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» Relational d-separation

» The RCD algorithm



Bayesian networks and i.i.d. data
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Bayesian networks and i.i.d. data

Instance independence
The variables on any data instance are
marginally independent
of all variables on every other data instance




Bayesian networks and i.i.d. data

Ground graph

P“?\

Employee 1
Model

O instantiate
) Employee 2
3
2

3

QO) n Employee 3
Employee

Employee n Q




Bayesian networks and i.i.d. data

Identically distributed

The same variable on every data instance is drawn
from the same
underlying conditional distribution




Bayesian networks and i.i.d. data
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Bayesian networks and i.i.d. data

Ground graph
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Relational models and non-i.i.d. data

Ground graph
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Focus on directed graphical models of relational data to represent
causal dependencies (e.g., PRMs, DAPER models, plate models).

[Getoor, Friedman, Koller, Pfeffer & Taskar 2007; Heckerman, Meek & Koller 2007;
Buntine 1994; Gilks, Thomas & Spiegelhalter et al. 1994]
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Examples of relational data

Scholarly publishing

- Researchers, articles, citations, venues

Epidemiology

- Individuals, contagions, treatments, interactions

Sports
- Athletes, teams, coaches, referees, competitive interactions

Neuroscience
- Molecular, cellular, system, cognitive levels

Movie industry
- Movies, actors, directors, studios, critic reviews

Organizations
- Employees, products, business units

19



Relational models generalize other classes of models

» Bayesian networks
[Pearl 2000; Spirtes et al. 2000]

» Models of interference / spillover | |
effects / violations of SUTVA

[Rosenbaum 2007; Hudgens & Halloran 2008;
Manski 2010; Tchetgen Tchetgen & VanderWeele 2012]

é

» Models of networks
(e.g., p1, p*, ERGMs)

[Holland & Leinhardt 1981; Snijders 2002;
Robins et al. 2007]

» Multilevel / hierarchical / random

effects models
[Gelman & Hill 2007]
Leve|1
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Overview of template models

add dependencies

Schema ——— Model

Instantiate l l instantiate

add dependencies

Skeleton — Ground graph
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Bayesian networks as template models

Schema Model
add
dependencies
C__ Salary . C__ salary 3

instantiate instantiate

add

dependencies
—_—

Skeleton Ground graph
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Relational models as template models

Schema add Model

PRODUCT

instantiate instantiate

add

dependencies
S ’

Skeleton Ground graph
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Relational schemas

A relational schema describes what relational data exist

» Expected types of items
» Expected attributes
» How often entities can participate in relationships

C__ Salary __ Budget
= ; c

[Heckerman et al. 2007]
28



Relational schemas

A relational schema describes what relational data exist

» Expected types of items
» Expected attributes
» How often entities can participate in relationships

entity classes

= RS — B
N/

relationship classes

Budget

Revenue

[Heckerman et al. 2007]
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Relational schemas

A relational schema describes what relational data exist

» Expected types of items
» Expected attributes
» How often entities can participate in relationships

attribute classe

C__ Salary __ Budget

Competence Revenue

[Heckerman et al. 2007]
28



Relational schemas

A relational schema describes what relational data exist

» Expected types of items
» Expected attributes
» How often entities can participate in relationships

Competence ~ ° ' Revenue

cardinality constraints

[Heckerman et al. 2007]
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Relational skeletons

A relational skeleton is an instantiated relational schema

» Set of entity and relationship instances
» Adheres to cardinality constraints

9D
Q
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Revenue

Revenue

[Heckerman et al. 2007]



Relational paths

A relational path is an alternating sequence of entity and

relationship classes
» Specifies how to get from one type of item to another
» Building blocks for relational variables
» Length limited by domain-specific, user-defined hop threshold
» Base item on path has the special designation of perspective

An employee’s [Employee, Develops, Product]

developed products
(2 hops)

An employee’s [Employee, Develops, Product, Funds, Business-Unit]

funding business units
(4 hops)

An employee’s [Employee, Develops, Product, Develops, Employee]

co-workers -
(4 hops)

30




Terminal sets of relational paths

The set of terminal items reached by a particular base
item instance via a relational path on a relational skeleton
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Terminal sets of relational paths

The set of terminal items reached by a particular base
item instance via a relational path on a relational skeleton

2.

