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Abstract

Current estimating equation methods
for logistic structural nested mean
models (SNMMs) either rely heav-
ily on possible ”uncongenial” model-
ing assumptions or involve a cumber-
some integral equation needing to be
solved for each independent unit at
each step of solving the estimating
equation. These drawbacks have im-
peded widespread use of these meth-
ods. In this paper, we present an al-
ternative parametrization of the likeli-
hood function for the logistic SNMM
that circumvents computational com-
plexity of existing methods while en-
suring a congenial parametrization of
SNMM. We also provide a goodness-
of-fit test for evaluating parametric
assumptions made by the likelihood
model. Our method can be easily im-
plemented using most standard statis-
tical softwares, and is illustrated via a
simulation study.

1 Introduction and Background

Structural nested mean models (SNMMs) and
G-estimation were introduced by Robins (1989,
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1994) as rigorous statistical approaches to infer
causality in studies where exposure (or treat-
ment) assignments are not completely under the
control of investigators, such as observational
studies or clinical trials with non-compliance.

Inherent to all observational studies and clinical
trials with non-compliance is the issue of con-
founding or non-ignorable selection of the expo-
sure. If this issue is not taken into account, the
estimated effects of exposure on the outcome
can be biased and inconsistent, leading to spu-
rious results. Instrumental variables (IV) have
been used profusely in the literature to estimate
the effects of exposure on the outcome when un-
observed confounding is present or suspected.

An IV for the effect of exposure X on an out-
come Y is a pre-treatment variable Z that, given
a set of measured baseline covariates L, is (1) as-
sociated with X, but (2) associated with Y only
through X (i.e. not direct effect of Z on Y , also
known as exclusion restriction), and (3) inde-
pendent of any unmeasured confounding vari-
able U of the effects of X on Y (see Figure 1).
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Figure 1: A graph showing an instrumental variable Z, a
measured covariate L, an unmeasured confounding U , an
exposure X, and an outcome Y



The assumptions can also be given in term of
potential outcomes (see Neyman (1923), Rubin
(1978), or Robins (1986)). Let us define the po-
tential outcome Yxz as the value of the outcome
of interest had, possibly contrary to fact, Z been
set to z and X set to x by external intervention.
Likewise, Yx denotes the outcome had exposure
been set to x. L is a vector of measured baseline
covariates; the vector L will typically include
all measured confounders of the effects of Z on
(X,Y ) and for the effects of X on Y . Condi-
tions (1) to (3) can be expressed as: (1) non-null
association between X and Z i.e. X 6⊥ Z|L;
(2) exclusion restriction i.e. Yxz = Yx, almost
surely for all x, z and (3) independence of po-
tential outcomes and IV i.e. Yxz ⊥ Z|L, for all
x, z. The notation A ⊥ B|C indicates stochastic
independence between random variables A and
B given C.

From assumptions (2) and (3) we derive a rela-
tively weaker assumption, E(Y0|z, l) = E(Y0|l),
which plays an important role in parameter
identification.

Let W = (Z, L), we define SNMMs as

b(E(Yx|x,w))− b(E(Y0|x,w) = γ(x,w),

where b is the link function. The function b is
the identity, the log, and the logit function for,
respectively, the additive, multiplicative, and
logistic SNMMs. The contrast γ compares the
average potential outcomes under active and in-
active treatment values on a scale given by b, for
the subset of the population with (x,w). There-
fore, γ constitutes a conditional causal effect.

Robins (1994) establishes that assumptions (1)
to (3) do not suffice to nonparametrically iden-
tify γ in the case of the identity link. Robins and
Rotnitzky (2004) (hereafter RR) further show
that assumption (1) to (3) are likewise insuf-
ficient for identification for the logit link (see
also Richardson and Robins (2010) or Didelez,
Meng and Sheehan (2010)). Thus, to proceed,
we require an additional assumptions for identi-
fication (see RR): (4) γ(x,w) is restricted such
that it is identified. We let psi index such a

model γ(x,w) = γ(x,w;ψ). In the event that
X and Z are binary, Robins (1994) takes as as-
sumptions the ”no current treatment value in-
teraction” assumption: γ(x, z, l) = γ(x, l). He
shows that the function γ(x,w;ψ) is completely
identify in this case.

