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Abstract

We present a simple graphical theory
unifying causal directed acyclic graphs
(DAGs) and potential (aka counter-
factual) outcomes via a node-splitting
transformation. We introduce a new
graph, the Single-World Intervention
Graph (SWIG). The SWIG encodes the
counterfactual independences associated
with a specific hypothetical intervention
on the set of treatment variables. The
nodes on the SWIG are the correspond-
ing counterfactual random variables. We
illustrate the theory with a number
of examples. Our graphical theory of
SWIGs may be used to infer the coun-
terfactual independence relations that
hold among the SWIG variables under
the FFRCISTG model of Robins (1986)
and the NPSEM model with Indepen-
dent Errors of Pearl (2000, 2009). Fur-
thermore, in the absence of hidden vari-
ables, the joint distribution of the coun-
terfactuals is identified; the identifying
formula is the extended g-computation
formula introduced in (Robins et al.,
2004). As an illustration of the benefit
of reasoning with SWIGs, we use SWIGs
to correct an error regarding Example
11.3.3 presented in (Pearl, 2009).

1 Introduction

Potential outcomes are extensively used within
Statistics, Political Science, Economics, and Epi-

demiology for reasoning about causation. Di-
rected acyclic graphs (DAGs) are another formal-
ism used to represent causal systems also exten-
sively used in Computer Science, Bioinformatics,
Sociology and Epidemiology. Given the long his-
tory and utility of both approaches – as demon-
strated by many applications – it is natural to
wish to unify them.

A graphical unification of existing causal
models

We present a simple approach to this synthesis
based on an intuitive graphical transformation:
by ‘splitting’ treatment nodes in a causal DAG
over the actual variables, we form a new graph,
the Single-World Intervention Graph (SWIG).
The SWIG encodes the counterfactual indepen-
dences associated with a specific hypothetical in-
tervention on the set of treatment variables. The
nodes on the SWIG are the corresponding coun-
terfactual random variables.

The factorization and Markov properties encoded
in the structure of the SWIG imply and are
implied by the extended g-formula of Robins
et al. (2004). These two properties are satisfied
by all previously proposed counterfactual causal
models, including the Finest Fully Randomized
Causally Interpretable Structured Tree Graphs
(FFRCISTG) of Robins (1986), the Pseudo-
Indeterministic Systems of Spirtes et al. (1993),
the Non-Parametric Structural Equation Models
with Independent Errors1 (NPSEM-IE) consid-

1In (Pearl, 2000, 2009; Robins and Richardson, 2011)
the acronym ‘NPSEM’ is used to refer to what is here
termed an NPSEM-IE. We wish to emphasize here that



ered in Pearl (2000) and the Minimal Counter-
factual Model (MCM) of Robins and Richardson
(2011).2 As a consequence any (counterfactual)
independences or causal identification results ob-
tained in our theory apply to the above.

Our graphical approach is as follows: given a
causal DAG over the actual variables we con-
struct a set of Single-World Intervention Graphs
(SWIGs). Since the node set consists of the set of
counterfactual variables corresponding to a sin-
gle hypothetical intervention on a set of (possi-
bly time varying) treatments no two SWIGs (con-
structed from the same initial DAG but for differ-
ent interventions) will have identical node sets.

Furthermore, if the factuals on the DAG have a
positive distribution, so P (V = v) > 0 for all v
then a SWIG will not contain random variables
that are related deterministically. As a conse-
quence the graphical criterion (d-separation) for
checking conditional independence among coun-
terfactual variables (on a given SWIG) is com-
plete. In other words, our SWIG encodes all
of those independence relations (among the vari-
ables present in the SWIG) that hold for all distri-
butions over counterfactuals in the (FFRCISTG
or NPSEM-IE) model. If a counterfactual in-
dependence relation among the variables in the
SWIG is not implied then there is some distri-
bution that is in the model for which the corre-
sponding dependence holds.