Revenue

Revenue

[Employee, Develops, Product]|roger = {Laptop}



Terminal sets of relational paths

The set of terminal items reached by a particular base
item instance via a relational path on a relational skeleton

Budget

Revenue

C_Competence §3

Revenue

[Employee, Develops, Product, Funds, Business-Unit]|roger = {Devices}



Terminal sets of relational paths

The set of terminal items reached by a particular base
item instance via a relational path on a relational skeleton

2.

Revenue

C_Competence §3

Revenue

[Employee, Develops, Product, Develops, Employee]|roger = {Quinn, Sally}



Relational variables and their terminal sets

Relational variables attach an attribute to a relational path
» Building blocks for relational dependencies

Instantiations are sets of random variable instances for a
particular base item instance
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Revenue

Revenue

[Employee].Competence|roger = {Roger.Competence}
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Relational variables and their terminal sets

Relational variables attach an attribute to a relational path
» Building blocks for relational dependencies

Instantiations are sets of random variable instances for a
particular base item instance

Revenue

C_Competence

Revenue

[Employee, Develops, Product].Success|roger = {Laptop.Success}



Relational variables and their terminal sets

Relational variables attach an attribute to a relational path
» Building blocks for relational dependencies

Instantiations are sets of random variable instances for a
particular base item instance

Budget

Revenue

Revenue

[Employee, Develops, Product, Funds, Business-Unit].Revenue|roger =
{Devices.Revenue}
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Relational variables and their terminal sets

Relational variables attach an attribute to a relational path
» Building blocks for relational dependencies

Instantiations are sets of random variable instances for a
particular base item instance

C_Salary

DEVELOPS

Revenue

C_Competencgt 2

[Employee, Develops, Product, Develops, Employee].Salary|roger =
{Quinn.Salary, Sally.Salary}
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Relational dependencies and models

A relational dependency combines a pair of relational

variables with a common perspective

» Referred to as treatment/outcome, cause/effect, parent/child
» Canonical form has singleton outcome path
» Building blocks for relational models

A relational model is a collection of relational
dependencies defined over a relational schema

C__ Salary 2 Budget
S_Success_2 1>

PRODUCT

[EMPLOYEE].Competence —» [EMPLOYEE].Salary
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Relational dependencies and models

A relational dependency combines a pair of relational

variables with a common perspective
» Referred to as treatment/outcome, cause/effect, parent/child

» Canonical form has singleton outcome path
» Building blocks for relational models
A relational model is a collection of relational

dependencies defined over a relational schema

C__ Salary Budget
: C_Success 2

PRODUCT

[BUSINESS-UNIT].Revenue —p [BUSINESS-UNIT].Budget
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Relational dependencies and models

A relational dependency combines a pair of relational

variables with a common perspective
» Referred to as treatment/outcome, cause/effect, parent/child

» Canonical form has singleton outcome path
» Building blocks for relational models
A relational model is a collection of relational

dependencies defined over a relational schema

Budget

Success D Revenue

PRODUCT

[PRODUCT, DEVELOPS, EMPLOYEE].Competence — [PRODUCT].Success
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Relational dependencies and models

A relational dependency combines a pair of relational

variables with a common perspective

» Referred to as treatment/outcome, cause/effect, parent/child
» Canonical form has singleton outcome path
» Building blocks for relational models

A relational model is a collection of relational
dependencies defined over a relational schema

Salary >
Competence

EMPLOYEE

Budget

[BUSINESS-UNIT, FUNDS, PRODUCT].Success —p [BUSINESS-UNIT].Revenue
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Relational dependencies and models

A relational dependency combines a pair of relational

variables with a common perspective
» Referred to as treatment/outcome, cause/effect, parent/child