It is worth mentioning that the assumptions (4)
and (5) are not empirically verifiable. Vanstee-
landt and Goetghebeur (2005) study the viola-
tion of assumption (4). Alternative identifica-
tion conditions other than (4) and (5) are of
great interest and constitute an important re-
sarch topic. Richardson and Robins (2010) and
Richardson, Evans, and Robins (2011) elucidate
the issue of identification and provide studies of
the boundaries of the IV models. Here we as-
sume that the parametric model γ(x,w;ψ) is
correctly specified.

Treatment effects for additive and multiplica-
tive SNMMs can be estimated via G-estimation.
As shown by Robins, G-estimation is advanta-
geous as it avoids having to estimate the base-
line mean E(Y0|x,w) in order to estimate γ,
provided one can correctly specify a model for
the conditional density of Z given L. In ran-
domized experiments, this density is known by
design, in which case G-estimation is guaran-
teed to be consistent, in particular under the
null hypothesis. In general, G-estimators for
these models are consistent, asymptotically nor-
mal, and (can be) semi-parametrically efficient,
assuming at least correct model for Z (Robins
(1989, 1994) and RR). As we said previously,
Robins et al. (1999) and RR show that lo-
gistic SNMMs cannot be estimated with G-
estimation. Specifically, they show that it is
not possible to construct an estimator of γ that
is regular and asymptotically linear when the
density of Z is known, without also needing to
estimate the baseline mean E(Y0|x,w).

Vansteenlandt and Goetghebeur (2003) (here-
after VG) propose an ”association” model

logit{E(Y |x,w)} = m(x,w; η),

which they use together with a model for the IV



to estimate γ. However, when the association
model is not saturated, it can be uncongenial
(in the sense described by Meng (1994)) to the
logistic SNMM model i.e. the two models can
be incompatible or inconsistent (see RR, VG, or
Vansteenlandt et al. (2011)).

As an alternative, RR propose a different
parametrization based on the contrast

logitE(Y0|x,w)− logitE(Y0|x = 0, w) = q(x,w; η),

that is always guaranteed to be congenial. This
parametrization implies that

P (Y = 1|x,w) = γ(x,w) + q(x,w) +

b(E(Y0|x = 0, w)),

where v(w) = b(E(Y0|x = 0, w)) is the unique
solution to the integral equation

logit

∫
expit{q(x∗, w) + v(w)}dF (x∗|w)dx

= logit{E(Y0|l)} = t(l). (1)

This integral equation cannot be solved for v,
in closed form—for most choices of models for
q(x,w), f(x|w) and t(l)—except say when x is
binary (see RR or Vansteenlandt et al. (2011)).
Thus, a numerical optimization of the paramet-
ric likelihood for the joint density of the ob-
servables using the parametrization proposed
by RR involves solving numerically an integral
equation for each observed W = (Z,L), within
each iteration of the algorithm. Unfortunately,
when the exposure takes more than two values,
or is continuous or multivariate, RR approach
becomes computationally challenging, particu-
larly when the IV is continuous and there are
a large number of covariates L. This numeri-
cal drawback has impeded the widespread use
of this approach, despite its mathematical and
theoretical underpinning.

The purpose of this paper is to describe an al-
ternative strategy for estimating the parameters
of a logistic SNMM under assumptions (1) to
(3) using a novel parametrization. In order to

estimate the logistic SNMM, we propose a like-
lihood approach, and give a goodness-of-fit test,
that builds directly on the work of VG and RR.
The novelty of our approach is that, unlike VG
and similar to RR, we use a variation indepen-
dent congenial parametrization of the observed
data likelihood. However, unlike RR, our ap-
proach does not involve solving integral equa-
tions and is, therefore, readily implementable
regardless of the nature or the dimension of the
exposure, IV, and covariates.

In Section 2, we introduce the new parametriza-
tion and relate it to VG and RR, respectively.
In Section 3, we present some important prop-
erties of the proposed parametrization and pro-
vide a goodness-of-fit test for evaluating the
parametric assumptions of the fitted likelihood
model. Then, in Section 4, we run simulation
studies for both binary and continuous expo-
sure using continuous baseline covariates. We
also closely examine the performance of the
goodness-of-fit test. Finally, in Section 5, we
close with some final remarks.

