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Abstract

In a randomized experiment with non-
compliance, testing whether treatment expo-
sure X has an effect on the final response
Y is often of scientific interest. We propose
a finite-population permutation-based test of
the null hypothesis that X has no effect on
Y within Compliers. Our method builds on
tests for principal stratum direct effects de-
scribed in (Nolen and Hudgens, 2011).

1 INTRODUCTION

Fisher’s test is well-known as a non-parametric test for
independence between two binary variables. Within
the context of a randomized experiment, it may also
be seen as a test of the ‘sharp causal null hypothe-
sis’ that every individual in a finite population has
the same outcome Y regardless of which of two treat-
ments X they receive. In the language of (Neyman,
1923) this may also be expressed by saying that every
individual has the same potential outcome under both
treatments. Central to the inferential approach used
here is the idea that sampling variability only arises
due to different assignments of individuals to treat-
ment via randomization: the set of individuals in the
population and their values are regarded as fixed.

Randomized experiments with ‘non-compliance’ arise
in many situations. For example, in a randomized clin-
ical trial there may be patients who do not take the
treatment they are prescribed, possibly due to side-
effects. In ‘encouragement’ studies, in which a ran-
domly selected subset of subjects are given some incen-
tive to avail themselves of a treatment, the inducement
may be insufficient for some. In such studies every unit
has an assigned treatment (Z) that was randomized,
a treatment received (X) and a final outcome Y . In
many such settings it is also reasonable to make the

assumption that Z has no (direct) effect on Y except
through X, sometimes called an ‘exclusion restriction’.

We will restrict attention to binary treatment and out-
comes. We will use Z = 0 and Z = 1 to indicate as-
signment to placebo and treatment, respectively; sim-
ilarly X = 0 and X = 1 will indicate whether the
subject received treatment or placebo. Finally we use
Y = 1 and Y = 0 to indicate good and bad outcomes.

Using the potential outcome framework it has been
argued by Angrist et al. (1996) among others, that in
studies with non-compliance with a binary treatment,
one should attempt to find the effect of treatment on
the subset of patients who would take the treatment if
asked to do so and would not if assigned not to do so.
Since such patients conform with assigned treatment
Sommer and Zeger (1991) term this subset of patients
the ‘compliers’. Imbens and Rosenbaum (2005) use
randomization-based inference to obtain valid confi-
dence intervals for the treatment effect under an ad-
ditive structural model even when the instrument is
‘weak’.

In this paper we consider the problem of testing the
sharp null hypothesis of no effect for compliers. Our
basic goal is to apply Fisher’s exact test to the sub-
population of compliers. If somehow it were revealed
to us which individuals in the population were com-
pliers then we could simply restrict attention to this
subset. Under random assignment for the whole pop-
ulation each member of the complier subpopulation
should have the same probability to be assigned to
treatment versus control. Since for compliers Z = X,
under the exclusion restriction, for the complier sub-
population the null hypothesis that Z has no effect of
Y is equivalent to the null hypothesis that X has no
effect on Y . Still supposing that we knew which in-
dividuals were compliers we could then test this null
hypothesis by performing Fisher’s exact test on the
(X,Y ) subtable, or equivalently the (Z, Y ) subtable.

However, we face the obvious difficulty that, though we
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know that compliers will have Z = X, this condition
is necessary but not sufficient. For example, an indi-
vidual with Z = X = 0 may be a ‘Complier’ or they
may be someone who would not have taken treatment
even if (counter to fact) they had been assigned to it,
in other words a ‘Never Taker’.

An obvious response to this problem would be to con-
sider all logically possible values for the number of com-
pliers in any given (Z,X, Y ) stratum that may contain
them (i.e. for which Z = X), and then to carry out
Fisher’s test for the subtable showing X and Y for the
compliers. Taking the maximum over all of the result-
ing p-values would then give a valid p-value for the
null-hypothesis.

However, this procedure suffers from two related de-
fects:

• it will have no power to reject the null hypothe-
sis, since it is logically possible (though extremely
unlikely) that there are no compliers in a given
stratum;

• this approach ignores the information provided by
strata in which Z 6= X, that do not contain com-
pliers.