Our approach differs from previously proposed at-
tempts to link graphs and counterfactuals such as
the ‘twin-network’ approach of Balke and Pearl
(1994), generalized to ‘multi-networks’ in Pearl

FFRCISTGs may also be explicitly defined via a system
of structural equations (with possibly dependent errors –
though any such dependence is undetectable via random-
ized experiments). Hence Pearl’s NPSEM-IE model is a
strict sub-model of the FFRCISTG model. We have thus
opted to refine Pearl’s notation to make clear that it is
solely the additional (untestable) assumptions regarding
independence of the errors that distinguish the NPSEM-IE
and the FFRCISTG approaches. FFRCISTGs as defined
in Robins (1986) did not require that all variables could be
intervened on. Thus, to be precise, the FFRCISTG models
referred to in the main text of this paper and in (Robins
and Richardson, 2011) are those in which all variables are
subject to intervention. It is these FFRCISTGs that may
be defined via a system of structural equations.

2Strictly MCMs (Robins and Richardson, 2011) only
obey the resulting properties in the case where all inter-
vention variables are binary.

(2009), and the ‘counterfactual graph’ of Shpitser
and Pearl (2007, 2008). d-separation is not com-
plete for twin-networks since they include more
variables amongst which there are deterministic
relations.3 d-separation applied to the ‘counter-
factual graphs’ introduced in (Shpitser and Pearl,
2007, 2008) is conjectured (Shpitser, 2013) to
be complete for independence among events (or
equivalently indicators I(V = v)). However, to
use this to check for independence among vari-
ables requires the construction of an exponential
number of counterfactual graphs. There is cur-
rently no known polynomial-time algorithm for
testing independence among counterfactual vari-
ables under the NPSEM-IE. It should be noted
that ‘multi-networks’ and ‘counterfactual graphs’
are designed to address a harder problem than
SWIGs since their goal is to determine all inde-
pendencies implied by an NPSEM-IE model in-
cluding ‘cross-world’ independencies.

As an illustration of the utility of SWIGs we show
that Pearl, one of the creators of the twin-network
method, draws an erroneous conclusion concern-
ing the validity of Robins’ g-computation method
possibly due to assuming that the presence of a
d-connecting path implies lack of (context spe-
cific) independence. To successfully apply the
twin-network method one must be careful to dis-
tinguish independence from context specific inde-
pendence. We shall see that such is not the case
if one uses SWIGS, allowing one to straightfor-
wardly uncover Pearl’s error.

Moreover the SWIG allows one to write down a
factorization of the joint distribution of the coun-
terfactuals on the graph in addition to allowing
one to read off counterfactual independencies via
d-separation (Pearl, 1988). Furthermore under
an FFRCISTG the distribution of the counter-
factuals is linked to that of the factuals through a
property we refer to as ‘modularity’. In particu-
lar, modularity and factorization imply the joint
distribution of the counterfactuals is given by the
extended g-formula. Other advantages of SWIGs
include the following:

• The SWIG gives a graphical explanation as
to why conditioning on variables so as to

3Furthermore SWIGs do not correspond to induced sub-
graphs of twin-networks.



‘block all back-door paths’ provides a consis-
tent estimate of the causal effect of a variable
X on Y , both under the null hypothesis of no
causal effect, and under the alternative.

In (Richardson and Robins, 2013) we show the
following:

• A simple modification of a SWIG allows one
to encode on a single graph (and thus distin-
guish) the two possible causal interpretations
of missing arrows: an absence of a causal ef-
fect for each individual versus the absence
of an average causal effect at the population
level.

• The SWIG permits the criteria for evalua-
tion of treatment regimes or plans involving
k different treatments to be checked by in-
specting a single graph, whereas previous cri-
teria (Pearl and Robins, 1995), though equiv-
alent, require the construction and inspection
of a series of k different ‘mutilated’ graphs;
similar comments apply to the application of
multi-networks (Pearl, 2009).

• The approach naturally extends to (possibly
random) dynamic regimes where treatment is
assigned (either deterministically or stochas-
tically) on the basis of prior covariates, in-
cluding the level of treatment that a patient
would choose (in the absence of it being spec-
ified by the regime).

