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Confounding and Instrumental Variable (IV)

In observational study or in clinical trial with non-compliance, treatment
assignment is not completely under the control of the investigators;

Confounding or non-ignorable selection of treatment may lead to spurious
estimate of the treatment effect, providing biased and inconsistent results;

IV study designs have been used abundantly to estimate treatment effect
when confounding is present or suspected.

In terms of potential outcomes, an IV for the effect of X on Y is a variable Z
s. t. (1) X 6⊥ Z ; (2) Yxz = Yx a. s. ∀ x , z ; and (3) Yxz ⊥ Z |L, ∀ x , z .

Y

L U

XZ

Figure 1: A graph showing an instrumental variable Z , a measured covariate L, an unmeasured confounding
U, an exposure X , and an outcome Y .
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G-estimation and SNMMs

G-estimation and SNMMs: introduced by Robins (1989, 1994) to infer
causality in studies where confounding might be an issue;

G-estimation is a semiparametric method to estimate parameters in SNMMs.

Let b = link function; we define SNMMs as

b(E (Yx |x , z , l))− b(E (Y0|x , z , l) = γ(x , z , l).

b =id, log, and logit for, resp., additive, multiplicative, and logistic SNMMs.

The contrast γ is a conditional causal effect: compares the average potential
outcomes under active and inactive trt values on a scale given by b for the
subset of the population with x , z , l .
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Identification

IV assumptions (1) to (3) not sufficient to identify γ nonparametrically when
b =id, log, or logit (Robins (1994), Robins and Rotnitzky (2004)).

Additional assumption is required: (4) γ(x , z , l) is restricted i.e.
γ(x , z , l) = γ(x , z , l ;ψ) s.t. it is identified under assumptions (1) to (3).

For logistic SNMMs i.e. when b =logit,

Vansteelandt and Goetghebeur (2005) study impact of violations of (4) ;

Alternative identification conditions other than (4) are of great interest and
are an ongoing research topic (Tchetgen Tcheten and Vansteelandt (2013));

Richardson and Robins (2010), Richardson et al. (2011) elucidate the issue of
identification and conduct a careful analysis for a binary IV model.

Throughout this presentation, we will assume that the parametric model
γ(x , z , l ;ψ) is correctly specified, with unkown ψ to be estimated.
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Back to G-estimation

Under assumptions (1) to (4) trt effects for additive and multiplicative
SNMMs can be estimated via G-estimation (Robins (1984, 1994) and RR);

Logistic SNMMs cannot be estimated with G-estimation (VG, RR);

VG propose an “association” model logitE (Y |x , z , l) = m(x , z , l ; η), which is
used together with a model for the IV to estimate γ.

Caveat: the association model must be saturated. A non-saturated
association model implies further identifying assumptions that may be
incompatible with the logistic SNMM model (a. k. a. uncongeniality.)
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Robins and Rotnitzky’s Parametrization

Robins and Rotnitzky (2004) propose a parametrization based on the contrast

logitE (Y0|x , z , l)− logitE (Y0|x = 0, z , l) = q(x , z , l ; η)

which is always guaranteed to be congenial. This parametrization is such that

logitP(Y = 1|x , z , l) = γ(x , z , l) + q(x , z , l) + v(z , l),

with v(z , l)= logit(E (Y0|x = 0, z , l)) the unique solution to the integral equation

logit

∫
expit{q(x∗, z , l) + v(z , l)}dF (x∗|z , l) = logit{E (Y0|l)} = t(l).

� Integral equation must be solved for v , for each observation. Unfortunately, it
can’t be solved in closed form for most choices of q,Fx and t, except for few
cases (e.g. X is binary)
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RR’s Parametrization: Numerical Optimization

Integral equation can’t be solved in closed form for most choices of q,Fx and t.

Numerical optimization of the likelihood for the joint density of the observables
using the parametrization proposed by RR involves solving numerically an integral
equation for each observed (Z, L), within each iteration of the algorithm.

If the trt X takes more than 2 values, is continuous or multivariate, this
approach becomes computationally challenging; particularly when:

Z is a continuous IV;
there are a large number of covariates L

These numerical drawbacks have impeded the widespread use of this
approach despite its mathematical and theoretical underpinning.
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So What Do We Propose?