We will assume that there are no patients who con-
sistently do the opposite of their assignment, i.e. who
would take placebo if assigned to treatment, and would
take treatment if assigned to placebo, sometimes called
‘Defiers’ (Chickering and Pearl, 1997). It follows from
this assumption that any individuals with (Z = 1, X =
0) are Never Takers. Under random assignment of as-
signed treatment (Z), the proportion of Never Takers
in the Z = 1 arm should be approximately the same
as in the Z = 0 arm. Since Never Takers will have
X = 0 when assigned to Z = 0, this information then
narrows the range of probable values (under the ran-
domization distribution) for the number of Compliers
in the (Z = 0, X = 0) stratum. Conversely, under the
assumption of no Defiers the number of individuals in
the (Z = 0, X = 1) stratum will narrow the range
of probable values (under the randomization distribu-
tion) for the number of compliers in the (Z = 1, X = 1)
stratum.

More formally, our approach, following (Nolen and
Hudgens, 2011), is to consider only those possible val-
ues for the number of Compliers in a given (Z,X) stra-
tum that do not indicate large imbalance between the
Z = 1 and Z = 0 arms, or in other words that do not
lead us to reject the randomization null hypothesis at
a pre-specified significance level γ. We then carry out
Fisher’s exact test in the implied (X,Y ) table for Com-
pliers. Taking the maximum over these p-values and
adding γ then provides a conservative p-value.

2 POTENTIAL OUTCOME
FRAMEWORK

We now formalize the foregoing development. Recall
the following:

• Z is the randomized treatment assignment, where
1 indicates assignment to drug;

• X is the treatment exposure subsequent to assign-
ment, where 1 indicates drug received;

• Y is the final response, where 1 indicates a desir-
able outcome, such as survival.

The potential outcome Xzi is the treatment X a pa-
tient would be exposed to if assigned z = i. Using
these potential outcomes we may define four generic
compliance ‘types’ tX listed in Table 1. We denote
the set of such types by DX .

The potential outcomes are linked to the observed out-
comes by the consistency axiom (Pearl, 2010), which
requires that Z = z implies X = Xz.

Table 1: Compliance Types (tX) Based On Potential
Outcomes Xz, (Imbens and Rubin, 1997)

Xz0 Xz1 Compliance Type tX

0 0 NT Never Taker
1 0 DE Defier
0 1 CO Complier
1 1 AT Always Taker

As stated above we will assume that there are no De-
fiers. To simplify the discussion we will also focus
much of our development on the case where there are
no Always Takers, so that there are only Compliers
and Never Takers. In this circumstance Z = 0 implies
X = 0.

2.1 EXCLUSION RESTRICTION

Without making further assumptions, the potential
outcome for a given individual Yxjzi is the subjects
response Y under exposure to treatment x = j, and
treatment assignment z = i. Without further assump-
tions there are 16 = 22

2

possible sets of values for the
variables (Yx0z0 , Yx1z0 , Yx0z1 , Yx1z1). However, we will
assume that there is no (individual-level) direct effect
of Z on Y relative X, so that for j, i, i′ ∈ {0, 1}, we
have:

Yxjzi = Yxjzi′ ≡ Yxj . (1)

Assumption (1) is guaranteed to hold under double-
blind placebo-controlled trials in which the active



treatment is without side-effects and unavailable to pa-
tients in the control arm. The response type tY then
simplifies to just four types, with DY as the set of such
types, shown in (Table 2).

The potential outcomes for Y are again linked to the
observed outcomes via the consistency axiom, so that
if X = x then Y = Yx.

2.2 RANDOMIZATION ASSUMPTION

We make the following assumption:

Z ⊥⊥ {Xz0 , Xz1 , Yx0
, Yx1
} (2)

The assumption states that the distribution of compli-
ance and response types (tX , tY ) is the same in both
the Z = 1 and Z = 0 arms i.e. that Z is (jointly)
independent of the potential outcomes. This will hold
whenever treatment assignment Z is physically ran-
domized. Since we are applying Fisher’s Exact Test
we will consider randomization schemes under which a
pre-determined number of units are randomly assigned
to Z = 1 vs. Z = 0, as would be the case if the units
assigned to Z = 1 were obtained by sampling without
replacement from a fixed finite population; the remain-
der being assigned Z = 0.