Removing a false trichotomy

A primary aim of our approach is to show that
researchers in causality are not forced to choose
between:

• Using causal graphs without counterfactuals;

• Using counterfactuals without graphs;

• Combining graphs and counterfactuals via
the NPSEM-IE framework, as advocated by
Pearl, thereby imposing many counterfactual
independence assumptions that are not, even
in principle, testable.

X Y

(a)

X

H

Y

(b)

Unobserved

Figure 1: (a) A causal DAG representing two un-
confounded variables; (b) A causal DAG repre-
senting the presence of confounding.

We believe that at least some of the motivation
for using graphs without counterfactuals and vice-
versa has been the misperception that to combine
the two approaches necessitates the adoption of
the NPSEM-IE approach and its strong assump-
tions that are, for many purposes, unnecessary.

In the next section we show via simple examples
how to construct a SWIG and how to use it to
reason with counterfactuals.

2 Motivating Examples

To motivate our development we first consider the
simple graphs, shown in Figure 1. The nodes rep-
resent random variables and the graph represents
a factorization of their joint density. Specifically,
the DAG in Figure 1(a) is associated with the
(trivial) factorization:

p(x, y) = p(x)p(y | x) (1)

where the densities on the RHS are associated,
respectively, with X and Y in the DAG.

DAGs are often given a causal interpretation. In
that case the DAG in Figure 1(a) is interpreted
as representing the fact that the effect of X on
Y is unconfounded. (In contrast, on the DAG in
Figure 1(b) the effect of X on Y is confounded by
the common cause H.) Within the potential out-
comes (or counterfactual) literature the absence of
confounding is understood as implying (at least)
the ‘weak ignorability’ conditions:

X⊥⊥Y (x = 0) and X⊥⊥Y (x = 1), (2)

where we have supposed that X is a binary treat-
ment variable, and that the potential outcomes



Y (x = 0) and Y (x = 1) are well-defined. Here,
for example Y (x = 0) denotes the value of Y had,
possibly contrary to fact, X been set to 0.

One of the primary uses of graphs, including
DAGs, is to represent the conditional indepen-
dence (or Markov) structure of a multivariate dis-
tribution via d-separation. Since (2) is an inde-
pendence statement, one might naively think that
this could be read directly from the graph in Fig-
ure 1(a). However, the absence of the variables
Y (x = 0) and Y (x = 1) in the DAG in Figure
1(a) would appear to present a significant obsta-
cle to reading the independencies (2) from this
graph (!)

The node-splitting transformation

In the approach described here we address this by
introducing a simple ‘node splitting’ operation.
This is a generalization of the operation intro-
duced in (Robins et al., 2006) to provide a graph-
ical representation of the Effect of Treatment on
the Treated; see also Evans (2012); Geneletti and
Dawid (2007); Shpitser and Pearl (2009).

Applying this operation to vertex X in the DAG
in Figure 1(a) results in the graphs in Figure 2,
which we term Single-World Intervention Graphs
(SWIGs). If the hypothetical intervention sets X
to 0 then we obtain the SWIG G(x=0) shown in
Figure 2(a), while setting X to 1 gives the SWIG
G(x = 1) in Figure 2(b). Notice that in addition
to splitting the X node, the node corresponding
to Y in the original DAG has been relabeled to
indicate that it is now a potential outcome.4

By applying d-separation to the graph in Figure
2(a), we directly obtain that X ⊥⊥ Y (x0), since
there are no edges emanating from the node con-
taining X, hence there are no paths from X to
Y (x0).

5 Similarly, by applying d-separation to
the graph in Figure 2(b) we derive X ⊥⊥ Y (x1).

4In Figure 2 all black nodes should be viewed as nodes
in an ordinary DAG model (regardless of their shape).
The semi-circular shape of the nodes containing X merely
serves to remind us that this graph was derived by split-
ting X. The red nodes are constants that take on a fixed
value. The primary role of these red nodes is to aid in link-
ing the distribution of the variables after splitting to the
terms in the factorization associated with the graph prior
to splitting.

5Here we use xi as a shorthand for x= i.