» Canonical form has singleton outcome path
» Building blocks for relational models
A relational model is a collection of relational

dependencies defined over a relational schema

Salary ‘— P —
EMPLOYEE PRODUCT

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Budget —» [EMPLOYEE].Salary
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Ground graphs

A ground graph is an instantiated relational model for a

given relational skeleton
» Applies relational dependencies to the variable instances
governed by a relational skeleton
» Connects the terminal sets of the parent relational variable to
the terminal set of the child relational variable

C_Salary 3

——— CSuccess 3 C Success 2

%
g
2
w
i
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Revenue

Revenue



Ground graphs

A ground graph is an instantiated relational model for a
given relational skeleton

» Applies relational dependencies to the variable instances
governed by a relational skeleton

» Connects the terminal sets of the parent relational variable to
the terminal set of the child relational variable

Budget
Sucoess S

PRODUCT

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Budget — [EMPLOYEE].Salary
[EMPLOYEE].Competence —» [EMPLOYEE].Salary
[PRODUCT, DEVELOPS, EMPLOYEE].Competence —®» [PRODUCT].Success
[BUSINESS-UNIT, FUNDS, PRODUCT].Success —» [BUSINESS-UNIT].Revenue
[BUSINESS-UNIT].Revenue —» [BUSINESS-UNIT].Budget

44



Ground graphs

A ground graph is an instantiated relational model for a

given relational skeleton
» Applies relational dependencies to the variable instances
governed by a relational skeleton
» Connects the terminal sets of the parent relational variable to
the terminal set of the child relational variable

C_Salary_J
>
=

C_Success 3

A

Budget

Revenue



Probabilistic semantics of ground graphs

Paul Competence
\ /@nn .Competence

Case Success

Adapter Success
Accessorles Revenue

@GSSOI‘IGS Bud@

C Paul.Salary D

@enCompete@ @Ily.CompetenD

Thomas.Competence

Laptop.Success

Smartphone.Suc@

Devices.Revenue

< Devices.Budget
(Roger.Salary (Sally.Salary) Thomas.SaIaD

» If a ground graph is acyclic, then it has a coherent joint
orobability distribution

Quinn.Salary

» If a relational model is acyclic, then any ground graph is
aCYCIiC [Getoor 2001]
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Probabilistic semantics of ground graphs

<Sa|ly.8alary>

P(V) = H P(v | parents(v)) Independent instance

vey
P(GG o) = H H P(v; | parents(v;)) Set of independent instances
VeV ico(I) (ground graph of a Bayesian network)

P(GG pmo) = H H H P(i.X | parents(i.X))

T€eEUR X e A(I) ico(I) Ground graph of a relational model
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Summary of relational concepts

Relational paths
compose
relational variables
compose
relational dependencies
compose
relational models
(all constrained by a relational schema),
which applied to a relational skeleton
produces a ground graph.

Concepts underlie the theory of relational d-separation and support
the algorithmic details of the relational causal discovery algorithm.
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Questions?
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Topics

» Relational d-separation

» The RCD algorithm
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Why is d-separation useful?

Grounded in theory—Equivalent to global Markov
condition

Algorithmic—Simple set of graphical rules for
derivation of conditional independence facts

Sound and complete—Produces model implications
that hold for all possible model instantiations

Enables constraint-based learning—Algorithms can
leverage the connection between causal structure and
conditional independence

51



d-separation and ground graphs

X111Y1| {V1}
O O i
X211Y2| {V2}
00
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X1 Y[{V}
XUW]|{V}
Xn_LLYn| {Vn}

(o
(Vo ls(v )] Xn_l Whn| {Vn}
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d-separation applied to relational models

Competence Revenue

[PRODUCT, DEVELOPS, EMPLOYEE].Competence — [PRODUCT].Success [BUSINESS-UNIT, FUNDS, PRODUCT].Success — [BUSINESS-UNIT].Revenue
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d-separation applied to relational models

@mpetenﬂsucces/\RevenueD

Competence > || < Revenue > ‘ { CSUCCGSS)}
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d-separation applied to relational models

mpeten
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d-separation applied to relational models

Revenue
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d-separation applied to relational models

Ay

Revenue
Competence

[Employee].Competence J_|_ [Employee, Product, Business-Unit].Revenue |

{ [Employee, Product].Success, [Employee, Product, Employee].Competence }
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Towards a theory of d-separation for relational models

» Why not test for d-separation at the mode/ level?