2.3 THE INSTRUMENTAL VARIABLE
MODEL

A causal graph corresponding to the model given by
(1) and (2) is shown in Figure 1. The randomization
assumption (2) is indicated by the absence of edges di-
rected into Z, while the exclusion restriction (1) cor-
responds to the absence of a Z → Y edge. This model
is also known as the Instrumental Variable (IV) model
(See e.g. Angrist et al., 1996).

2.4 INTENT-TO-TREAT (ITT) ANALYSIS

One possible approach to address the issue of partial
compliance is to use Intention-To-Treat (ITT) Anal-
ysis, proposed by Lee et al. (1991). The ITT effect
measures the causal effect of treatment assignment,
rather than exposure:

ITT ≡ E[Yz1 − Yz0 ], (3)

where, in our finite population context, the expecta-
tion here is over the possible assignments of units to
treatment or placebo. However, inference for this ef-
fect is limited to situations where the experimental
environment is an accurate representation of the en-
tire population’s. Moreover, given that response types
and compliance types may be associated (so that ex-
posure to treatment is ‘non-ignorable’) the difference

of outcome averages based on treatment assignment
does not provide an unbiased or even consistent esti-
mate of the average causal effect of treatment exposure
on outcome (Angrist et al., 1996).

2.5 The Average Causal Effect of X on Y

The average causal effect (ACE) of treatment exposure
X on outcome Y is defined as:

ACE(X → Y ) ≡ E[Yx1
− Yx0

]. (4)

The ACE for the sub-population of Compliers is:

ACECO(X → Y ) ≡ E[Yx1
− Yx0

| tX = CO]. (5)

Since for CompliersXz = z, it follows that Yz ≡ YXz =
YX=z so that

ACECO(X → Y ) = ITTCO ≡ E[Yz1 −Yz0 | tX = CO],
(6)

or in words, the Average Causal Effect of X on Y for
Compliers is equal to the Intent-to-Treat effect of Z
on Y for Compliers.

Table 2: Response Types (tY ) Under Exclusion Re-
striction (1), (Heckerman and Shachter, 1995)

Yx0· Yx1· Response Type tY

0 0 NR Never Recover
1 0 HU Hurt
0 1 HE Helped
1 1 AR Always Recover

Z

X

Y

tX , tY

Figure 1: Graphical Representation Of The IV Model
Given By Assumptions (1) And (2)

2.6 MOTIVATING EXAMPLE

We consider data from a double-blind placebo-
controlled randomized trial of Cholestyramine (Efron
and Feldman, 1991). Subjects were randomly assigned
to two groups: one was prescribed Cholestyramine
(z = 1), and the other given a placebo (z = 0).

Compliance was a continuous measure tracking the
quantity of prescribed dosage consumed, over several
years of treatment during the trial. The response was
the average post-treatment cholesterol level, and also



a continuous variable. Both continuous measures were
dichotomized in Pearl (2009), and the observed counts
are shown in Table 3.

Table 3: Cholestyramine/Lipid Data

z x y count z x y count

0 0 0 158 1 0 0 52
0 0 1 14 1 0 1 12
0 1 0 0 1 1 0 23
0 1 1 0 1 1 1 78

Subjects who are not assigned treatment in the control
arm (Z = 0) could not obtain the experimental drug
Cholestyramine. Thus there are two structural zeros,
since Z = 0 implies X = 0. In terms of the compliance
types, there are thus no Defiers and no Always Takers
in the study.

Since this was a double-blind randomized control trial
it may be safely assumed that Z has no effect on
Y other than through X i.e. that the exclusion re-
striction (1) holds. Thus in this case, there are four
response types tY , but only two compliance types
tX , which gives us eight combinations for (tX , tY ) ∈
{NT,CO} × {HE,HU,AR,NR}. We will consider
this simpler case during our main development, though
the approach extends to the more general case in which
there are also Always Takers.

