥ 5, provided that the parameter β is sufficiently
large.

It is intuitively clear that there cannot be infinite cycles or loops when β is
small. We find it useful to write a honest proof of this trivial fact, with an explicit
condition that gives a lower bound on the critical value of β. The claim and its
proof can be found in Section 6.2.

Two studies of the cycle model with ϑ = 1 devote a mention. Angel considered
the model on regular trees, and he proved the existence of infinite cycles (for large
enough β) when the degree of the tree is larger than 5 [3]. Schramm considered
the model on the complete graph and he obtained a fairly precise description of the
distribution of cycle lengths [41]. We review this important result in Section 6.3.

6.2. No infinite cycles at high temperatures. We consider general graphs
Λ = (V, E). We let κ denote the maximal degree of the graph, i.e., κ = supx∈V |{y :
{x, y} ∈ E}|. Recall that L(γx) denotes the length of the cycle or loop that contains
x× {0}. Let a be the small parameter

a =

{
ϑ−1(1− e−β ) if ϑ ≤ 1,
1− e−β if ϑ ≥ 1.

(6.2)

Theorem 6.1. For either the cycle of the loop model, i.e., either measures in
(6.1), we have

PΛ,β(L(γx) > βk) ≤ (a(κ− 1))−1[aκ(1− 1
κ )−κ+1]k.

for every x ∈ V.

Of course, the theorem is useful only if the right side is less than 1, in which case
large cycles have exponentially small probability. This result is pretty reasonable
on the square lattice with ϑ ≤ 1. When ϑ > 1 configurations with many cycles are
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favored, and the domain should allow for larger β. Our condition does not show it.
The case ϑ� 1 is close to the situation treated in [11] with phases of closely packed
loops. In the case of the complete graph of N vertices and ϑ = 1, the maximal
degree is κ = N − 1 and the optimal condition is β < 1/N (Erdös-Rényi). Using
aκ ≤ βN and (1− 1

κ )−κ+1 ≤ e , we see that our condition is off by a factor e .
As a consequence, we have η∞(β) = 0. It implies that m∗sp(β) = σ(β) = 0 in

the corresponding Heisenberg ferromagnet and antiferromagnet. One could extend
the claim so that m∗th(β) = 0 as well.

Proof. Given ω, let G(ω) = (V,E) denote the subgraph of Λ with edges

E = {ei : (ei, ti) ∈ ω}, (6.3)

and V = ∪iei the set of vertices that belong to at least one edge. G(ω) can be
viewed as the percolation graph of ω, where an edge e is open if at least one bridge
of the form (e, t) occurs in ω. Then we denote Cx(ω) = (Vx, Ex) the connected
component of G(ω) that contains x. It is clear that L(γx) ≤ β|Vx| for both cycles
and loops. Then, using Markov’s inequality,

PΛ,β(L(γx) > βk) ≤ PΛ(|Gx| > k) ≤ η−kEΛ,β(η|Vx|), (6.4)

for any η ≥ 1. Given a subgraph G′ = (V ′, E′) of Λ, let

φ(G′) = ϑ−|V
′|
∫

1G(ω)=G′ϑ
|C(ω)|dρE′,β(ω). (6.5)

One can check that

φ(G′) ≤

{
[ϑ−1(1− e−β )]|E

′| if ϑ ≤ 1,
(1− e−β )|E

′| if ϑ ≥ 1.
(6.6)

The bound also holds for the loop model, i.e., if ϑ|C(ω)| is replaced by ϑ|L(ω)| in
(6.5). Summing over all possible connected graphs C ′x = (V ′x, E

′
x) that contain x,

and then over compatible subgraphs, we have

EΛ,β(η|Vx|) =
∑
C′x

φ(C ′x)η|V
′
x|

∑
G′∩C′x=∅ φ(G′)∑

G′ φ(G′)
≤
∑
C′x

η|V
′
x|a|E

′
x|, (6.7)

Let δ(C ′x) denote the “depth” of the connected graph C ′x, i.e., the minimal number
of edges of E′x that must be crossed in order to reach any point of V ′x. Let

B(`) =
∑

C′x,δ(C
′
x)≤`

η|V
′
x|a|E

′
x|. (6.8)

We want an upper bound for B(`) for any `. We show by induction that B(`) ≤ b
for a number b to be determined shortly. We proceed by induction on `. The case
` = 0 is η ≤ b. For `+ 1, we write the sum over graphs with depth less than `+ 1,
attached at x, as a sum over graphs of depth less than `, attached at neighbors of
x. Neglecting overlaps gives the following upper bound:

B(`+ 1) ≤ η
∏

y:{x,}∈E

(
1 + a

∑
C′y,δ(C

′
y)≤`

η|V
′
y |a|E

′
y|
)

≤ η(1 + ab)κ.
(6.9)
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This needs to be less than b; this condition can be written a ≤ b−1((b/η)1/κ − 1).
The optimal choice that maximizes the possible values of a is b = η(1 − 1

κ )−κ. A
sufficient condition is then

a ≤ 1
ηκ (1− 1

κ )κ−1
(6.10)

We have obtained that

PΛ,β(L(γx) > βk) ≤ η−k+1(1− 1
κ )−κ, (6.11)

and this holds for all 1 ≤ η ≤ 1
aκ (1− 1

κ )κ−1. Choosing the maximal value for η, we
get the bound of the theorem. �

6.3. Rigorous results for trees and the complete graph. The cycle
model with ϑ = 1 is known as random stirring and has been studied by several
researchers.

Suppose T1, T2, T3, . . . are independent random transpositions of {1, 2, . . . , n}
and πk = T1 ◦T2 ◦ . . . ◦Tk. Write λ(πk) for the vector of cycle lengths in πk, sorted
into order. So, λi(πk) is the size of the ith largest cycle and if there are less than i
cycles in πk, we take λi(πk) = 0.

Note the simple connection between cycles here and the cycles in our model; if
N is a Poisson random variable with mean βn(n−1)/2, independent of the Ti, then
λ(πN ) has exactly the distribution as the ordered cycle lengths in C under ρKn,β ,
where Kn is the complete graph with n vertices.