2 New Parametrization

Using the notation of RR, suppose we observe
n independent and identically distributed copies
of the vector O = (L,X,Z, Y ) and we wish to
estimate the parameter ψ of the logistic SNMM

logitP (Yx = 1|x,w)− logitP (Y0 = 1|x,w)

= γ(x,w;ψ) (2)

under the assumption that Z is a valid IV.

The observed data likelihood factorizes as

fy(Y |X,W ;ψ)fx(X, fz(Z|L)fl(L)

= fy(YX |X,W ;ψ)fx(X, fz(Z|L)fl(L).

We write fy as

logitfy(1|x,w) = logitP (Yx = 1|x,w)

= logitP (Yx = 1|x,w)− logitP (Y0 = 1|x,w)

+ logitP (Y0 = 1|x,w)− logitP (Y0 = 1|x = 0, w)



+ logitP (Y0 = 1|x = 0, w)

= γ(x,w;ψ) + q(x,w) + v(w) (3)

where v(w) = logitP (Y0 = 1|x = 0, w) and

q(x,w) = logitP (Y0 = 1|x,w)

− logitP (Y0 = 1|x = 0, w).

The function q encodes the degree of unobserved
confounding and is sometimes referred to a se-
lection bias function. As RR point out, γ and
q are variation independent, but v is not a free
parameter as it must satisfy the restriction∫

P (Y0 = 1|x∗,w)dFx(x∗|w) = P (Y0 = 1|w).

= P (Y0 = 1|l) (4)

Let b = Φ−1 denote the logit link, let fx,0 and
fx be the densities of Fx,0 and Fx with respect
to a dominating measure µ, and consider t(l) =
Φ−1P (Y0 = 1|l), equation (4) becomes∫

Φ(q(x∗, w) + v(w))dFx(x∗|w) = Φ(t(l)).

Thus, v is a functional of q, Fx and t implicitly
defined by the integral equation (4) that must
be solved for each observation. Note that, as
mentioned by RR and unlike VG, equation (4)
guarantees congeniality.

Consider parametric models q(x,w; η), t(l;ω),
and Fx(x|w;α), the resulting observed data like-
lihood is given by

fy(Y |X,W ;ψ, η, α, ω)fx(X|W ;α)fz(Z|L)fl(L)

with logitfy(1|x,w;ψ, η, α, ω) satisfying (3).
This is the congenial parametrization of RR.

We now propose an alternative congenial
parametrization that obviates the need to
solve integral equation (4). To proceed,
note that v(w) = logitP (Y0 = 1|x = 0, w)=
− [logitP (Y0 = 1|w)− logitP (Y0 = 1|x = 0, w)]+
logitP (Y0 = 1|w). Further, recall that

logitP (Y0 = 1|w) = log
P (Y0 = 1|w)

P (Y0 = 0|w)
= log ODDS(w).

Define

q(w) = log

∫
exp[q(x,w; η)]dFx,0(x|w, Y0 = 0)

Since

ODDS(w) =

∫
ODDS(x,w)dFx,0(x|w, Y0 = 0)

=

∫
P (Y0 = 1|x,w)

P (Y0 = 0|x,w)
dFx,0(x|w, Y0 = 0),

with Fx,0(x|w, Y0 = 0) the CDF of X given W
and Y0 = 0, it follows that

v(w) = − [logitP (Y0 = 1|w)

− logitP (Y0 = 1|x = 0, w)] + logitP (Y0 = 1|w)

= − log

[
P (Y0 = 1|w)

1− P (Y0 = 1|w)

]
− log

[
1− P (Y0 = 1|x = 0, w)

P (Y0 = 1|x = 0, w)

]
+ t(l)

= − log

∫
ODDS(x,w)dFx,0(x|w, Y0 = 0)

+ log [ODDS(x = 0, w)] + t(l)

= − log

∫
ODDS(x,w)

ODDS(x = 0, w)
dFx,0(x|w, Y0 = 0) + t(l)

= − log

∫
exp[q(x,w; η)]dFx,0(x|w, Y0 = 0) + t(l)

= −q(w) + t(l).