A new parametrization and relate it to VG and RR. This parametrization

is congenial and circumvents computational complexity of RR’s
parametrization;
provides MLE of the joint density of observables, using standard softwares L

A goodness-of-fit test statistic evaluating certain parametric assumptions of
the fitted likelihood model

A simulation study to illustrate our method and provide some insights about
our approach
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New Parametrization

As in RR, we consider the congenial parametrization

logitP(Y = 1|x , z, l) = logitfy (1|x , z, l) = γ(x ,w ;ψ) + q(x , z, l) + v(z, l)

where v(z, l) = logitP(Y0 = 1|x = 0, z, l))

= − [logitP(Y0 = 1|z, l)− logitP(Y0 = 1|x = 0, z, l)] + logitP(Y0 = 1|z, l)

= log

»
P(Y0 = 1|z, l)

1− P(Y0 = 1|z, l)

–
− log

»
1− P(Y0 = 1|x = 0, z, l)

P(Y0 = 1|x = 0, z, l)

–
+ t(l).

Since

ODDS(z, l)=

Z
ODDS(x , z, l)dFx,0(x |w ,Y0 =0)=

Z
P(Y0 =1|x , z, l)
P(Y0 =0|x , z, l)

dFx,0(x |w ,Y0 =0)

with Fx,0(x |w ,Y0 =0) the CDF of X given Z , L and Y0 = 0, it follows that

v(w) = − log

Z
ODDS(x , z, l)dFx,0(x |w ,Y0 =0) + log [ODDS(x = 0, z, l)] + t(l)

= − log

Z
ODDS(x ,w)

ODDS(x = 0,w)
dFx,0(x |w ,Y0 =0) + t(l) = − log

Z
exp[q(x ,w ; η)]dFx,0 + t(l)

= −q(z, l) + t(l).

Thus, logitfy (1|x , z , l) = γ(x ,w ;ψ) + q(x , z , l)− q(z , l) + t(l)
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New Parametrization (Continued)

The observed data likelihood factorizes as fy (YX |X ,W ;ψ)fx(X |W )fz(Z |L)fl(L)

The result

logitfy (1|x , z , l) = γ(x ,w ;ψ) + q(x , z , l)− q(z , l) + t(l)

means that we are free to choose (parametric) models for q(x ,w ; η), t(l ;ω), and

fx,0(x |w ,Y0 =0;α). However, the distribution of the exposure X is given by

fx(x |z , l) = fx,0(x |z , l ,Y0 = 0)P(Y0 = 0|z , l) + fx,0(x |z , l ,Y0 = 1)P(Y0 = 1|z , l)

= fx,0(x |z , l ,Y0 =0)

[
(1−Φ(t(l)) +

exp(q(x , z , l))

exp(q(z , l))
Φ(t(l))

]
,

where Φ(u) = b−1(u) = 1/(1 + exp(−u)).
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Maximum Likelihood Estimation

The resulting MLE is given by∏
i

fy (Yi |Xi ,Zi , Li ;ψ, η, α, ω)fx(Xi |Zi , Li ;α, ω, η)fz(Z |L;κ)

The above likelihood can be maximized using standard softwares such as
PROC NLMIXED in SAS or the optim function in R.

Even if the choice of the models does not permit a closed form expression for
the integral

q(z , l) =

∫
exp[q(x , z , l ; η)]dFx,0(x |z , l ,Y0 = 0),

it can still be estimated using Gauss-Hermite quadrature integral
approximation (see Liu and Pierce (1985))
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Goodness-of-fit Test Statistic

RR characterize the set of influence functions for γ for the semiparametric model

defined by the assumptions (1) to (4). We use a scalar function from this set to

construct a semiparametric GOF test statistic for the likelihood model. LetbM1 = γ(X ,Z , L; bψ) + q(X ,Z , L; bη)q(Z , L; bη, bα) + t(L, bω),bM2 = q(X ,Z , L; bη)− q(Z , L; bη, bα) + t(L, bω)

where (ψ̂, η̂, α̂, ω̂) is the MLE obtained in the previous section.