X x = 0 Y (x = 0)

(a)

X x = 1 Y (x = 1)

(b)

Figure 2: The single world intervention graphs
(SWIGs) resulting from splitting node X in the
graph in Figure 1(a), and intervening to set a par-
ticular value. (a) the SWIG G(x=0) correspond-
ing to setting X to 0; (b) G(x=1) given by setting
X to 1.

The factorization and modularity
properties

In the same manner that the original DAG is asso-
ciated with the joint distribution P (X,Y ) we as-
sociate the graphs in Figure 2 (a) and (b) with the
joint distributions P (X,Y (x0)) and P (X,Y (x1))
respectively. Likewise, we will associate the fol-
lowing factorizations with these graphs:6

P (X=x, Y (x0)=y) = P (X=x)P (Y (x0)=y),
(3)

P (X=x, Y (x1)=y) = P (X=x)P (Y (x1)=y).

In addition we associate the following equation

P (Y (x0)=y) = P (Y =y |X=0) for all y (4)

with the graphical transformation from G 7→
G(x = 0), and likewise

P (Y (x1)=y) = P (Y =y |X=1) for all y. (5)

with the transformation from G 7→ G(x = 1). We
refer to these equalities as modularity7 conditions
linking the distribution of the actual variables in
the DAG to the counterfactual variables in the
SWIG.

Notice that these equations assert that the
marginal distribution of Y resulting from an in-
tervention in which everyone receives the value

6Notice that, if we ignore the red nodes, these factor-
izations are simply instances of the standard DAG factor-
ization, since in Figure 2(a) neither X nor Y (x0) have any
parents (besides the red nodes).

7Our usage of the term modularity differs from that of
Pearl, though they both derive from the same intuition.



x=0 is the same as the corresponding conditional
probability P (y | X=0), and likewise for x=1.

Given the factorization (3), the modularity prop-
erty follows directly from the consistency condi-
tion: X = x implies Y (x) = Y . For example,

P (Y (x0)=y) = P (Y (x0)=y |X=0) (6)

= P (Y =y |X=0);

here the first equality uses the factorization, while
the second follows from consistency.

All NPSEM models satisfy consistency. In fact
we will show that the factorization and modular-
ity properties associated with a SWIG hold for an
NPSEM associated with the original DAG when
the errors have the independence structure spec-
ified by an FFRCISTG model, and thus for its
more restrictive NPSEM-IE submodel.

The factorization and modularity properties are
important because they are sufficient for deriving
many identifiability results. To give a simple ex-
ample, these properties allow us to identify the
Effect of Treatment on the Treated (ETT):

ETT ≡ E[Y (x1)− Y (x0) | X=1]

= E[Y (x1) | X=1]− E[Y (x0) | X=1]

= E[Y (x1)]− E[Y (x0)]

= E[Y | X=1]− E[Y | X=0].

Here the second equality follows from the factor-
izations with respect to the two graphs in Figure
2, while the third follows from modularity, i.e. (4)
and (5).8

Single-worlds vs. multiple-worlds

The reader will notice that although we have
constructed SWIGs representing the two single
world distributions P (X,Y (x0)) and P (X,Y (x1))
we have not constructed a graph that includes
both Y (x0) and Y (x1), and thus represents the
joint distribution P (X,Y (x0), Y (x1)). At first
sight this might strike the reader as odd, perhaps
even an oversight. In fact, this is by design: in
general, observed data, including that resulting

8When X takes more than two states, the factorization
and modularity assumptions associated with this graph
imply that ETT (x) ≡ E[Y (x) − Y (0)|X = x] equals
E[Y |X = x]− E[Y |X = 0].

X x Y (x)

Figure 3: A template representing the two graphs
in Figure 2.

from randomized experiments, only identifies the
marginal single-world counterfactual distributions
for which we construct graphs. It is worth noting
that the independence restrictions that we encode
may place inequality restrictions on the (multiple-
world) joint distribution (e.g.P (X,Y (x0), Y (x1)))
over all counterfactuals.9

As noted, the counterfactual independencies en-
coded in a SWIG are implied by the FFRCISTG
as well as the NPSEM-IE adopted by Pearl (2000,
2009). However, the NPSEM-IE also encodes
many additional cross-world restrictions on the
joint distribution over all counterfactuals.