Thus, logitfy(1|x,w) = γ(x,w;ψ) + q(x,w)

− q(w) + t(l). (5)

This means that in this new parametriza-
tion, we are free to choose models for q(x,w),
fx,0(x|w, Y0 = 0), and t(l). However, the den-
sity fx(x|w) is fully determined by the above
parameters according to the following expres-
sion

fx(x|w) = fx,0(x|w, Y0 = 0)P (Y0 = 0|w)+

fx,0(x|w, Y0 = 1)P (Y0 = 1|w)

= fx,0(x|w, Y0 = 0) (1− Φ(t(l)))+

fx,0(x|w, Y0 = 0) exp(q(x,w))∫
exp(q(x∗, w))dFx,0(x∗|w, Y0 = 0)

Φ(t(l))



i.e. fx(x|w) = fx,0(x|w, Y0 = 0) (1− Φ(t(l)))+

exp(q(x,w))

exp(q(w))
fx,0(x|w, Y0 = 0)Φ(t(l)) (6)

3 Characteristics of the New
Parametrization

In this section, we present some key results re-
lated to the proposed parametrization.

3.1 Integral Property

Theorem 1: Under assumptions (1) and (3)
and the proposed parametrization, we have∫

P (Y0 = 1|x∗, w)dFx(x∗|w) = P (Y0 = 1|w)

= P (Y0 = 1|l) ⇔∫
Φ(q(x∗, w)− q(w) + t(l))dFx(x∗|w) = Φ(t(l))

Proof: Consider the following representation
of the joint density of Y0 and X given W, (see
for example, Tchetgen Tchetgen, Robins, and
Rotnitzky (2010))

f(Y0 = y,X = x∗|w) = D−1
0 (w)P (Y0 = y|X = 0,

w)×OR0(x∗|w)yfx,0(x∗|Y0 = 0, w),

with

D0(w) =

∫ ∑
y∗

P (Y0 = y∗|x = 0, w)OR0(x∗|w)y
∗

×fx,0(x∗|Y0 = 0, w)dµ(x∗)

=
P (Y0 = 0|X = 0, w)

P (Y0 = 0|w)
, and

OR0(x|w) =
P (Y0 = 1|x,w)P (Y0 = 0|x = 0, w)

P (Y0 = 0|x,w)P (Y0 = 1|x = 0, w)
.

We have∫
P (Y0 = 1|x∗, w)dFx(x∗|w)=

∫
P (Y0 = 1, x∗|w)dµ(x∗)

= D−1
0 (w)

∫
P (Y0 = 1|x = 0, w)OR0(x∗|w)×

fx,0(x∗|Y0 = 0, w)dµ(x∗).

Thus,∫
P (Y0 = 1|x∗, w)dFx(x∗|w)

= D−1
1 (w)

∫
P (Y0 = 1|x = 0, w)

P (Y0 = 0|x = 0, w)
OR0(x∗|w)×

fx,0(x∗|Y0 = 0, w)dµ(x∗)

= D−1
1 (w)

∫
exp(q(x∗, w)− q(w) + t(l))×

fx,0(x∗|Y0 = 0, w)dµ(x∗) = Φ(t(l))

where

D1(w) =
∑
y

∫
P (Y0 = y|x = 0, w)

P (Y0 = 0|x = 0, w)
OR0(x∗|w)y

× fx,0(x∗|Y0 = 0, w)dµ(x∗)

= 1 +

∫
exp(q(x∗, w)− q(w) + t(l))×

fx,0(x∗|Y0 = 0, w)dµ(x∗)

Q.E.D.

3.2 Parameter Estimation

3.2.1 Maximum likelihood estimation

We construct the MLE of ψ using parametric
models

(1) fx,0(x|Y0 = 0, w;α)

(2) logitfy(1|x,w;ψ0, η, α, ω) = γ(x,w;ψ)

+ q(x,w; η)− q(h; η, α) + t(l, ω);

which gives

fx(x|w;α, ω, η)=fx,0(x|w, Y0 =0;α)(1−Φ(t(l;ω)))

+ exp(q(x∗, w)−q(w))fx,0(x|w, Y0 =0;α))Φ(t(l;ω)).

The resulting likelihood is given by:∏
i

fy(Yi|Xi, Zi, Li;ψ, η, α, ω)fx(Xi|Zi, Li;α, ω, η)×

fz(Z|L;κ)

The above likelihood can be maximized using
PROC NLMIXED in SAS or the optim function



in R. As opposed to the integral equation (1),
the integral

q(w) =

∫
exp[q(x,w; η)]dFx,0(x|w, Y0 = 0)+t(l)

is easy to implement numerically even when
there is no close for representation. In that case,
one can use Gauss-Hermite quadrature integral
approximation.