- Relational d-connecting paths that are only manifest in
ground graphs.

» Why not test for d-separation on ground graphs?

- Impractical to have tests on a representation that scales with
sample size (ground graphs can be arbitrarily large).

- A ground graph is a single data sample from all represented
skeletons and distributions of a relational model.
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Defining relational d-separation

Let X, Y, Z be distinct sets of relational variables
for perspective B € £ UR for relational schema S.

For relational model M, X and Y are d-separated by Z

if and only if(for any skeleton 7,)X], and Y], are
d-separated by Z|, in ground graph GG | for all b € o(B).

all possible ground graphs  all instances

...which suggests we need a representation that abstracts
over all possible ground graphs.
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Defining abstract ground graphs

An abstract ground graph AGGar = (V, F)
for relational model M = (S, D), perspective B € £ UR,
and hop threshold h € NY abstracts dependencies D
for all possible ground graphs GG o, 0of M for all skeletons o.

Abstract ground graphs capture all possible paths of
dependence with two primary innovations:

(1) Dependencies are translated across all perspectives

(2) Intersection variables are explicitly represented for pairs
of relational variables that may intersect in some skeleton

57




Abstract ground graphs abstract ground graphs

» Lifted representation: Lies between the model level and the
ground graph level.

» Data-free: Constructed with knowledge of only the model
structure (M), a single perspective (B), and a hop threshold (h).

» Sound and complete: (1) Every dependency in the abstract ground
graph exists in some ground graph and (2) any dependency in any
ground graph exists in the abstract ground graph.

» Generalizes Bayesian networks: For schemas with a single entity
class, the abstract ground graph is equivalent to the model.
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Constructing abstract ground graphs

Competence Revenue

[PRODUCT, DEVELOPS, EMPLOYEE].Competence —# [PRODUCT].Success [BUSINESS-UNIT, FUNDS, PRODUCT].Success —» [BUSINESS-UNIT].Revenue

EMPLOYEE perspective hop threshold h = 6

[EMPLOYEE, PRODUCT, BUSINESS-UNIT, PRODUCT]. Success >

[EMPLOYEE]. Competence )——~CJEMPLOYEE, PRODUCT]. Succ@%PLOYEE, PRODUCT, BUSINESS-UNIT]. Revenue >

[EMPLOYEE, PRODUCT, EMPLOYEE, PRODUCT]. Success
C{EMPLOYEE, PRODUCT, EMPLOYEE]. Competence M
\ EMPLOYEE, PRODUCT, BUSINESS-UNIT, PRODUCT]. Success

[EMPLOYEE, PRODUCT, EMPLOYEE, PRODUCT]. Success >
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Intersecting terminal sets of relational paths

DEVELOFE

Revenue

C_Competence _§

[Employee, Product, Employee, Product]|roger = {Case, Adapter, Tablet}
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Intersecting terminal sets of relational paths

[Employee, Product, Employee, Product]|roger = {Case, Adapter, Tablet}

[Employee, Product, Business-Unit, Product]|roger = {Tablet, Smartphone}
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Intersecting terminal sets of relational paths

%)
Q
9
g
Q

Revenue

Competence
Revenue

[Employee, Product, Employee, Product]|roger = {Case, Adapter, Tablet}
N

[Employee, Product, Business-Unit, Product]|roger = {Tablet, Smartphone}
= {Tablet}
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Intersecting terminal sets of relational paths