Schramm proved that for c > 1/2, an asymptotic fraction z(2c) of elements
from {1, 2, . . . , n} lie in infinite cycles of πbcnc as n → ∞. The (non-random)
fraction z(2c) turns out to be the asymptotic fraction of vertices lying in the giant
component of the Erdos-Renyi random graph with edge probability c. Equivalently,
z(s) is the survival probability for a Galton-Watson process with Poisson offspring
distribution with mean s. Berestycki [5] proved a similar result.

Furthermore, Schramm also showed that the normalised cycle lengths converge
to the Poisson-Dirichlet(1) distribution.

Theorem 6.2 (Schramm [41]). Let c > 1/2. The law of λ(πbcnc)/(nz(2c))
converges weakly to PD1 as n→∞.

7. Uniform split-merge and its invariant measures

We now take a break from spin systems and consider a random evolution on
partitions of [0, 1] in which blocks successively split or merge. Stochastic processes
incorporating the phenomena of coalescence and fragmentation have been much
studied in the recent probability literature (see, for example, [2, 7] or Chapter
5 of [38], and their bibliographies). The space of partitions of [0, 1] provides a
natural setting for such processes. The particular model we will discuss here has
the property that the splitting and merging can be seen to balance each other out
in the long run, so that there exists a stationary (or invariant) distribution. Our
aim is to summarise what is known about this invariant distribution. Only a basic
familiarity with probability theory is assumed and we’ll recall the essentials as we
go. This section is self-contained and can be read independently of the first. As
is the way among probabilists, we assume there is a phantom probability space
(Ω,F ,P) that hosts all our random variables. It is summoned only when needed.
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7.1. Introduction. Let ∆1 denote the space of (decreasing, countable) par-
titions of [0, 1]. Formally

∆1 :=
{
p ∈ [0, 1]N : p1 ≥ p2 ≥ . . . ,

∑
i

pi = 1
}
, (7.1)

where the size of the ith part (or block) of p ∈ ∆1 is pi. Each partition induces
a natural distribution on its parts – the ith part is sampled with probability pi.
In practice this means sampling a uniform random variable on [0, 1] and choosing
whichever block it lands in. This is called size-biased sampling.

Define split and merge operators Sui ,Mij : ∆1 → ∆1, u ∈ (0, 1) as follows:
• Sui p is the non-increasing sequence obtained by splitting pi into two new

parts of size upi and (1− u)pi, and
• Mijp is the non-increasing sequence obtained by merging pi and pj into a

part of size pi + pj .

Su
3

?

Figure 6. Splitting the third part of the partition and reordering.

M23
?

Figure 7. Merging second and third parts and reordering.

The basic uniform split-merge transformation of a partition p is defined as
follows. Size-biased sample two parts, pI and pJ say, of p. Each sample is made
independently and we allow repetitions. If the same part is chosen twice, i.e. I = J ,
sample a uniform random variable U on [0, 1] and split pI into two new parts of
size UpI and (1 − U)pJ (i.e. apply SUI ). If different parts are chosen, i.e. I 6= J ,
then merge them by applying MIJ . This transformation gives a new (random)
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element of ∆1. Conditional on plugging a state p ∈ ∆1 into the transformation, the
distribution of the new element of ∆1 obtained is given by the so-called transition
kernel

K(p, ·) :=
∑
i

p2
i

∫ 1

0

δSui p(·)du+
∑
i6=j

pipjδMijp(·). (7.2)

Repeatedly applying the transformation gives a sequence P =
(
P k; k = 0, 1, 2, . . .

)
of random partitions evolving in discrete time. We assume that the updates at
each step are independent. So, given P k, the distribution of P k+1 is independent
of P k−1, . . . , P 0. In other words, P is a discrete time Markov process on ∆1 with
transition kernel K. We call it the basic split-merge chain.

Several authors have studied the large time behaviour of P , and the related
issue of invariant probability measures, i.e. µ such that µK = µ (if the initial value
P 0 is distributed according to µ, then P k also has distribution given by µ at all
subsequent times k = 1, 2, . . .).

Recent activity begins with Tsilevich [48]. In that paper the author shows that
the Poisson-Dirichlet(θ) distribution (defined in §7.2 below and henceforth denoted
PDθ) with parameter θ = 1 is invariant. The paper contains the conjecture (of
Vershik) that PDθ is the only invariant measure.

Uniqueness within a certain class of analytic measures was established by
Meyer-Wolf, Zerner and Zeitouni in [34]. In fact they extended the basic split-merge
transform described above to allow proposed splits and merges to be rejected with a
certain probability. In particular, splits and merges are proposed as above but only
accepted with probability βs ∈ (0, 1] and βm ∈ (0, 1] respectively, independently at
different times. The corresponding kernel is

Kβs,βm(p, ·) := βs
∑
i

p2
i

∫ 1

0

δSui p(·)du+ βm
∑
i6=j

pipjδMijp(·)+(
1− βs

∑
i

p2
i − βm

∑
i 6=j

pipj

)
δp(·).

(7.3)

We call this (βs, βs) split-merge (the basic chain, of course, corresponds to βs =
βm = 1). The Poisson-Dirichlet distribution is still invariant, but with parameter
θ = βs/βm.

Tsilevich [47] provided another insight into the large time behaviour of the
the basic split-merge process (βs = βm = 1). The main theorem is that if
P 0 = (1, 0, 0, . . .) ∈ ∆1, then the law of P , sampled at a random Binomial(n, 1/2)-
distributed time, converges to Poisson-Dirichlet(1) as n→∞.

Pitman [37] studies a related split-merge transformation, and by developing
results by Gnedin and Kerov, reproves PD invariance and refines the uniqueness
result of [34]. In particular, PD is the only invariant measure under which Pitman’s
split-merge transformation composed with ‘size-biased permutation’ is invariant.

Uniqueness for the basic chain’s invariant measure was finally established by
Diaconis, Meyer-Wolf, Zerner and Zeitouni in [15]. They coupled the split-merge
process to a discrete analogue on integer partitions of {1, 2, . . . , n} and then used
representation theory to show the discrete chain is close to equilibrium before de-
coupling occurs.