Note that the MLE of (ψ, η, α, ω) is uncorre-
lated with that of κ. In fact, we need not es-
timate the latter to obtain an estimate of the
former. This, in turn, implies that the MLE of
ψ cannot exploit any prior information about
fz such as the known randomization probability
in a randomized experiment. This is a notable
limitation of the likelihood approach. To rem-
edy this problem VG and RR propose methods
that are doubly robust under the sharp null hy-
pothesis, γ = 0, of no exposure causal effect by
explicitly using any knowledge about fz. RR, in
particular, propose to use an influence function
function of ψ for inference, which is endowed
with the above robustness property, but suf-
fers the same computational limitations as their
likelihood approach. An alternative approach
to the likelihood will be to solve RR estimating
equation using our parametrization.

3.2.2 Estimating Equation Based
Goodness-of-fit Test

RR characterize the class of influence functions
(see Tsiatis (2006) for a definition) for γ in the
semiparametric model where γ is assumed to
follow a parametric specification and the likeli-
hood is otherwise unrestricted. We use a scalar
function from this class to construct a semi-
parametric goodness-of-fit test for the likelihood
model. Let

M̂1 = γ(X,W ; ψ̂) + q(X,W ; η̂)

− q(W ; η̂, α̂) + t(L, ω̂),

M̂2 = q(X,W ; η̂)− q(W ; η̂, α̂) + t(L, ω̂)

where (ψ̂, η̂, α̂, ω̂) is the MLE obtained in the
previous section. Consider the goodness-of-fit

statistic Û = U(ψ̂, η̂, α̂, ω̂) = (Z − E(Z|L; κ̂))×[
Φ̂(M2)(1−Φ̂(M2))

Φ̂(M1)(1−Φ̂(M1))
(Y −Φ(M̂1))+Φ(M̂2)−Φ(t(L, ω̂))

]
.

Theorem 2: Under the null hypothesis that
the likelihood model is correclty specify, Φ(M̂1)
converges in probability to P (Y = 1|X,W ) and
we have

Ω ≤ E(U(ψ, η, α, ω)2)

with Ω the asymptotic variance of n1/2
∑
i Ûi.

Therefore, under H∗
0 , P (|T | > 1.96) converges

with increasing sample size to c ≤ 0.05, where

T =

∑
i Ûi√∑
i Ûi

2
(7)

Proof: RR has established that U is an influ-
ence function for γ in the semiparametric model
where only γ is parametric, and the rest of the
model is nonparametric. This, in turn, implies

that E
[
∂U(ψ0,η,α,ω)
∂(η,α,ω) |(η,α,ω)=(η0,α0,ω0)

]
= 0.

Hence, under the null hypothesis,
∑
i

Ûi ≈∑
i

{
Ui + E

[
∂U(ψ)

∂ψ
|ψ=ψ0

]
E
[
Seff

ψ S
effT
ψ

]−1

Seff

ψ,i

}
where Seff

ψ is the efficient score of ψ under our
parametric model. By a property of influence

functions, E
[
∂U(ψ)
∂ψ |ψ=ψ0

]
= −E

[
USeff

ψ

]
.

Thus, n−1/2
∑
i

Û ≈ n−1/2
∑
i

{
Ui − E

[
USeff

ψ

]
×E

[
Seff

ψ S
effT
ψ

]−1

Seff

ψ,i

}
and we have

E

[{
Ui − E

[
USeffT

ψ

]
E
[
Seff

ψ S
effT
ψ

]−1

Seff

ψ,i

}2
]

≤ E
{
U2
i

}
(8)

since E
[
USeffT

ψ

]
E
[
Seff

ψ S
effT
ψ

]−1

Seff

ψ,i is the or-

thogonal projection of U onto the span of Seff

ψ,i,
proving the first result. The second result fol-
lows from a standard application of Slutsky’s



theorem and the central limit theorem.
Q.E.D.