3 SHARP CAUSAL NULL FOR
COMPLIERS

3.1 Notation

We first introduce the notation. Let nzixjyk be the
observable count of the number of subjects in the finite
population who are assigned to treatment z = i, with
exposure x = j and outcome y = k. This is directly
observable.

Let ntX ,tYzi be the number of subjects in the finite pop-
ulation with compliance type tX , response type tY ,
and assigned to treatment z = i.

Similarly we will let ntXzi,yk be the number of subjects in
the finite population with compliance type tX assigned
to treatment z = i with outcome y = k.

It should be noted that the counts ntX ,tYzi and ntXzi,yk
are not all known since they are not directly observable
from the data.

Our interest lies in testing the individual level (or
‘sharp’) causal null hypothesis that there is no effect
of X on Y amongst Compliers; equivalently that for

Compliers:

Yx0
= Yx1

, (7)

so that there are no Compliers who are of type ‘Helped’
or ‘Hurt’. Note that if the individual level causal
null hypothesis holds then the average causal effect
of X on Y for the subpopulation of compliers (CO):
ACECO(X → Y ) = 0.

In Table 4, the observed counts in Table 3 are de-
composed both in General, and under the Sharp Null
Hypothesis Equation 7.

3.2 Nuisance parameters

Under the sharp null hypothesis (7), within the Com-
plier sub-population, no individual would have had a
different outcome had they had a different exposure
level X, and thus, furthermore, no individual would
have had a different outcome had they been assigned
to a different level of Z. Thus under the null (7), the
counts

nCOy0 ≡ n
CO
z0y0 + nCOz1y0 nCOy1 ≡ n

CO
z0y1 + nCOz1y1

would not change as we vary over all possible assign-
ments of individuals to Z = 0 vs. Z = 1. Thus if, in
addition, the number of Compliers assigned to Z = 1
vs. Z = 0 were pre-specified in advance then over re-
peated samplings, the four counts nCOziyj for i, j ∈ {0, 1}
would follow a hypergeometric distribution under the
null hypothesis.

The counts nCOz1,y1 and nCOz1,y0 are observable from the
data, as shown in the first two rows of Table 4. How-
ever, the presence of Never-Takers in the population
prevents us from directly observing the other two
counts: nCOz0,y1 and nCOz0,y0 .

From the last two rows of Table 4, for k ∈ {0, 1}, the
observable counts nz0x0yk are a sum of the unobserv-
able quantities nCOz0,yk and nNTz0,yk under H0.

The unobservable quantities nNTz0,y1 and nNTz0,y0 under
the placebo arm (z = 0) may be regarded as ‘nuisance
parameters’, since if we knew these quantities then we
would know nCOz0,y1 and nCOz0,y0 , and could perform our
hypothesis test. Thus we define the vector of nuisance
parameters as:

ψ ≡ (ψ1, ψ0) =
(
nNTz0,y1 , n

NT
z0,y0

)
(8)

Since ψ1 and ψ0 are bounded above by nz0x0y1 and
nz0x0y0 respectively, the space of possible values for ψ
is:

Ψ≡
{

(ψ1, ψ0) :ψ1∈ [0, nz0x0y1 ] , ψ0∈ [0, nz0x0y0 ]
}

(9)



3.3 Testing with nuisance parameters

Given a fixed value of ψ, we may construct Table 5,
which we refer to as the ‘Target Table’ for our hy-
pothesis test, with the fixed values of the four counts
nCOzi,yk , i, k ∈ {0, 1}. Fisher’s Exact Test (Fisher, 1973)
may then be used to test the null hypothesis (7) condi-
tional on a fixed number of Compliers being assigned
to Z = 0 and Z = 1. Thus for a fixed value of ψ let the
p-value resulting from applying Fisher’s Exact Test to
the Target Table 5, be pCO(ψ).