@LOYEE PRODUCT, EMPLOYEE]. Competence >

[EMPLOYEE, PRODUCT]. Succ@ \

[EMPLOYEE, PRODUCT, EMPLOYEE PRODUCT]. Success
EMPLOYEE, PRODUCT, BUSlNESS UNIT, PRODUCT]. Success

[EMPLOYEE]. Competence
Ce 1. Competence [EMPLOYEE, PRODUCT, BUSINESS-UNIT]. Revenue >

AN

Revenue
Competence
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d-separation on abstract ground graphs

Given a query:
Is X d-separated from Y given Z7

Answer by checking:
Is X d-separated from Y given Z?

on the abstract ground graph for the common perspective,
where the augmented sets include subsumed intersection variables

» Because abstract ground graphs capture all paths of dependence,
it suffices to check if all pairwise elements in X and Y are

d-separated by Z.

» Reflects all dependency paths for any possible variable instance
pair in any ground graph represented by the abstract ground graph
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Relational d-separation is sound and complete

Proof sketch

(1) d-separation for DAGs is
sound [Verma & Pearl| 1988] and Complete [Geiger & Pearl 1988]

(2) Abstract ground graphs are directed and acyclic

(3) Abstract ground graphs are sound and complete

(4) Abstract ground graph completeness =

Relational d-separation soundness

(5) Abstract ground graph soundness =

Relational d-separation completeness

Valid up to a specified hop threshold h
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Naively applying d-separation is frequently incorrect

Synthetic generation:
Schemas: | Entity classes | e [1, 4]

Models: | Dependencies| e [1, 10]
3.6 million pairs of relational variables

UNREPRESENTABLE (56%) REPRESENTABLE (44%)

Unrepresentable: Either the treatment or outcome relational path
includes an item class more than once.

E.g, [Employee, Develops, Product, Develops, Employee]
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Naively applying d-separation is frequently incorrect

UNREPRESENTABLE (56%) REPRESENTABLE (44%)

-—

-—
-—
-—
-—
-—
-—
-—
-—
-—
-—
-—
-—
-—
-—
-—
-
-—
-—
-—
——
e

bEp. |COND
MARGINALLY INDEPENDENT (82%) (9,,/)' IND.
71 (9%)

Most representable queries are marginally independent because
the total dependencies varies from | to |5.
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Naively applying d-separation is frequently incorrect

UNREPRESENTABLE (56%) REPRESENTABLE (44%)

DEP COND
MARGINALLY INDEPENDENT (82%) | IND.
(9%)
(9%)
e e .\Ik‘(\I-}}{\ﬂ1 \%\f\liﬁi{ \L‘\I‘(,HI

o

Dependencies: 5 10 1 5 10 1 5 10 1 5 10
Entities: 1 2 3 4

Frequency of
equivalence
0.5
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Future work

» Include deterministic/functional dependencies
(D-separation)

» Reason about models of entity and relationship
existence

» Develop the implications of relational d-separation and
abstract ground graphs (next—the RCD algorithm!)
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Questions?
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Topics

v Background on relational data and models

v Relational d-separation

» The RCD algorithm
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The PC algorithm is sound and complete

propositional PC algorithm conditional
data learns independencies

l

Markov equivalence class
[Meek 1995]
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Relational analog

() (@}

1 © { )

A ©- i}
i oL@

relational RCD algorithm conditional
data learns independencies

Markov equivalence class
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Abstract ground graphs enable new constraints

[MOVIE, STARS-IN, ACTOR].Popularity — [MOVIE].Success

ACTOR and MOVIE perspectives l hop threshold h = 4

QCTOR] Popu,a”ty [ACTOR STARS-IN, MOVIE, @VIE STARS-IN, ACTOR]. Popularlty

STARS-IN, ACTOR]. Populanty /
\ / [MOVIE, STARS-IN, ACTOR,
eSS

[ACTOR STARS-IN, MOVIE] Success CMOVIE] SUCCBSS STARS-IN, MOVIE]. Succ
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Abstract ground graphs enable new constraints

[MOVIE, STARS-IN, ACTOR].Popularity — [MOVIE].Success

ACTOR and MOVIE perspectives l hop threshold h = 4

(Actor Popularlty) Costar Popularity C Popularity of starrmg actors
\ / / Success of other movies the
CSuccess of movies starrlng in CMOV'E Success actors have starred in
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Relational bivariate orientation (RBO)

» RBO leverages relational dependencies that cross
relationships with a MANY cardinality.