The GOF test statistic is given by

T =

∑
i Ûi√∑
i Ûi

2

where bU = (Z − E(Z |L; bκ))

" bΦ(M2)(1−bΦ(M2))bΦ(M1)(1−bΦ(M1))
(Y−Φ( bM1))+Φ( bM2)Φ(t(L, bω))

#
.
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Simulated Data

L = (L1, L2) s.t. L1∼N(3, 1), L2∼N(2, 1)

Z∼Bernoulli(pz), logit(pz)= κ0+ κ1L1+ κ2L2 = −0.1+0.5L1+ 0.2L2.

pt = b−1(t(L, ω)), logit(pt) =ω0+ω1L1+ω2L2=−1+0.5L1+0.3L2

q(X ,Z , L; η) = ηX = −0.4X .

X |Z , L,Y0 = 0 ∼ Bernoulli(px0), logit (px0) = −0.4−0.3L1+0.3L2 + Z .

X∼Bernoulli(px), px = (1− pt)px0 + ptpx1 and logit(px1) = logit(px0)− 0.4.

X |W , Y0 =0 ∼ N(µx0, σ
2) with µx0= 1−2L1+L2+3Z .

X∼(1− pt)N(µx0, σ
2) + ptN(µx0 − 0.4σ2, σ2).

Y∼Bernoulli(py ), logit(py ) = (1− 0.4)X − q̄(Z , L) + t(L),
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Parameter Estimates

Table 1: Results: Binary Exposure

MLE Bias MSE Coverage S.E.

ψ 0.002 0.102 0.96 0.319
η -0.004 0.106 0.95 0.326
α0 0.005 0.007 0.95 0.083
α1 -0.002 0.001 0.95 0.038
α2 -0.001 0.001 0.94 0.033
α3 0.001 0.003 0.95 0.054
ω0 0.006 0.031 0.96 0.177
ω1 0.000 0.002 0.95 0.041
ω2 -0.001 0.002 0.95 0.040
κ0 -0.001 0.004 0.95 0.065
κ1 0.000 0.001 0.94 0.032
κ2 0.001 0.000 0.95 0.030

GOF test: Type I error = 0.01

Table 2: Results: Continuous Exposure

MLE Bias MSE Coverage S.E.

ψ 0.012 0.001 0.95 0.042
η 0.000 0.003 0.95 0.052
α0 0.000 0.004 0.94 0.062
α1 0.000 0.000 0.95 0.016
α2 0.000 0.000 0.95 0.014
α3 -0.001 0.002 0.94 0.042
ω0 0.003 0.029 0.94 0.172
ω1 0.000 0.005 0.95 0.073
ω2 0.002 0.003 0.95 0.054
κ0 -0.004 0.019 0.95 0.138
κ1 0.001 0.001 0.95 0.041
κ2 0.002 0.001 0.95 0.040
σ -0.001 0.000 0.95 0.010

GOF test: Type I error = 0.039.
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Power of Goodness-of-fit Test Statistic

Table 3: Goodness-of-fit Test: Power

Misspecified Missing Parameter
Model covariates a Values a Power

(1) Binary Exposure

q(X , Z , L)
X 2 1.5 0.15

Z , X×Z -0.6, 1.5 0.41

t(L)
L2

2 1.5 0.40
L1×L2 0.7 0.03

L2 1.5 0.89

(2) Continuous Exposure

q(X , Z , L)
X 2 -0.4 0.95

Z , X×Z 0.6, -1.5 0.62

t(L)
L2

2 0.6 0.43
L1×L2 0.6 0.06

L2 0.6 0.14

a Covariates used in the generated model, but
omitted in the fitted model.
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Summary

We have proposed a new parametrization for logistic SNMMs, presented a
corresponding MLE approach, and a GOF test statistic

Our approach builds upon the theoretical frameworks of VG and RR. Unlike
VG, but similar to RR, our approach is guaranteed to always be congenial

Unlike RR we obviate the need to solve numerically an integral equation,
which can be computationally cumbersome and is not easily scalable with the
dimension of the exposure.

Our approach is readily implemented using standard statistical softwares.
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Thank You!

Roland Matsouaka

rmatsoua@hsph.harvard.edu
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