Templates

Since it is somewhat redundant to construct a dif-
ferent graph for every value to which we might set
x, we may instead represent all such graphs via a
‘template’, such as shown in Figure 3. However,
we note that in any instantiation of this template
x should be viewed as taking a specific value:
whereas the (black) random nodes in the graph
vary across units in the (counterfactual) popula-
tion being represented, the (red) fixed nodes take
the same value. Also note that the value taken
by red nodes such as x specify which particular
random variables are represented by the random
nodes in the template, i.e. whether Y (x) repre-
sents Y (0) or Y (1).10 We refer to these as ‘Single
World Intervention Templates’ or ‘SWITs’.

9There can exist extreme distributions for which some of
the inequality constraints become equalities (Pearl, 2000,
2009, §8.2).

10In this respect the graph differs from standard graph-
ical models, including the conditional acyclic directed
mixed graphs (CADMGs) introduced in Shpitser et al.
(2011). Though CADMGs include fixed nodes, in a
CADMG these nodes do not determine which other vari-
ables appear on the graph. In other words, CADMGs are
not templates.



X x Y (x)

H

Figure 4: The template resulting from intervening
on X in the graph in Figure 1(b).

X Y

L

(a)

X x Y (x)

L

(b)

X Y

L

(c)

Figure 5: Adjusting for confounding. (a) The
original causal graph. (b) The template G(x),
which shows that Y (x)⊥⊥X | L. (c) The DAG GX
obtained by removing edges from X advocated in
Pearl (1995, 2000, 2009) to check his ‘backdoor
condition’.

A new graphical view of the back-door
formula

In Figure 4 we show the template representing
the graphs resulting from intervening on X in the
graph in Figure 1(b), which intuitively represents
the presence of confounding. In the potential out-
comes literature, confounding is expressed as non-
independence of Y (x̃) and X for some x̃. This
lack of independence is consistent with Y (x) and
X being d-connected in the template shown in
Figure 4 by the path X ← H → Y (x).

In contrast, Figure 5(a) shows a DAG in which L
is observed, and is sufficient to control confound-
ing between X and Y . From the template in Fig-
ure 5(b) we see that

X⊥⊥Y (x̃) | L, (7)

often referred to as conditional ignorability,
holds.11 It is well known that this condition is

11For binary treatment this condition states that within
levels of L, the treated and untreated are comparable,
i.e. had, contrary to fact, the two groups received iden-
tical treatment, the distributions of responses would have
been the same. In the experience of one of the co-authors,

sufficient for the effect of X on Y to be given via
the standard adjustment formula:

P (Y (x̃)=y) =
∑
l

P (Y =y | L= l,X= x̃)P (L= l).

(8)
Two further examples of graphs which imply
X⊥⊥Y (x̃) | L are shown in Figure 6; in these
graphs H represents a hidden variable.

Notice that here we are able to use the graph G(x̃)
to represent the distribution P (Y (x̃), X, L) in the
general case where X has an effect on Y . We
contrast this line of graphical reasoning with that
advocated in (Pearl, 2000, 2009, p.87) in which d-
separation of X and Y given L is checked in the
graph GX obtained by removing the edges that
are directed out of X; see Figure 5(c). When L is
a non-descendant of X this graphical criterion is
equivalent to ours, so that X is d-separated from
Y given L in GX if and only if X is d-separated
from Y (x̃) given L in G(x̃); hence validity of his
criterion is not at issue. However, the graph GX
only represents the null hypothesis that X does
not causally affect Y . It is only under this null
hypothesis that X⊥⊥Y | L, corresponding to the
d-separation of X and Y given L that holds in
Figure 5(c). Thus the graph GX does not appear
to offer an explanation as to why d-separation of
X and Y given L in GX should ensure that (8)
holds (even though it does) when X has an effect
on Y .