HEISENBERG MODELS AND THEIR PROBABILISTIC REPRESENTATIONS 29

Schramm [42] used a different coupling to give another uniqueness proof for
the basic chain. His arguments readily extend to allow βs ∈ (0, 1] (although βm = 1
is still required). In summary,

Theorem 7.1.
(a) Poisson-Dirichlet(βs/βm) is invariant for the uniform split-merge chain

with βs, βm ∈ (0, 1]. Furthermore,
(b) If βm = 1 then it is the unique invariant measure.

We give a short proof of part (a) in Section 7.3 below.

7.2. The Poisson-Dirichlet random partition. WriteM1(∆1) for the set
of probability measures on ∆1. The Poisson-Dirichlet distribution PDθ ∈M1(∆1),
θ > 0, is a one parameter family of laws introduced by Kingman in [30]. It has
cropped up in combinatorics, population genetics, number theory, Bayesian statis-
tics and probability theory. The interested reader may consult [18, 31, 4, 39] for
details of the applications. We will simply define it and give some basic properties.

There are two important characterisations of PDθ. Although both are useful,
we’ll only actually use one of them (Kingman’s original definition). The other is
the ‘stick-breaking’ construction, which is both easier to describe and gives a bet-
ter intuitive picture. Let T1, T2, . . . be independent Beta(1, θ) distributed random
variables. (The Beta(a, b) distribution has density Γ(a+b)

Γ(a)Γ(b) t
a(1− t)b on [0, 1]. Con-

sequently, if U is uniform on [0, 1] then 1−U1/θ is Beta(1, θ) distributed.) Form a
random partition from the Ti by letting the kth block take fraction Tk of the unallo-
cated mass. That is, the first block has size P1 = T1, the second P2 = T2(1−P1) and
Pk+1 = Tk+1(1−P1−. . .−Pk). One imagines taking a stick of unit length and break-
ing off a fraction Tk+1 of what remains after k pieces have already been taken. A
one-line induction argument shows that 1−P1−. . .−Pk = (1−T1)(1−T2) . . . (1−Tk),
giving

Pk+1 = Tk+1(1− T1)(1− T2) . . . (1− Tk). (7.4)

In case there is any doubt that
∑∞
i=1 Pi = 1 almost surely, note that

E

[
1−

k∑
i=1

Pi

]
= E

[
k∏
i=1

(1− Ti)

]
=
(∫ 1

0

θt(1− t)θ−1

)k
= (θ + 1)−k → 0 (7.5)

as k → ∞. So, the vector (P[1], P[2], . . .) of the Pi sorted into decreasing order is
an element of ∆1. It determines a unique measure PDθ ∈M1(∆1). This is known
as the Griffiths-Engen-McCloskey (GEM) construction. It is interesting to note
that the original vector (P1, P2, . . .) is obtained from (P[1], P[2], . . .) by size-biased
re-ordering. In other words, consider the interval [0, 1] partitioned into lengths
(P[1], P[2], . . .). Take a sequence U1, U2, . . . of i.i.d. uniform random variables on
[0, 1]. Now list the blocks “discovered” by the uniforms in the order that they are
found. The resulting sequence has the same distribution as (P1, P2, . . .).

7.2.1. Poisson Point processes. Kingman’s characterisation of PDθ is made in
terms of a suitable random point process on R+. Here is a crash course in the
general theory of such processes on a measurable space (X,B). (The standard
reference is [32].) Although we will only need this theory for X = R+, there is
no extra cost for introducing it in general. Let M(X) denote the set of σ-finite
measures on X.
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Suppose that µ ∈ M(X) and consider the special case µ(X) < ∞. Thus
µ(·)/µ(X) is a probability measure and we can sample, independently, points
Y1, Y2, . . . according to this distribution. Let N0 be Poisson(µ(X)) distributed,
which means P(N0 = n) = exp(−µ(X))µ(X)n/n!. Conceptually, the Poisson point
process with intensity measure µ is simply the random collection {Y1, . . . , YN0}.

Formally, the point process is defined in terms of the random counting measure
N(A) =

∑N0
i=1 1Yi∈A, which counts the number of random points lying in A ∈ B.

Thus N(A) is a random variable, which has Poisson(µ(A)) distribution. Indeed,

P(N(A) = k) =
∞∑
n=k

P(N0 = n) P

(
N0∑
i=1

1Yi∈A = k
∣∣∣N0 = n

)

=
∞∑
n=k

exp(−µ(X))
µ(X)n

n!

(
n!

k!(n− k)!

)(
µ(A)
µ(X)

)k (
1− µ(A)

µ(X)

)n−k
= exp(−µ(X))

µ(A)k

k!

∞∑
n=k

1
(n− k)!

(µ(X)− µ(A))n−k

= exp(−µ(A))
µ(A)k

k!
.

(7.6)

Similar calculations show that if A1, . . . , Ak ∈ B are disjoint thenN(A1), . . . , N(Ak)
are independent. These properties turn out to be sufficient to completely specify
the distribution of the random measure N .

Definition 7.1 (Poisson Point Process). A Poisson Point process on X with
intensity µ ∈ M(X) (or PPP(µ) for short) is a random counting measure N :
B(X)→ N ∪ {0} ∪ {∞} such that

• for any A ∈ B(X), N(A) has Poisson(µ(A)) distribution. By convention,
N(A) =∞ a.s. if µ(A) =∞.

• if A1, A2, . . . , Ak ∈ B are disjoint, then the random variables N(A1), . . . , N(Ak)
are independent.

For general σ-finite intensity measures, we can construct N by superposition.
Suppose that X =

⋃
iXi where the Xi are disjoint and µ(Xi) <∞. Use the recipe

given at the start of this section to construct, independently, a PPP(µ|Xi) Ni on
each subspace Xi. Then N(A) =

∑∞
i=1Ni(A) is the desired measure. It is purely

atomic, and the atoms Y1, Y2, . . . are called the points of the process. In applications
it is useful to know moments and Laplace transforms of functionals of the process.