One possible approach to performing a hypothesis test
of (7) would then be to simply compute p-values for
the entire space Ψ containing every logically possible
value of ψ, and then conservatively take the maximum.
However, it is not hard to see that this will lead to a
test with no power: for example, consider Table 7(a),
which corresponds to ψ = (ψ1, ψ0) = (0, 154). We see
that the proportions of Compliers with Y = 1 are very
similar in the two Z-strata; (78/101 = 77% = 14/18).
Not surprisingly the p-value from Fisher’s Exact Test
is 1. Thus if we were to perform a hypothesis test
for every logically possible value of the nuisance pa-
rameters, clearly we would be unable to reject the null
hypothesis.

However, before resigning ourselves to this procedure
and concluding that there is thus no evidence against
the null hypothesis, we should examine the ‘Nuisance
Table’ shown in Table 7(b). This shows the number
of individuals of each of the three types ‘Complier’,
‘Never Taker with Yx0 = 1’ (hence either ‘Always
Recover’ or ‘Hurt’) and ‘Never Taker with Yx0

= 0’
(hence either ‘Never Recover’ or ‘Helped’), that would
be present in the Z = 0 and Z = 1 arms if (ψ1, ψ0) =
(0, 154). This shows that in order for there to be only
18 Compliers in the Z = 0 arm, something quite ex-
traordinary would have had to have happened: specif-
ically, we would have quite different proportions of
these three types: for example 101/165 = 61% is quite
different from 18/172 = 10%. Indeed applying Fisher’s
Exact Test to Table 7(b) conclusively rejects the null
hypothesis of independence, giving a p-value that is
essentially zero to within machine precision.

We thus propose a method that makes use of the in-
formation in the Nuisance Table, such that the set of
values for the nuisance parameter is restricted to a
subspace Cγ ⊆ Ψ, under which the null hypothesis of
independence in the Nuisance Table is not rejected, at
some pre-specified significance level γ.

3.4 Constructing Cγ

While the quantities ψ =
(
nNTz0,y1 , n

NT
z0,y0

)
under the

placebo arm (z = 0) may not be observable, the cor-

responding counts
(
nNTz1,y1 , n

NT
z1,y0

)
under the treatment

arm (z = 1) are both directly observable from the data
(third and fourth row respectively in Table 4).

Under the randomization distribution, if the number
of individuals assigned to Z = 0 and Z = 1 is fixed,
then the row and column totals in the Nuisance Table
should be fixed, and we may thus perform a hypothesis
test.

We pre-specify a critical value of γ e.g. 0.01. For every
ψ ∈ Ψ, we may then test independence between treat-
ment assignment and compliance types using Fisher’s
Exact Test in Table 6, which we refer to as the Nui-
sance Table for ψ. We then obtain Cγ ⊆ Ψ as the
subspace containing all values of ψ = (ψ1, ψ0) such
that the test of independence in Table 6 is not re-
jected at significance level γ. Note that the size of Cγ
is hence inversely proportional to γ; setting γ = 0 cor-
responds to the entire space Ψ. Notice that Cγ does
not vary over random assignments, since the row and
column sums in the Nuisance Table are fixed; however
the nuisance parameter ψ does vary since it depends
on how the three types that label columns in the Nui-
sance Table are distributed between the Z = 0 and
Z = 1 arms.

For each fixed value of ψ = (ψ1, ψ0) ∈ Cγ , we then
evaluate Fisher’s Exact Test in Table 5 to find the p-
values pCO(ψ).

Following (Berger and Boos, 1994), the significance
level for the overall procedure is then bounded above
by taking the maximum and of pCO(ψ) over Cγ and
then adding γ:

pCOγ ≡ max
{
pCO(ψ), ψ ∈ Cγ

}
+ γ (10)

Following (Berger and Boos, 1994), we may show that
pCOγ gives an upper bound on the probability of falsely
rejecting (7) when true, and thus this is a conservative
p-value. Under the sharp null hypothesis, (7):

P
(
pCOγ ≤ α

)
= P (pCOγ ≤ α,ψ† /∈ Cγ) + P (pCOγ ≤ α,ψ† ∈ Cγ)

≤ P (ψ† /∈ Cγ) + P (max
ψ∈Cγ

pCO(ψ) + γ ≤ α,ψ† ∈ Cγ)

≤ γ +
∑
ψ′

P (max
ψ∈Cγ

pCO(ψ) ≤ α− γ | ψ†=ψ′, ψ† ∈ Cγ)