Furthermore, in the general case where we are
considering whether we may use the natural ex-
tension of (8) to a set of variables L:

P (Y (x̃)=y) =
∑
l

P (Y =y | L= l, X= x̃)P (L= l),

the backdoor criterion (Pearl, 2000, 2009, p.79)
requires that in addition to X and Y being d-
separated given L in GX , no variable in L may be
a descendant of X. The reason for this additional

in both medical and epidemiologic practice, there are con-
texts where one may have strong suspicion that compara-
bility does not hold even though subject-matter knowledge
does not permit one to specify a full causal graph. As one
example it may be unclear whether lack of comparability
is due to confounding by an unmeasured common cause or
also due to selection, such as M-bias; see (Hernán et al.,
2004, p.621-2) for related discussion. In such cases one
would take (7), rather than a graph, as a primitive.
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H

(a-ii)

X Y

L

H

(b-i)

X x Y (x)

L

H

(b-ii)

Figure 6: Further examples of adjusting for con-
founding. (a-i) A graph G; (a-ii) the template
G(x); (b-i) A graph G′; (b-ii) the template G′(x).
H is an unobserved variable in G and G′. Both
SWITs imply Y (x)⊥⊥X | L.

condition is not transparent, since the inclusion
of such a variable does not preclude that X and
Y may be d-separated in GX .12 For example, con-
sider the DAG G and corresponding GX shown in
Figure 7(a) and (c). Within the framework given
here there is no need to state this additional re-
striction. Using SWIGs we may formulate a sim-
ple adjustment criterion as follows:

Counterfactual Adjustment Criterion
If X⊥⊥Y (x̃) | L is implied by the SWIG G(x̃),
then

P (Y (x̃)=y) =
∑
l

P (Y =y | L= l, X= x̃)P (L= l).

Notice that we have no need of any restrictions
on the membership in L as is the case with the
formulation of the backdoor criterion (Pearl, 2000,
p.70). The reason why is illustrated in Figure 7.
In the causal graph shown in Figure 7(a), L1 is
necessary and sufficient to control confounding,
but {L1, L2} is not. It may be seen directly from

12Pearl (2009, §11.3, pp.338–344) acknowledges that the
need to restrict to non-descendants is not transparent in
his original derivation, and offers several alternatives.

X Y

L2

L1

(a)

X x Y (x)

L1

L2(x)

(b)

X Y

L1

L2(c)

Figure 7: Simplification of the backdoor criterion.
(a) The original causal graph G. (b) The template
G(x), which shows that Y (x)⊥⊥X | L1, but does
not imply Y (x)⊥⊥X | {L1, L2} when there exists
an arrow from X to Y , i.e. the null hypothesis
is false. (c) The DAG GX obtained by removing
edges from X advocated in Pearl (2000, 2009).

inspecting the template in Figure 7(b) that

X⊥⊥Y (x̃) | L1, X⊥⊥Y (x̃) | L1, L2(x̃)

but the template does not imply X⊥⊥Y (x̃) |
L1, L2.

13

In contrast, under the non-counterfactual formu-
lation of the back-door criterion (Pearl, 2000,
2009, p.78), in which the graph GX is formed as
in Figure 7(c) an additional condition must be
added, requiring that no member of L is a de-
scendant of X. This extra condition is required
because, as noted earlier, GX represents the null
hypothesis of no effect of X on Y . In spite of
these differences of approach we emphasize that
our criterion holds if and only if Pearl’s backdoor
criterion holds.14

3 Construction of the Single-world
Counterfactual Template

The SWIT G(a) resulting from intervening to set
the variables in A to a in a directed acyclic graph

13As expected, we can construct a distribution under the
FFRCISTG model, and in fact in the NPSEM-IE model
under which X⊥⊥Y (x̃) | L1, L2 is not true. That this inde-
pendence is not implied by an NPSEM-IE associated with
the graph in Figure 7(a) could also be deduced by con-
structing a counterfactual graph (Shpitser and Pearl, 2007,
2008) to test X⊥⊥Y (x̃) | L1 = l1, L2 = l2.