OF < >0

» Assumes only model acyclicity (no assumptions about

functional form or conditional densities).

Other bivariate dependency orientation methods can be

used where RBO cannot shimizu et al. 2006; Hoyer et al. 2009; Zhang &
Hyvarinen 2009; Peters et al. 2010].

» RBO can be described as detecting relational
autocorrelation jensen & Neville 20021 and testing if a distinct
variable is a member of the separating set that
eliminates the autocorrelation.
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Relational bivariate orientation (RBO)

Abstract ground graph from Ix perspective

Ix].X Ix.. Iy...Ix].X
N /
Ix...Iy].Y
Does [Ix ... Iy].Y help remove autocorrelation?
IX Iy YESGpSGt [X : IX AV IX )
Orient as % Orient as
common cause common effect
[IX [X AV IX [X AV IX]X
~ Vel \ ¥

Ix...Iy].Y Ix...Iy]Y
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Extending PC orientation rules relationally

Collider Detection (CD)

B...Ix].X B.. 1.7 B...Ix].X B..1).Z
N / > N r'd
B...Iy].Y B...Iy].Y

B...Iy|.Y & sepset(|B...1x|.X, |B...1z|.2)

Known Non-Colliders (KNC)

B...Ix].X B..1;.7 B...Ix].X B..1).2
~ / > ~ ”
B..Iy]Y B...Iy]Y
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Extending PC orientation rules relationally

Cycle Avoidance (CA)

B..Ix].X — [B..I;|.Z B..Ix].X — [B..1;].Z
N v N v
B..Iyl.Y — B..Iy]l.Y

Meek Rule 3 (MR3)

B.. 1x].X B.. 1x].X
/ N\ / AN
B...Iy]Y B..Iw|W [—> [B..IylY l B...Iyw|.W
N »~ N »~

B...I14].Z B...I14].Z
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Orientation propagation

» A single relational dependency supports many edges

within and across the set of abstract ground graphs for
a relational model.

[MOVIE, STARS-IN, ACTOR].Popularity — [MOVIE].Success @CTOR].PopularitD [ACSTT?;’;E?;:ITN C’):]‘O;g ;’u IaritD

/\
Popularity > < @VIE, STARS-IN, ACTOR].POpuIa@ /

ACTOR MOVIE [ACTOR, STARS-IN, MOVIE] .SUCC@

[MOVIE, STARS-IN, ACTOR,
(MOVIE] -Succe@ STARS-IN, MOVIE]. Success

» When a rule is activated for a specific abstract ground
graph, the orientation of the underlying relational

dependency must be propagated within and across all
abstract ground graphs.
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Orientation rule soundness and completeness

Soundness definition: An orientation rule is sound if any
orientation not indicated by the rule introduces either
(1) An unshielded collider in some abstract ground graph
(2) A directed cycle in some abstract ground graph
(3) A model-level Cycle [Adapted from Meek 1995]

Completeness definition: A set of orientation rules is complete
if any orientation of an unoriented edge is consistent with a
member of the Markov equivalence class. [Meek 1995]

Proof: Shown for individually for soundness and collectively for
completeness (CD, KNC, CA, MR3, RBO, and propagation)
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The relational causal discovery algorithm

Initialize set of
potential dependencies

Phase I:
Identify skeleton
via separating sets

Phase Il:
Build abstract ground graphs
and orient dependencies

ALGORITHM 1: RCD(schema, depth, hop Threshold, P)