× P (ψ†=ψ′, ψ† ∈ Cγ)

≤ γ +
∑
ψ′

P (pCO(ψ′) ≤ α− γ | ψ†=ψ′, ψ† ∈ Cγ)

× P (ψ†=ψ′, ψ† ∈ Cγ)

≤ γ + (α− γ)
∑
ψ′

P (ψ′=ψ†, ψ† ∈ Cγ) ≤ α,

where ψ† is the (unknown) value of ψ resulting from
the random assignment of Z. Here the second inequal-



ity follows since Cγ is obtained by applying Fisher’s
exact test to the Nuisance table at level γ; the third
follows because if ψ† ∈ Cγ , the probability of the p-
value pCO(ψ†) being less than α−γ is at least as large
as the probability of the maximum pCO(ψ) obtained
from all ψ ∈ Cγ being less than α− γ.

4 CHOLESTYRAMINE EXAMPLE

We apply the method to the data in Table 3, with
γ as 0.01. Figure 2 shows a contour plot of the p-
values from the first step of testing the Nuisance Table
(Table 6) over the entire space Ψ. Cγ would hence be
the subspace of Ψ with p-values larger than 0.01.

 0.01 

Contour Plot Of p−values For Nuisance Parameter (Lipid Data)
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Figure 2: Contour Plot of p-values over Ψ

Given Cγ , we then proceed to test the Target Table
(Table 5) for each value of ψ ∈ Cγ . Consider the
following two examples in Table 7. In Figure 2 the
blue empty circle corresponds to a nuisance parame-
ter value of ψ = (0, 154) mentioned earlier. The red
filled circle corresponds to a nuisance parameter value
of ψ = (13, 30); see Table 7(c), (d). For this value
of ψ we see that the nuisance table does not reject at
γ = 0.01. In contrast to Table 7(a), when ψ = (13, 30),
we do reject the sharp null hypothesis under the corre-
sponding target table Table 7(c). Thus, as in this ex-
ample, our test rejects the sharp null at level α when,
for every value of the nuisance parameters, either the
hypothesis of independence in the Nuisance Table re-
jects at level γ, or the hypothesis of independence in
the target table rejects at level α − γ (or both). The
green triangle represents the value of ψ at which the
maximum p-value is achieved.

The variables of interest nCOz0y1 and nCOz0y0 are determin-
istic functions of the nuisance parameters (the last row
in Table 5). The corresponding combinations of nCOz0y1
and nCOz0y0 resulting from all values of the nuisance pa-

rameter in Cγ are plotted in Figure 3. Note that while
the values on the axes in Figure 2 and Figure 3 are
identical, the plots are of different variables. We find

Possible Values Of nz0y1
CO  and nz0y0

CO  (based on Cγ) For The Target Table

0 2 4 6 8 10 12 14

0
50

10
0

15
0

nz0y1
CO

n z0
y0

C
O

Figure 3: Different combinations of nCOz0y1 and nCOz0y0
derived from Cγ ; points have been jittered.

max
{
pCO(ψ), ψ ∈ Cγ

}
= 1.5×10−21. From (10), the

p-value pCOγ = 0.01, which is equal to γ (to machine
precision). For comparison, Fisher’s Exact Test for in-
dependence of Z and Y , which tests the ITT null hy-
pothesis that Yz0 = Yz1 gives a p-value of 2.7× 10−21.

5 INCLUDING ALWAYS TAKERS

So far we have assumed that there are no Defiers and
no Always Takers, as is appropriate when subjects as-
signed to the control arm (Z = 0) are never exposed to
treatment (X = 1). However, it is possible to extend
the method to studies where it is assumed only that
monotonicity holds so that Xz0 ≤ Xz1 . The compli-
ance and response types corresponding to the assump-
tion that there are no defiers are listed in Table 8. This
table augments Table 4 by including the counts for the
Always Takers in the relevant locations. the nuisance
parameter is now a vector of length 4; the locations
of the nuisance parameters are shown in Table 9. In
principle we may extend the method by constructing
a set Cγ for these parameters, and proceeding as be-
fore. However, the resulting procedure is computation-
ally more challenging. For the ‘Toy Data’ in Table 9
our procedure does reject the sharp null hypothesis for
Compliers at level 0.05.