Lemma 7.2.
(1) First moment: If f ≥ 0 or f ∈ L1(µ) then

E
[∑
i

f(Yi)
]

=
∫
X

f(y)µ(dy)

(we agree that both sides can be ∞).
(2) Campbell’s formula: If f ≥ 0 or 1− e−f ∈ L1(µ) then

E
[
exp
(
−
∑
i

f(Yi)
)]

= exp
(
−
∫
X

(1− e−f(y))µ(dy)
)

(we agree that exp(−∞) = 0).
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(3) Palm formula: Let M̃(X) ⊂ M(X) denote the space of point measures
on X, G : X × M̃ → R+ be a measurable functional of the points, and f
as in (2). Then

E
[∑
i

f(Yi)G(Yi, N)
]

=
∫
X

E[G(y, δy +N)]f(y)µ(dy).

The formulation here is that of Lemma 2.3 of [7]. We include sketch proofs to
give a flavor of the calculations involved.

Proof. Let f =
∑n
k=1 ck 1Ak , be a simple function with µ(Ak) <∞.

(1)

E
[∑
i

f(Yi)
]

= E
[ n∑
k=1

ckN(Ak)
]

=
n∑
k=1

ckµ(Ak) =
∫
X

f(y)µ(dy). (7.7)

(2)

E
[
exp
(
−
∑
i

f(Yi)
)]

= E
[
e−

P
k ckN(Ak)

]
=

n∏
k=1

E
[
e−

P
k ckN(Ak)

]
=

n∏
k=1

exp(−µ(Ak)(1− e−ck)) = exp
(
−
∫
X

(1− e−f(y))µ(dy)
)
.

(7.8)

Both (1) and (2) extend to measurable f ≥ 0 using standard arguments. Part
(1) for f ∈ L1(µ) follows immediately. Part (2) for 1− e−f ∈ L1(µ) is omitted.

(3) First suppose G is of the form G(N) = exp(−
∑
i g(Yi)) for some non-

negative measurable g. Campbell’s formula gives, for q ≥ 0,

E
[
exp
(
−q
∑
i

f(Yi)
)
G(N)

]
= exp

(
−
∫
X

(1− e−qf(y)−g(y))µ(dy)
)
. (7.9)

Differentiating this identity in q at 0 gives

E
[∑
i

f(Yi)G(N)
]

=
∫
X

f(y)e−g(y)µ(dy) exp
(
−
∫
X

(1− e−g(y))µ(dy)
)

=
∫
X

f(y)e−g(y)µ(dy) E
[
exp
(
−
∑
i

g(Yi)
)]

=
∫
X

f(y) E
[
exp
(
−
∑
i

g(Yi)− g(y)
)]
µ(dy)

=
∫
X

f(y) E[G(N + δy)]µ(dy),

(7.10)

where Campbell’s formula is used to get the second and last lines.
Now, suppose G(y,N) =

∑n
k=1 1y∈Ak exp(−

∑
i gk(Yi)) for A1, . . . , An ∈ B and

measurable gk : X → [0,∞). By linearity, the preceding calculations give

E
[∑
i

f(Yi)G(Yi, N)
]

=
∫
X

n∑
k=1

1y∈Ak f(y) E
[
exp
(
−
∑
i

gk(Yi)− gk(y)
)]
µ(dy)

=
∫
X

f(y) E[G(y,N + δy)]µ(dy).
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The proof is completed by approximating arbitrary measurable G with func-
tions of this form. We omit the details. �

7.2.2. The Poisson-Dirichlet distribution via a PPP. Consider the PPP with
intensity measure given by η(dx) = θx−1 exp(−x)dx on [0,∞). (η is an infinite
measure, but is σ-finite since η(2−k−1, 2−k] ≤ θ.) A practical way to construct this
process is given in Tavaré [44]. Let T1 < T2 < . . . be the points of a Poisson process
of rate θ (that is, the differences Ti+1−Ti are independent exponential variables of
rate θ) and E1, E2, . . . be exponentially distributed with rate 1. Then, the points
in our PPP(η) can be enumerated as ξi = exp(−Ti)Ei, i ≥ 1.

The probability that all points are less than K > 0 is

P(N(K,∞) = 0) = exp
(
−
∫ ∞
K

θx−1 exp(−x)dx
)
→ 1 (7.11)

as K →∞. Thus, there is a largest point and we can order the points in decreasing
order so ξ1 ≥ ξ2 ≥ . . . ≥ 0. The sum

∑
i ξi is finite almost surely. Indeed, we can

say much more. Recall that the Gamma(γ, λ) distribution has density
1

Γ(γ)
λγxγ−1 exp(−λx).

Lemma 7.3. ∑
i

ξi ∼ Gamma(θ, 1).

Proof. Since
∑
i ξi is a non-negative random variable, its distribution is de-

termined by its Laplace transform. By Campbell’s formula, this is given by

E
[
exp
(
−r
∑
i

ξi

)]
= exp

(
−θ
∫ ∞

0

(1− e−rx)x−1 exp(−x)dx
)

= exp
(
−θ
∫ r

0

∫ ∞
0

exp(−x(1 + r))dxdr
)

= (1 + r)−θ,

for |r| < 1, implying that
∑
i ξi is Gamma(θ, 1) distributed. �

The Poisson-Dirichlet(θ) distribution, PDθ ∈M(∆1), is the law of the ordered
points, normalised by their sum, i.e.

1∑
i ξi

(ξ1, ξ2, ξ3, . . .) . (7.12)

In the next section, we will wish to appeal to various properties of Beta and
Gamma random variables which are often known as the “Beta-Gamma algebra”.

Lemma 7.4. Suppose that Γλα ∼ Gamma(α, λ) and Γλβ ∼ Gamma(β, λ) are
independent. Then

• Γλα + Γλβ ∼ Gamma(α+ β, λ),
• Γλα/(Γ

λ
α + Γλβ) ∼ Beta(α, β),

• The two random variables above are independent.