14Textor and Liskiewicz (2011) show that every mini-
mal covariate adjustment set satisfies the back-door con-
dition; see also (Shpitser et al., 2010). We conjecture that
for identifying conditional effects given the adjustment set,
P (Y (x)|z), this criterion is complete under the FFRCISTG
model, though interestingly, not the NPSEM-IE.



G with vertex set V is constructed in two steps as
follows:

(1) Split Nodes: For every A ∈ A split the node
into a random and fixed component, labelled
A and a respectively.

The random half inherits all edges directed
into A in G; the fixed half inherits all edges
directed out of A.

Let the resulting graph be G∗. For each ran-
dom vertex V in G∗, let aV denote the subset
of fixed vertices that are ancestors of V in G∗.

(2) Labeling: For every random node V in G∗,
label it with V (aV ).

It is implicit here that if aV = ∅ then
V (aV ) = V . The resulting graph is the
SWIT G(a). Let V(a) ≡ {V (aV ) | V ∈ V}
be the set of random vertices in G(a).

Note that by convention we will use aV to denote
the set of fixed nodes labeling the counterfactual
node corresponding to V in a SWIT G(a).15

An instantiation G(ã) of G(a) results from choos-
ing a specific assignment of values ã for the ‘free
variables’ a in G(a), and appropriately replacing
each occurrence of ai with ãi within the label for
a vertex. Let A denote the set of all possible in-
stantiations of a. Formally a template G(a) may
be viewed as a graph valued function defined on
the domain A. From this perspective ã represents
a specific input, and G(ã) the resulting output.

4 Modularity and Factorization

We now describe in greater detail the properties
of factorization and modularity.

Given a set of treatment variables A ⊆ V, let
V(ã) represent the set of counterfactual variables
(corresponding to the actual variables V) associ-
ated with a specific hypothetical intervention set-
ting A to ã. The resulting counterfactual dis-
tribution P (V(ã)) is obtained from an NPSEM
by simply replacing each variable Ai ∈ A by the

15Note that this is the set of fixed nodes that are ances-
tors of the counterfactual node corresponding to V after
having split every node in A.

X0 Z

H X1

Y

(a)

X0

x0
Z(x0)

H

X1(x0)

x1

Y (x0, x1)

(b)

Figure 8: (a) The DAG G, Ex. 11.3.3, Fig. 11.12
in Pearl (2009, p.353); H is unobserved ; (b) the
template G(x0, x1).

value assigned ãi in the function fV for any vari-
able V of which Ai is a parent in G. The distri-
bution P (V(ã)) of the counterfactuals V(ã) that
are vertices in the SWIG denoted G(ã) under the
NPSEM satisfies two important properties: ‘fac-
torization’ and ‘modularity’.

The property of ‘factorization’ is simply that the
(marginal) distribution P (V(ã)) over the counter-
factual variables present in the SWIG factors ac-
cording to the respective G(ã). This property is
equivalent to the global Markov property, aka d-
separation.

The ‘modularity’ property is that the conditional
distribution associated with a counterfactual vari-
able Y (ã), given its parents in G(ã) is obtained
from the conditional distribution of Y given its
parents in G. Formally, modularity may be seen
as imposing a link between two sets of distribu-
tions that factor with respect to different graphs
(G(ã), P (V(ã))) and (G, P (V)). This property fol-
lows immediately from the usual counterfactual
consistency property and the conditional indepen-
dences in the G(ã).

5 Example

Pearl (2009) in Example 11.3.3 claims that un-
der the NPSEM associated with the causal DAG
in Figure 8(a) the following conditional indepen-
dence does not hold:

Y (x0, x1)⊥⊥X1 | Z,X0 = x0. (9)

Pearl concludes from this that a claim of Robins is
false because if it were true then (9) would hold.
However, direct inspection of the SWIG shown



in Figure 8(b) shows that (9) is indeed true un-
der this NPSEM, and that Pearl is thus incor-
rect. Specifically, we see by examining the tem-
plate G(x0, x1) shown in Figure 8(b), that:

Y (x0, x1)⊥⊥X1(x0) | Z(x0), X0, (10)

from which it follows that

Y (x0, x1)⊥⊥X1(x0) | Z(x0), X0 = x0. (11)

This last condition is then equivalent to (9) via
the counterfactual consistency condition. Pearl
made the following error. He correctly states that
using his Twin Network method it may be shown
that Y (x0, x1) is not independent of X1, given Z
and X0. However, he then goes on to say: “There-
fore, [(9)] is not satisfied for Y (x0, x1) and X1.”