6 SUMMARY

We have presented a method for testing the sharp
null hypothesis amongst compliers in the framework
of randomization-based inference.



Table 4: Compliance and Response Types under the sharp Null Hypothesis for Compliers, assuming no Defiers
and no Always Takers.

z x y General H0 : ITTCO = 0 Lipid data

1 1 1 nCO,ARz1 + nCO,HEz1 = nCOz1y1 nCO,ARz1 + 0 = nCOz1y1 78

1 1 0 nCO,NRz1 + nCO,HUz1 = nCOz1y0 nCO,NRz1 + 0 = nCOz1y0 23

1 0 1 nNT,ARz1 + nNT,HUz1 = nNTz1y1 nNT,ARz1 + nNT,HUz1 = nNTz1y1 12

1 0 0 nNT,NRz1 + nNT,HEz1 = nNTz1y0 nNT,NRz1 + nNT,HEz1 = nNTz1y0 52

0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 nNT,ARz0 + nNT,HUz0︸ ︷︷ ︸ + nCO,ARz0 + nCO,HUz0︸ ︷︷ ︸ nNT,ARz0 + nNT,HUz0︸ ︷︷ ︸ + nCO,ARz0 + 0︸ ︷︷ ︸ 14

= nNTz0y1 = nCOz0y1 = nNTz0y1 = nCOz0y1

0 0 0 nNT,NRz0 + nNT,HEz0︸ ︷︷ ︸ + nCO,NRz0 + nCO,HEz0︸ ︷︷ ︸ nNT,NRz0 + nNT,HEz0︸ ︷︷ ︸ + nCO,NRz0 + 0︸ ︷︷ ︸ 158

= nNTz0y0 = nCOz0y0 = nNTz0y0 = nCOz0y0

Table 5: Target Table for the sharp null hypothesis for Compliers given a fixed value of nuisance parameters
ψ = (ψ1, ψ0). Here we assume no Defiers and no Always Takers.

CO only y1 y0 Row Sum

z1 nCOz1y1 = nz1x1y1 nCOz1y0 = nz1x1y0 nCOz1 = nz1x1

z0 nCOz0y1 = nz0x0y1 − ψ1 nCOz0y0 = nz0x0y0 − ψ0 nCOz0

Table 6: Nuisance Table determining the set Cγ of values for ψ = (ψ1, ψ0). Here we assume there are no Defiers
and no Always Takers.

CO NT, (AR/HU) NT, (NR/HE) Row sum

z1 nCOz1 = nz1x1
= nz1 − nz1x0

nNTz1y1 = nz1x0y1 nNTz1y0 = nz1x0y0 nz1

z0 nCOz0 = nz0x0
− ψ1 − ψ0 nNTz0y1 = ψ1 nNTz0y0 = ψ0 nz0

∈ [0, nz0x0y1 ] ∈ [0, nz0x0y0 ]



Table 7: Examples of Target and Nuisance Table for Lipid Data

(a) Target Table For Lipid Data : ψ = (0, 154)

CO only y1 y0
Row
Sum

z1 78 23 101

z0 14 - 0 = 14 158 - 154 = 4 18

Fisher’s Exact Test p-value = 1

(b) Nuisance Table For Lipid Data : ψ = (0, 154)

CO NT, (AR/HU) NT, (NR/HE)
Row
sum

z1 101 12 52 165

z0 172 - 0 - 154 = 18 0 154 172

Fisher’s Exact Test p-value = 1.9× 10−29 ≈ 0

(c) Target Table for Lipid Data : ψ = (13, 30)

CO only y1 y0
Row
Sum

z1 78 23 101

z0 14 - 13 = 1 158 - 30 = 128 129

Fisher’s Exact Test p-value = 4.1× 10−39 ≈ 0

(d) Nuisance Table for Lipid Data : (ψ1, ψ0) = (13, 30)