Note that the converse also follows: if B ∼ Beta(α, β) is independent of Γλα+β ∼
Gamma(α+ β, λ) then BΓλα+β ∼ Gamma(α, λ), (1−B)Γλα+β ∼ Gamma(β, λ) and
these last two random variables are independent.
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Proof. In order to simplify the notation, let X = Γλα and Y = Γλβ . We will
find the joint density of S = X+Y and R = X/(X+Y ). We first find the Jacobian
corresponding to this change of variables: we have

∂x

∂s
= r,

∂x

∂r
= s

∂y

∂s
=1− r, ∂y

∂r
= −s

and so the Jacobian is |−rs−(1−r)s| = s. Noting that X = RS and Y = (1−R)S,
we see that S and R have joint density

s
1

Γ(α)
λα(rs)α−1e−λrs

1
Γ(β)

((1− r)s)β−1e−λ(1−r)s

=
1

Γ(α+ β)
λα+βsα+β−1e−λs · Γ(α+ β)

Γ(α)Γ(β)
rα−1(1− r)β−1.

(7.13)

Since this factorizes with the factors being the correct Gamma and Beta densities
respectively, the result follows. �

In the next lemma, we will see the power of the Beta-Gamma algebra. We use
it to make a connection between our two different representations of the Poisson-
Dirichlet distribution. This will serve as a warm up for the calculations in the next
section.

Lemma 7.5. Suppose that P = (P1, P2, . . .) ∼ PDθ. Let P∗ be a size-biased pick
from amongst P1, P2, . . .. Then P∗ ∼ Beta(1, θ).

So P∗ has the same distribution as the length of the first stick in the stick-
breaking construction.

Proof. Note that, conditional on P1, P2, . . ., we have that

P∗ = Pi with probability Pi, i ≥ 1. (7.14)

In order to determine the distribution of P∗, it suffices to find E[f(P∗)] for all
bounded measurable test functions f : [0, 1]→ R+. (Indeed, it would suffice to find
E[f(P∗)] for all functions of the form f(x) = exp(−qx) i.e. the Laplace transform.
However, our slightly unusual formulation will generalize better when we consider
random variables on ∆1 in the next section.) Conditioning on P1, P2, . . . and using
the Tower Law we see that

E[f(P∗)] = E[E[f(P∗)|P1, P2, . . .]] = E

[ ∞∑
i=1

Pif(Pi)

]
. (7.15)

Now use the representation (7.12) to see that this is equal to

E

[ ∞∑
i=1

ξi∑∞
j=1 ξj

f

(
ξi∑∞
k=1 ξk

)]
. (7.16)

This is in a form to which we can apply the Palm formula; we obtain

E

[∫ ∞
0

y

y +
∑∞
i=1 ξi

f

(
y

y +
∑∞
j=1 ξj

)
θy−1e−ydy

]
. (7.17)
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After cancelling y and y−1, we recognise the density of the Exp(1) (= Gamma(1,1))
distribution and so we can write

E

[
θ

Γ +
∑∞
i=1 ξi

f

(
Γ

Γ +
∑∞
j=1 ξj

)]
, (7.18)

where Γ ∼ Exp(1) is independent of ξ1, ξ2, . . .. Recall that
∑∞
i=1 ξi ∼ Gamma(θ, 1).

Then by Lemma 7.4, Γ +
∑∞
i=1 ξi is independent of Γ/(Γ +

∑∞
i=1 ξi) which has a

Beta(1, θ) distribution. Hence, we get

E
[

θ

Γ +
∑∞
i=1 ξi

]
E [f (B)] , (7.19)

where B ∼ Beta(1, θ). We conclude by observing that

E
[

θ

Γ +
∑∞
i=1 ξi

]
= 1. �

We close this section by noting an important property of the PPP we use to
create the Poisson-Dirichlet vector.

Lemma 7.6. The random variable
∑∞
i=1 ξi is independent of

1∑
i ξi

(ξ1, ξ2, ξ3, . . .) .

This is another manifestation of the independence in the Beta-Gamma algebra;
see [32].

7.3. Split-merge invariance of Poisson-Dirichlet. We use the same method
that we exploited in the proof of Lemma 7.5 to prove part (a) of Theorem 7.1.

First define a random function F : ∆1 → ∆1 corresponding to (βs, βm) split-
merge as follows. Fix p ∈ ∆1 and let I(p) and J(p) be the indices of the two
independently size-biased parts of p, that is

P(I(p) = k) = P(J(p) = k) = pk, k ≥ 1. (7.20)

Now let U and V be independent U(0, 1) random variables, independent of I(p)
and J(p). Let

F (p) =


SUi p if I(p) = J(p) = i and V ≤ βs
Mijp if I(p) = i 6= J(p) = j and V ≤ βm
p otherwise.

(7.21)

We wish to prove that if P ∼ PDθ then F (P ) ∼ PDθ also. Let g : ∆1 → R+

be a bounded measurable test function which is symmetric in its arguments (this
means that we can forget about ordering the elements of our sequences). Then,
conditioning on P , considering the different cases and using the Tower Law, we
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have

E[g(F (P ))] = E

[
E

[
1V≤βs

∞∑
i=1

1I(P )=J(P )=i g(SUi P )

∣∣∣∣∣P
]]

+ E

[
E

[
1V >βs

∞∑
i=1

1I(P )=J(P )=i g(P )

∣∣∣∣∣P
]]

+ E

E

1V≤βm∑
i6=j

1I(P )=i 1J(P )=j g(MijP )

∣∣∣∣∣P


+ E

E

1V >βm∑
i6=j

1I(P )=i 1J(P )=j g(P )

∣∣∣∣∣P


(7.22)

Note that, conditional on P , I(P ) = i, J(P ) = j with probability PiPj , so that we
get

E[g(F (P ))] =βs E

[ ∞∑
i=1

P 2
i g(SUi P )

]
+ (1− βs) E

[ ∞∑
i=1

P 2
i g(P )

]

+ βm E

∑
i 6=j

PiPjg(MijP )

+ (1− βm) E

∑
i 6=j

PiPjg(P )

 . (7.23)

Now use the symmetry of g to write

g(SUk P ) = g ((PkU,Pk(1− U), (Pi : i ≥ 1, i 6= k)))

and

g(MijP ) = g ((Pi + Pj , (Pk : k ≥ 1, k 6= i, j))) .