As we have seen, reasoning with SWIGs immu-
nizes us against this sort of error.

6 The FFRCISTG counterfactual
model

We now give a formal definition of the FFRCISTG
model (Robins, 1986) associated with a graph G.
Let V be the set of observed variables. In the
current paper we suppose that every V ∈ V may
be intervened upon. Thus we assume the coun-
terfactual V (r̃) for any assignment r̃ to R ⊂ V
exists and is defined as follows:

(i) For each variable V ∈ V and assignment p̃a
to paG(V ), the parents of V in G, we as-
sume the existence of a counterfactual vari-
able V (p̃a).

(ii) For any set R, with R 6= paG(V ), V (r̃) is
defined recursively via:

V (r̃) = V
(
r̃(paG(V )∩R), (PAV \R)(r̃)

)
,

where (PAV \ R)(r̃) ≡ {V ∗(r̃) | V ∗ ∈
paG(V ), V ∗ /∈ R}. 16

16Note that if R contains all of the parents of V then
(ii) implies V (r̃) = V (r̃(paG(V )∩R)). Thus if we are inter-
vening on all the parents of a variable then interventions
on any other variable are irrelevant. This is referred to
as the individual level ‘exclusion restriction’; see Rule 1
in Pearl (2000, 2009), p.239. In addition, A(ã) = A, and

We may view the counterfactuals V (p̃aV ), in con-
dition (i) as primitives, from which all others are
derived. For a given V the collection of such coun-
terfactuals {V (p̃aV ) | p̃aV } may equivalently be
represented via a structural equation:

V (p̃aV ) = fV (p̃aV , εV ), (12)

where εV is an error term. See also (Galles and
Pearl, 1998; Halpern, 1998) for the generalization
to non-recursive models.17

The FFRCISTG model is then defined as the set
of distributions that satisfy the following indepen-
dence assumption: For every v†, the variables in
the set{

V (pa†V )
∣∣∣V ∈ V, pa†V = v†paG(V )

}
(13)

are mutually independent.

Thus for every v† we assume that given an inter-
vention v† to every variable in V, the correspond-
ing counterfactuals V (pa†V ) will be mutually in-
dependent.18

Our main result is then the following:

Theorem 1 Given any distribution in the FFR-
CISTG model for G, if V(ã) is the set of coun-
terfactual variables appearing on the SWIG G(ã)
then the marginal distribution P (V(ã)) factorizes
with respect to G(ã); further (P (V(ã)),G(ã)) obeys
modularity with respect to (P (V),G).

more generally A(r̃) = A(r̃R\{A}). This usage fits with the
conception that A represents the ‘natural’ level of treat-
ment that the patient would receive if they were not being
assigned value ã. Assumption (ii) combines the assump-
tions described in other works as ‘consistency’ and ‘recur-
sive substitution’.

17This equivalence of potential outcomes and NPSEMs
is sometimes misinterpreted as indicating that the Markov
structure of all potential outcome models may be repre-
sented graphically (via a single graph). An NPSEM with
FFRCISTG independence structure show this is false. An
FFRCISTG does not obey the composition axiom: under
the FFRCISTG X → Y , we have X⊥⊥Y (x0), X⊥⊥Y (x1)
but not X⊥⊥Y (x0), Y (x1). This precludes representation
via a (pathwise) graphical Markov property.

18Robins and Richardson (2011) prove that the set of
independences (13) is equivalent to the set of counterfac-
tual independence relations used in the definition of the
FFRCISTG appearing in Robins (1986) and Robins and
Richardson (2011); see also Appendix C in Richardson and
Robins (2013).
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