This is a useful result because it states that, as-
suming our model for γ and for the density of
Z given L is correctly specified, T is a valid test
statistic of the null hypothesis that the likeli-
hood model is correctly specified. Furthermore,
the theorem shows that the test statistic is eas-
ily computed without the need to compute the
exact variance of Û , which may be computa-
tionally demanding.

The advantage of using an influence function
to construct the GOF is that under the null hy-
pothesis that the likelihood model is correct, the
GOF statistic already accounts for the variabil-
ity associated with estimation of all nuisance
parameters. The theorem states, through equa-
tion (8), that further ignoring the variability

due to ψ̂ results in conservative GOF test. In
addition, the test is expected to be consistent—
against the alternative where we considered γ
is correct and only test the remainder of the
likelihood—since if the model is mis-specified,
we expect that E(U) 6= 0.

4 Simulation Study

In this section, we provide an algorithm to
generate data (W,X, Y ) following our proposed
parametrization, for binary and continuous ex-
posure.

For our simulations, we sample L = (L1, L2)
from independent bivariate normal or Bernoulli,
then generate Z binary from a logistic re-
gression fz(Z|L;κ). Let Φ(t(L, ω)) be a stan-
dard logistic regression with parameter ω and
fx,0(x|w, Y0 = 0;α) a logistic regression with
parameter α if X is binary or a normal den-
sity function if X is continuous. Let q(X,W ; η)
a simple model for the selection bias function,
say q(X,W ; η) = ηX. We generate X from the
density fx(Xi|Wi;α, ω, η) defined in (6) and Y
from the logistic regression model with event
probability Φ(γ(x,w;ψ)+q(x,w; η)−q(h; η, α)+

t(l, ω)), with a simple choice for the parametric
model γ(x,w;ψ0), say γ(x,w;ψ) = γx.

More precisely, we generated L1∼N(3, 1),
L2∼N(2, 1); Z∼Bernoulli(pz), logit(pz)=
κ0+ κ1L1+κ2L2 = −0.1+0.5L1+0.2L2; and
t(L)= ω0+ω1L1+ω2L2=−1+0.5L1+0.3L2. For
q(X,W )=ηX=−0.4X, we derive the marginal
distributions of X using (6). Finally, we gener-
ated the outcome such that Y∼Bernoulli(py),
with logit(py) = (1− 0.4)X − q̄(W ) + t(L).

Overall, we generated a total of 2000 data sets
of size n = 5000 and estimated the model pa-
rameters, the empirical type I error, and the
power of the goodness-of-fit (GOF) test at 5%
significant level i.e. the proportion of simulated
data sets for which |T | > 1.96. Models fitting
was performed using PROC NLMIXED in SAS.

4.1 Binary Exposure

Consider X|W ,Y0 = 0 ∼ Bernoulli(px0) with
logit(px0) = −0.4−0.3L1+0.3L2 + Z.

Let pt = Φ(t(L)). Using equations (6), one can

show that q̄(W ) = log

[
exp(logit(px1))

1 + exp(logit(px0))

]
and X∼Bernoulli(px), px = (1 − pt) × px0 +
pt × px1 where logit(px1) = logit(px0)− 0.4.

Table 1: Estimation Results: Binary Exposure

Parameter Bias MSE Coverage S.E.

ψ 0.002 0.102 0.96 0.319
η -0.004 0.106 0.95 0.326
α0 0.005 0.007 0.95 0.083
α1 -0.002 0.001 0.95 0.038
α2 -0.001 0.001 0.94 0.033
α3 0.001 0.003 0.95 0.054
ω0 0.006 0.031 0.96 0.177
ω1 0.000 0.002 0.95 0.041
ω2 -0.001 0.002 0.95 0.040
κ0 -0.001 0.004 0.95 0.065
κ1 0.000 0.001 0.94 0.032
κ2 0.001 0.000 0.95 0.030

Corresponding GOF test: Type I error = 0.01

In Table 1, we present estimation results for all



parameters and the goodness-of-fit (GOF) test
type I error. Estimation results show a good
performance of the likelihood method under our
proposed parametrization, with small bias and
good coverage probability. The goodness-of-fit
test rejects the null hypothesis less often and
thus has low power, which is not surprising since
we opted for a conservative variance estimate of
the goodness-of-fit statistic.