Set (P1, P2, . . .) = 1P∞
i=1 ξi

(ξ1, ξ2, . . .) as in (7.12) to obtain

E[g(F (P ))] = βs E

[ ∞∑
k=1

ξ2
k

(
∑∞
i=1 ξi)

2 g

(
1∑∞
i=1 ξi

(ξkU, ξk(1− U), (ξi : i ≥ 1, i 6= k))
)]

+ (1− βs) E

[ ∞∑
k=1

ξ2
k

(
∑∞
i=1 ξi)

2 g

(
1∑∞
i=1 ξi

(ξi : i ≥ 1)
)]

+ βm E

∑
i 6=j

ξiξj

(
∑∞
k=1 ξk)2 g

(
1∑∞
k=1 ξk

(ξi + ξj , (ξk : k ≥ 1, k 6= i, j))
)

+ (1− βm) E

∑
i 6=j

ξiξj

(
∑∞
k=1 ξk)2 g

(
1∑∞
i=1 ξi

(ξi : i ≥ 1)
)

(7.24)
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The Palm formula (Lemma 7.2, (3)) applied to each of the expectations above
(twice for the double sums) gives that E[g(F (P ))] is equal to

θβs E

[∫ ∞
0

x−1e−xx2

(x+
∑∞
k=1 ξk)2 g

(
1

x+
∑∞
k=1 ξk

(xU, x(1− U), (ξi : i ≥ 1))
)

dx

]

+ θ(1− βs) E

[∫ ∞
0

x−1e−xx2

(x+
∑∞
k=1 ξk)2 g

(
1

x+
∑∞
k=1 ξk

(x, (ξi : i ≥ 1))
)

dx

]

+ θ2βm E

[∫ ∞
0

∫ ∞
0

x−1e−xy−1e−yxy

(x+ y +
∑∞
k=1 ξk)2 g

(
1

x+ y +
∑∞
k=1 ξk

(x+ y, (ξi : i ≥ 1))
)

dxdy

]

+ θ2(1− βm) E

[∫ ∞
0

∫ ∞
0

x−1e−xy−1e−yxy

(x+ y +
∑∞
k=1 ξk)2 g

(
1

x+ y +
∑∞
k=1 ξk

(x, y, (ξi : i ≥ 1))
)

dxdy

]
.

(7.25)

It helps to recognise the densities we are integrating over here (after cancellation).
In the first two expectations, which correspond to split proposals, we have the den-
sity xe−x of the Gamma(2,1) distribution. The other density to appear is e−xe−y,
which corresponds to a pair of independent standard exponential variables. It fol-
lows that E[g(F (P ))] is equal to

θβs E

[
1

(Γ +
∑∞
k=1 ξk)2 g

(
1

Γ +
∑∞
k=1 ξk

(ΓU,Γ(1− U), (ξi : i ≥ 1))
)]

+ θ(1− βs) E

[
1

(Γ +
∑∞
k=1 ξk)2 g

(
1

Γ +
∑∞
k=1 ξk

(Γ, (ξi : i ≥ 1))
)]

+ θ2βm E

[
1

(Γ +
∑∞
k=1 ξk)2 g

(
1

Γ +
∑∞
k=1 ξk

(Γ, (ξi : i ≥ 1))
)]

+ θ2(1− βm) E

[
1

(Γ +
∑∞
k=1 ξk)2 g

(
1

Γ +
∑∞
k=1 ξk

(ΓU,Γ(1− U), (ξi : i ≥ 1))
)]

,

(7.26)

where Γ ∼ Gamma(2, 1), independently of (ξi : i ≥ 1). By Lemmas 7.4 and 7.6,
Γ +

∑
k ξk is Gamma(2 + θ, 1) distributed and independent of the argument of g in

all of the above expectations. More calculation shows that

E

[
1

(Γ +
∑∞
k=1 ξk)2

]
=

1
θ(θ + 1)

, (7.27)

and so we are left with

θβs + θ2(1− βm)
θ(θ + 1) E

[
g

(
1

Γ +
∑∞
k=1 ξk

(ΓU,Γ(1− U), (ξi : i ≥ 1))
)]

+
θ(1− βs) + θ2βm

θ(θ + 1) E
[
g

(
1

Γ +
∑∞
k=1 ξk

(Γ, (ξi : i ≥ 1))
)] (7.28)

Next use βs = θβm to get

θβs + θ2(1− βm) = θ2 and θ(1− βs) + θ2βm = θ. (7.29)
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So the expression simplifies to

θ

(θ + 1) E
[
g
( 1

Γ +
∑∞
k=1 ξk

(ΓU,Γ(1− U), (ξi : i ≥ 1))
)]

+
1

(θ + 1) E
[
g
( 1

Γ +
∑∞
k=1 ξk

(Γ, (ξi : i ≥ 1))
)] (7.30)

We can re-express this as a sum of expectations as follows:

1
θ(θ + 1) E

[∫ ∞
0

∫ ∞
0

θ2e−xe−yg
( 1
x+ y +

∑∞
k=1 ξk

(x, y, (ξi : i ≥ 1))
)

dxdy
]

+
1

θ(θ + 1) E
[∫ ∞

0

θxe−xg
( 1
x+

∑∞
k=1 ξk

(x, (ξi : i ≥ 1))
)

dxdy
]
.

(7.31)

Using the Palm formula in the other direction gives

1
θ(θ + 1) E

[∑
i6=j

ξiξjg
( 1∑∞

k=1 ξk
(ξk : k ≥ 1)

)
+
∞∑
k=1

ξ2
kg
( 1∑∞

k=1 ξk
(ξk : k ≥ 1)

)]
=

1
θ(θ + 1) E

[( ∞∑
k=1

ξk

)2

g
( 1∑∞

k=1 ξk
(ξk : k ≥ 1)

)]
.

(7.32)

Once again,
∑∞
k=1 ξk is independent of the argument of g. Moreover, it is easily

shown that

E
[( ∞∑

k=1

ξk

)2]
= θ(θ + 1), (7.33)

since it is simply the second moment of a Gamma(θ, 1) random variable. Thus,

E[g(F (P ))] = E[g(P )], (7.34)

from which the result follows. �

7.4. Split-merge in continuous time. In the next section all of our dynam-
ics will be in continuous time. In preparation, we close this section by describing a
continuous time version of the split-merge process. To warm up, consider the stan-
dard Poisson counting process (Nt, t ≥ 0), perhaps the simplest continuous time
Markov chain. Its trajectories take values in {0, 1, 2, . . .}, are piecewise constant,
increasing and right continuous. At each integer k, it is held for an exponentially
distributed random time before jumping to k+ 1. Consequently, only finitely many
jumps are made during each finite time interval. We say Nt increments at rate 1.