CO NT, (AR/HU) NT, (NR/HE)
Row
sum

z1 101 12 52 165

z0 172 - 13 - 30 = 129 13 30 172

Fisher’s Exact Test p-value = 0.0103 > 0.01

Table 8: Compliance and Response Types under H0 : ITTCO = 0, assuming No Defiers.

z x y General H0 : ITTCO = 0 Toy data

1 1 1 nAT,ARz1 + nAT,HEz1︸ ︷︷ ︸ + nCO,ARz1 + nCO,HEz1︸ ︷︷ ︸ nAT,ARz1 + nAT,HEz1︸ ︷︷ ︸ + nCO,ARz1 + 0︸ ︷︷ ︸ 15

= nATz1y1 = nCOz1y1 = nATz1y1 = nCOz1y1

1 1 0 nAT,NRz1 + nAT,HUz1︸ ︷︷ ︸ + nCO,NRz1 + nCO,HUz1︸ ︷︷ ︸ nAT,NRz1 + nAT,HUz1︸ ︷︷ ︸ + nCO,NRz1 + 0︸ ︷︷ ︸ 5

= nATz1y0 = nCOz1y0 = nATz1y0 = nCOz1y0

1 0 1 nNT,ARz1 + nNT,HUz1 = nNTz1y1 nNT,ARz1 + nNT,HUz1 = nNTz1y1 15

1 0 0 nNT,NRz1 + nNT,HEz1 = nNTz1y0 nNT,NRz1 + nNT,HEz1 = nNTz1y0 5

0 1 1 nAT,ARz0 + nAT,HEz0 = nATz0y1 nAT,ARz0 + nAT,HEz0 = nATz0y1 5

0 1 0 nAT,NRz0 + nAT,HUz0 = nATz0y0 nAT,NRz0 + nAT,HUz0 = nATz0y0 15

0 0 1 nNT,ARz0 + nNT,HUz0︸ ︷︷ ︸ + nCO,ARz0 + nCO,HUz0︸ ︷︷ ︸ nNT,ARz0 + nNT,HUz0︸ ︷︷ ︸ + nCO,ARz0 + 0︸ ︷︷ ︸ 5

= nNTz0y1 = nCOz0y1 = nNTz0y1 = nCOz0y1

0 0 0 nNT,NRz0 + nNT,HEz0︸ ︷︷ ︸ + nCO,NRz0 + nCO,HEz0︸ ︷︷ ︸ nNT,NRz0 + nNT,HEz0︸ ︷︷ ︸ + nCO,NRz0 + 0︸ ︷︷ ︸ 15

= nNTz0y0 = nCOz0y0 = nNTz0y0 = nCOz0y0



Table 9: Nuisance Table determining the set Cγ of values for ψ = (ψ11, ψ10, ψ01, ψ00), assuming No Defiers.

CO NT, (AR/HU) NT, (NR/HE) AT, (AR/HE) AT, (NR/HU) Row sum

z1 nCOz1 = nz1x1
− ψ11 − ψ10 nNTz1y1 = nz1x0y1 nNTz1y0 = nz1x0y0 nATz1y1 = ψ11 nATz1y0 = ψ10 nz1

∈ [0, nz1x1y1 ] ∈ [0, nz1x1y0 ]

z0 nCOz0 = nz0x0
− ψ01 − ψ00 nNTz0y1 = ψ01 nNTz0y0 = ψ00 nATz0y1 = nz0x1y1 nATz0y0 = nz0x1y0 nz0

∈ [0, nz0x0y1 ] ∈ [0, nz0x0y0 ]

Table 10: Target Table for the sharp null hypothesis for Compliers given a fixed value of nuisance parameters
ψ = (ψ11, ψ10, ψ01, ψ00), assuming No Defiers.

CO only y1 y0 Row Sum

z1 nCOz1y1 = nz1x1y1 − ψ11 nCOz1y0 = nz1x1y0 − ψ10 nCOz1 = nz1x1
− ψ11 − ψ10

z0 nCOz0y1 = nz0x0y1 − ψ01 nCOz0y0 = nz0x0y0 − ψ00 nCOz0 = nz0x0 − ψ01 − ψ00
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