4.2 Continuous Exposure

Consider X|W ,Y0 = 0 ∼ N(µx0, σ
2) with µx0=

1−2L1+L2+3Z. We have q̄(W )=−0.4(µx0 −
0.2σ2) and show that X follows a mixture of
two normal distributions with density f(x) =
(1 − pt)f0x(x) + ptf1x(x) where, fkx(x) =

1√
2πσ2

exp

[
− (x− µ0x + 0.4kσ2)2

2σ2

]
.

Estimation results and the performance of the
GOF test are summarized in Table 2. Similar to
binary exposure, the MLE appears to perform
very well, but the GOF is quite conservative.

Table 2: Estimation Results: Cont. Exposure

Parameter Bias MSE Coverage S.E.

ψ 0.012 0.001 0.95 0.042
η 0.000 0.003 0.95 0.052
α0 0.000 0.004 0.94 0.062
α1 0.000 0.000 0.95 0.016
α2 0.000 0.000 0.95 0.014
α3 -0.001 0.002 0.94 0.042
ω0 0.003 0.029 0.94 0.172
ω1 0.000 0.005 0.95 0.073
ω2 0.002 0.003 0.95 0.054
κ0 -0.004 0.019 0.95 0.138
κ1 0.001 0.001 0.95 0.041
κ2 0.002 0.001 0.95 0.040
σ -0.001 0.000 0.95 0.010

Corresponding GOF test: Type I error = 0.039.

4.3 Power of the Goodness-of-fit Test

In addition to the type I error, we also as-
sessed the power of the GOF to detect the pres-
ence of model mis-specification for various de-

partures from the assumed likelihood model.
The results, presented in Table 3, show that
the goodness-of-fit test has moderate to high
power to detect certain forms of model mis-
specification for both binary and continuous ex-
posures.

Table 3: Goodness-of-fit Test: Power

Misspecified Missing Parameter
Model covariates a Values a Power

(1) Binary Exposure

q(X,Z,L)
X2 1.5 0.15

Z, X×Z -0.6, 1.5 0.41

t(L)
L2

2 1.5 0.40
L1×L2 0.7 0.03
L2 1.5 0.89

(2) Continuous Exposure

q(X,Z,L)
X2 -0.4 0.95

Z, X×Z 0.6, -1.5 0.62

t(L)
L2

2 0.6 0.43
L1×L2 0.6 0.06
L2 0.6 0.14

a Covariates (with corresponding parameter val-
ues) used in the generated model, but omitted
in the fitted model.

5 Conclusion

In this paper, we presented a new parametriza-
tion for a logistic SNMM for a binary outcome
and we proposed a corresponding maximum
likelihood approach for estimation. Our ap-
proach builds upon the theoretical frameworks
of VG and RR. Unlike VG, and similar to RR,
our approach is guaranteed to always be conge-
nial. However, unlike RR, we obviate the need
to numerically solve an integral equation, which
can be computationally cumbersome and is not
easily scalable with the dimension of the expo-
sure X. In addition, a key attraction of our
approach is that it is readily implemented us-
ing standard statistical software. Our simula-
tion results confirm the good performance of the
proposed approach.



We also proposed a GOF test for the likelihood
model, which is normal with mean zero only if
the likelihood is correctly specified. The GOF
statistic is based on an influence function for γ
in a model where the likelihood is otherwise un-
restricted, and therefore, the statistic naturally
accounts for variability of all unknown parame-
ters under the null of no model misspecification.

Our simulations showed that the proposed GOF
is quite conservative in the settings we consid-
ered. Furthermore, the power of the test statis-
tic to detect certain departures from the as-
sumed model was either moderate or high, ex-
cept for two exceptions. The poor performance
of the GOF for these two cases may be a reflec-
tion of the conservative variance used to stan-
dardize the statistic. The main advantage of the
current GOF is in the simplicity of the proposed
standardization, however it appears to some-
times be overly conservative. In future work,
we plan to further study the performance of the
GOF statistic when standardized by a consis-
tent estimator of its variance, which was not
considered in the foregoing.

The method described here assumes random
sample, as a straightforward extension will be to
use inverse-probability weighting (IPW) using
weihgts of selecting into a case-control study,
which is well-known by design. However, this
approach may be potentially efficient. More ef-
ficient methods for case-control studies similar
to the one we proposed here will be discussed
elsewhere.
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