PDs < getPotentialDeps(schema, hop Threshold)
N « initializeNeighbors(schema, hop Threshold)
S —{}
// Phase I
for d <+ 0 to depth do
for X — Y € PDs do
foreach condSet € powerset(N|[Y]|\ {X})
do
if |condSet| = d then
if X 1L Y | condSet in P then
PDs — PDs\ {X —Y,Y — X}
S[X,Y]| < condSet
break
// Phase II
AGGs < buildAbstractGroundGraph(PDs)
AGGs, S < ColliderDetection(AGGs, S)
AGGs, S < BivariateOrientation(AGGs, S)
while changed do
AGGs « KnownNonColliders(AGGs, S)
AGGs «+ CycleAvoidance(AGGs, S)
AGGs < MeekRule3(AGGs, S)

return getCanonicalDependencies(AGGSs)
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RCD correctness

RCD correctly learns a maximally oriented model

Assumptions

(1) Sufficient hop threshold h

(2) Sufficient depth

(3) Causal sufficiency

(4) Faithfulness

(5) Perfect conditional independence tests

Proof

Follows similarly to PC Phase | correctness and
edge orientation rule completeness
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Empirical evaluation

» Synthetic model structure generation
Entity classes | e [1, 4]

Relationship classes | = | Entity classes| — 1
Attributes | ~ Pois(A=1) + 1

Dependencies | € [1, 15]

» Algorithms
- RCD
Relational PC (RPC) [Maier et al. 2010]
Propositionalized PC (PPC)—best and worst perspectives
(All'using a relational d-separation oracle)

» Evaluation measures

|Correctly Learned| |Correctly Learned|

Recall:
|Learned| | True|

- Precision:

For skeleton and oriented model

83



Precision
0.25 05 0.75

Recall
0.25 0.5 0.75

1

0

1

0

Identitying (causal) skeletons

e RCD e RPC PPCBest e PP(Cworst
k k k
PPC
B Phes PPCs
PPCw
PPCw PPCw
Deps: 5 10 15 1 5 10 15 1 5 10 15 1 5 10 15
Entities: 1 2 3 4
[ > By @ « @& » k - @& e &® &® & & & = %k - - - e - e - e e X -e e e e @ @& & @ ® X
PPC- PPC-
S e ——— PPCe
/-/PP_Cﬂ
Deps: 5 10 15 1 5 10 15 1 5 10 15 1 5 10 15
Entities: 1 2 3 4
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Precision
0.25 0.5 0.75

Recall
0.25 0.5 0.75

1

0

1

0

Orienting dependencies

e RCD eammme RPC PPChest e PPCworst
RPC e e
PPCs PPCh
PPCs
PPCw PPCw
PPCw
Deps: 5 10 15 5 10 15 1 5 10 15 1 5 10 15
Entities: 1 2 3 4
RCD RCD RCD
/S PPCs PPCs
/ PPCs
/ PPCw PPCw
/’ /-\ PPCw
Deps: 5 10 15 5 10 15 1 5 10 15 1 5 10 15
Entities: 1 2 3 4
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The unique contribution of RBO

M CD B RBO @ KNC @ CA O MR3
1)
©
—l
O
o
is
[Z
L
@,
M
o

Deps:1 3 5 7 9 11 13 15 11 13 15 9 11 13 15
Entities: 1
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Learning a causal model of the movie industry

,000
5,880 5

\.DIRECTS

1,000

DIRECTOR

425
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Learning a causal model of the movie industry

Rating Count

DIRECTS

DIRECTOR
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Future work

Develop more accurate tests of conditional
independence for relational data

Learn causal models of relationship existence

Relax causal sufficiency by incorporating the relational
blocki ng Operator [Rattigan, Maier & Jensen 2011]

Learn causal relational models with temporal dynamics

88



Summary

» Bayesian networks, d-separation, and the PC algorithm
have provided a solid foundation for research on causal

structure learning

» We now have an analogous basis for causal structure

learning from relational data
New representation (abstract ground graphs), capabilities
for reasoning about independence (relational d-separation),

and a sound and complete algorithm (RCD)
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Thank you!

Questions?

maier@cs.umass.edu

http://kdl.cs.umass.edu/rcd
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