Continuous time split-merge is the process (PNt , t ≥ 0) obtained by composing
(P k, k = 0, 1, 2, 3, . . .) with an independent Poisson counting process. It is a
Markov process in ∆1 with the following dynamics. Suppose the present state is
p ∈ ∆1 and attach to each part pi an exponential alarm clock of rate βsp2

i and to
each pair (pi, pj) of distinct parts a clock of rate 2βmpipj .

Wait for the first clock to ring. If pi’s clock rings first then split pi uniformly
(i.e. apply SUi with U uniform). If the alarm for (pi, pj) rings first then apply Mij .
In other words, part pi splits uniformly at rate βspi and distinct parts pi and pj
merge at rate 2βmpipj .
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More formally, define the rate kernel Q : ∆1 × B(∆1)→ [0,∞) by

Q(p, ·) := βs
∑
i

p2
i

∫ 1

0

δSui p(·)du+ βm
∑
i 6=j

pipjδMijp(·) (7.35)

and the (uniformly bounded) ‘rate of leaving’ c : ∆1 → [0,∞)

q(p) := Q(p,∆1) = βs
∑
i

p2
i + βm

∑
i6=j

pipj . (7.36)

Using standard theory (e.g. Proposition 12.20, [29]), there exists a Markov
process on ∆1 that waits for an Exponential(q(p)) amount of time in state p before
jumping to a new state chosen according to Q(p, ·)/q(p).

Furthermore, since

Kβs,βm(p, ·) = Q(p, ·) + (1− q(p))δp(·), (7.37)

this process is constructed explicitly as (PNt , t ≥ 0). The coincidence of the
invariant measures in discrete and continuous time is immediate.

Lemma 7.7. A measure ν ∈M(∆1) is invariant for the continuous time process
(PNt , t ≥ 0) if, and only if, it is invariant for (P k, k = 0, 1, 2, 3, . . .).

8. Effective split-merge process of cycles and loops

This section contains a heuristic argument that connects the loop and cycle
models of section 6.1 and the split-merge process in section 7.4. The heuristic
leads to the conjecture that the asymptotic normalized lengths of the cycles and
loops have Poisson-Dirichlet distribution. By looking at the rates of the effective
split-merge process, we can identify the parameter of the distribution.

Both loop and cycle models are treated with the same arguments. Thus for
notational convenience and brevity we restrict attention to the cycle model. All
statements made can be modified for loops, and we shall give some hints whenever
the modification is non-trivial.

As hinted at in section 6.1, we conjecture that for β large enough, macroscopic
cycles emerge as Λ↗ Zd.

Conjecture 8.1. Suppose d ≥ 3. There exists βc > 0 such that for β > βc,
ηmacro = ηmacro(β) > 0, i.e. the vector(

λ(1)

ηmacrond
,

λ(2)

ηmacrond
, . . .

)
(8.1)

converges to a point ξ in ∆1 as G↗ Zd.

Assuming the conjectured result is true, what is the distribution of ξ? In some
related models (the random-cluster model), ξ has found to be the trivial (and non-
random!) partition (1, 0, 0, . . .).

However, we conjecture (8.2) that there are many macroscopic cycles in our
model (rather than a unique giant cycle) and that their relative lengths can be
described explicitly by the Poisson-Dirichlet distribution.

Conjecture 8.2. The distribution of ξ in Conjecture 8.1 is PDθ for an ap-
propriate choice of θ.



HEISENBERG MODELS AND THEIR PROBABILISTIC REPRESENTATIONS 39

The rest of this section is concerned with justifying this conjecture. The reader
may guess what the parameter θ should be. We will tease it out below and identify
it in section 8.4.

Please see section 4 for a summary of rigorous results by Schramm to support
this conjecture on the complete graph.

8.1. Burning and building bridges. We’ll define an ergodic Markov process
on Ω with PCΛ,β as invariant measure. The process evolves by adding or removing
bridges to the current configuration. Conveniently, the effect of such an operation
is to either split a cycle or merge two cycles.

Lemma 8.1. Suppose ω ∈ Ω and ω′ is ω with either a bridge added (i.e. ω′ =
ω ∪ {(e, t)} for some (e, t) ∈ E × [0, β]) or a bridge removed (i.e. ω′ = ω − {(e, t)}
for some (e, t) ∈ ω).

Then C(ω′) is obtained by splitting a cycle or merging two cycles in C(ω). Sim-
ilarly, L(ω′) is obtained by a splitting or merging in L(ω).

The point is that adding or removing a bridge never causes, for example, several
cycles to join, a cycle to split into many pieces or the cycle structure to remain
unchanged.

The Lemma is most easily justified by drawing pictures for the different cases.
Suppose that we add a new bridge. Either both endpoints of the new bridge belong
to the same cycle or two different cycles. In the former case, the cycle is split and
in the latter case, the two cycles are joined. This is illustrated in Figure 8 for cycles
and Figure 9 for loops.

removing

adding
bridge

bridge
removing

adding
bridge

bridge

Figure 8. Adding or removing bridges always split or merge cy-
cles. Up to topological equivalence, this figure lists all possibilities.

Suppose that we remove an existing bridge. Again, either both of the bridge’s
endpoints belong to the same cycle or they are in different cycles. In the former
case, removal splits the cycle and in the latter, the two cycles are joined.

As this argument hints, it is helpful to formally define the ‘contacts’ between
cycles. Suppose that γ ∈ C(ω) is a cycle. Recall that precisely, this means γ :
[0,∞) → V is right continuous, piecewise constant with γ(0) = γ(nβ) (for some
n ∈ N) and a jump discontinuity at t across the edge e = (γ(t−), γ(t)) ∈ E if, and
only if, the bridge (e, t − jβ) is present in ω for some integer j. Such bridges are
called self contact bridges, the set of which is denoted Bγ . Removing a bridge from
Bγ ⊂ ω causes γ to split.

The self contact zone Cγ of γ is the set of (e, t) ∈ E × [0, β] for which e =
(γ(t+ j1β), γ(t+ j2β)) for some integer j1, j2, i.e. the (e, t) bridge touches different
legs of γ’s trajectory and so adding a bridge from Cγ splits γ.
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removing

adding
bridge

bridge
removing

adding
bridge

bridge

Figure 9. Same as Figure 8, but for loops instead of cycles.

The contact bridges Bγ,γ′ and zones Cγ,γ′ between distinct cycles γ, γ′ ∈ C(ω)
are defined similarly. Specifically, Bγ,γ′ ⊂ ω is comprised of bridges in ω that are
traversed by γ and γ′, i.e. (e, t) ∈ ω such that e = (γ(t+ j1β), γ′(t+ j2β)) for some
j1, j2. Removal of a bridge in Bγ,γ′ causes γ and γ′ to merge.

Cγ,γ′ is the set of (e, t) ∈ E × [0, β] such that e = (γ(t + j1β), γ(t + j2β)) for
some j1, j2, i.e. those bridges that would merge γ and γ′. Note that the contact
(and self contact) zones partition E × [0, β] while the contact bridges partition ω.

8.2. Dynamics. The promised PCΛ,β-invariant Markov process, denoted (Xt, t ≥
0) is defined as follows. Suppose that α > 0.

• A new bridge appears in (e, dt) at rate ϑαdt if its appearance causes a
cycle to split and at rate ϑ−αdt if it causes two cycles to join.

• An existing bridge is removed at rate ϑ1−α if its removal causes a cycle
to split and at rate ϑ−(1−α) if its removal causes two cycles to join.

• No other transitions occur.
The rates are not uniformly bounded, so a little effort is required to check X

is well behaved (does not ‘explode’). Accepting this, we can show X is actually
reversible with respect to our cycle model.

Lemma 8.2. The unique invariant measure of X is PCΛ,β.

Proof. The proof is straightforward but omitted. �

In the sequel we take α = 1/2 so that adding and removing bridges occurs at
the same rates.

8.3. Heuristic for rates of splitting and merging of cycles. As we
know, adding or removing bridges causes cycles to split or merge so the dynamics
(C(Xt), t ≥ 0) that X induces on cycles is a kind of coagulation and fragmentation
process. However they are not Markovian and depend on the underlying process in
a complicated manner. Ideally we would like a simpler, more transparent descrip-
tion for the dynamics. The first step towards this is to rewrite the transition rates
for X in terms of the contact zones and bridges.

Suppose that X is currently in state ω ∈ Ω. A cycle γ ∈ C(ω) splits if either a
bridge from Cγ is added, or a bridge from Bγ ⊂ ω is removed. The total rate at
which these transitions occur is

√
ϑ (|Bγ |+ |Cγ |) , (8.2)

where |Cγ | =
∑
e∈E Leb({t ∈ [0, β] : (e, t) ∈ Cγ}) is the (one dimensional) Lebesgue

measure of the self contact zone. Two distinct cycles γ and γ′ merge if a bridge
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from Cγ,γ′ is added or one from Bγ,γ′ removed. The combined rate is

√
ϑ
−1

(|Bγ,γ′ |+ |Cγ,γ′ |) , (8.3)

where |Cγ,γ′ | =
∑
e∈E Leb({t ∈ [0, β] : (e, t) ∈ Cγ,γ′}).

8.3.1. Heuristics. We believe that for suitably connected graphs and large
enough β cycles should be macroscopic. The trajectories of these cycles should
spread evenly over all edges and vertices in the graph. In particular, macroscopic
cycles should come into contact with each other many times and we expect some
averaging phenomenon to come into play. The longer a cycle is, on average, the
more intersections with other cycles it should have. In particular, we believe the
contact zone between two macroscopic cycles has size proportional to the cycles’
length.

That is, if γ and γ′ are cycles with lengths λ and λ′ respectively then there is
a ‘law of large numbers’

|Cγ | ∼
1
2
c2λ

2, |Bγ | ∼
1
2
c1λ

2
(8.4)

and

|Cγ,γ′ | ∼ c2λλ′, |Bγ,γ′ | ∼ c1λλ′, (8.5)

for constants c1 and c2 (the notation X ∼ Y means that the ratio of the random
variables converges to 1 in probability as G grows).

The constants may depend on ϑ and β and the graph geometry. We believe
they are linear in β but do not depend on ϑ. Note that the size of the contact zones
can be calculated easily for the complete graph. We get

|Cγ,γ′ | = βλλ′, |Cγ | = β
2λ(λ− 1). (8.6)

In the case ϑ = 1, we also have numeric support for

|Bγ,γ′ | ∼ βλλ′, |Bγ | ∼ β
2λ

2. (8.7)

In light of this, our heuristic so far does not seem completely outrageous.

8.4. Connection to uniform split-merge. Continuing with the heuristic,
C(X) is ‘nearly’ a Markov process in which cycles split and merge. Substituting
(8.4) into (8.2) and (8.5) into (8.3), and multiplying by 2

√
ϑ(c1 + c2) (which just

changes the speed of the process, not the invariant measure) we see that a cycle of
length λ splits at rate ϑλ2, while two cycles with lengths λ and λ′ merge at rate
2λλ′. There seems no reason to suppose that splits are not uniform.

Suddenly there are many similarities between C(X) and the continuous time
split-merge process of section 7.4. This suggests that Poisson-Dirichlet PDθ is
lurking somewhere in the normalised cycle length distribution. What is the right
choice of the parameter θ?

Write ϑ = βs/βm, βs, βm ∈ (0, 1] and multiply the rates by βm to see that
a cycle of length λ splits uniformly at rate βsλ2, while two cycles with lengths λ
and λ′ merge at rate 2βmλλ′. Up to the normalising factor (which is close to the
constant ν|G|), these are exactly the rates in 7.4. Thus, the parameter θ should be
simply ϑ, which was not initially obvious.
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[20] J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon. Phase transitions and reflection positivity.

I. General theory and long range lattice models. Comm. Math. Phys., 62(1):1–34, 1978.
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