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Abstract

We study the Bayesian model averaging ap-
proach to learning Bayesian network structures
(DAGs) from data. We develop new algorithms
including the first algorithm that is able to ef-
ficiently sample DAGs according to the exact
structure posterior. The DAG samples can then
be used to construct the estimators for the poste-
rior of any feature. Our estimators have several
good properties; for example, unlike the existing
MCMC-based algorithms, quality guarantee can
be provided for our estimators when assuming
the order-modular prior. We empirically show
that our algorithms considerably outperform pre-
vious state-of-the-art methods.

1 INTRODUCTION

Learning the structures of Bayesian networks (BNs) from
data has been an active research problem. One approach
to the problem is to treat it as a model selection problem.
We define a criterion that measures how well a network
structure (DAG) fits the data and find the optimal DAG
(or a set of equivalent DAGs) (Silander and Myllymaki,
2006). However, when the data size is small relative
to the number of variables, the posterior p(G|D) of
DAG G given data D often gives significant support to
a number of structures, and using a single maximum-a-
posteriori (MAP) model could lead to unwarranted con-
clusions (Friedman and Koller, 2003). It is therefore de-
sirable to use the Bayesian model averaging approach by
which we compute the posterior probability of any hypoth-
esis of interest by averaging over all the possible DAGs
(Heckerman et al., 1999).

Bayesian model averaging is, however, computation-
ally challenging because the number of possible net-
work structures is at least 2n(n−1)/2, super-exponential
in the number of variables n. Tractable algorithms

have been developed for special cases of averaging
over trees (Meila and Jaakkola, 2006) and averaging over
DAGs given a node ordering (Dash and Cooper, 2004).
Since 2004, dynamic programming (DP) algorithms have
been developed for computing exact posterior probabili-
ties of structural features such as edges or subnetworks
(Koivisto and Sood, 2004; Koivisto, 2006; Tian and He,
2009). These algorithms have exponential time and space
complexity and are capable of handling Bayesian networks
of moderate size with up to around 25 variables (mainly
due to their space cost O(n2n)). A limitation of these algo-
rithms is that they can only compute posteriors of modular
features such as an edge but can not compute non-modular
features such as a path (“is there a path from node X to
node Y ”), a combined path (“is there a path from node X
via node Y to node Z” or “is there a path from node X to
node Y and no path from node X to node Z”), or a limited-
length path (“is there a path of length at most 3 from node
X to node Y ”). Recently, Parviainen and Koivisto (2011)
have developed a DP algorithm that can compute the exact
posterior probability of a path feature. This DP algorithm
has (even higher) exponential time and space complexity
and can only handle a Bayesian network with less than
20 variables (mainly due to its space cost O(3n)). Since
this DP algorithm can only deal with a path feature, all the
other non-modular features (such as a combined path or a
limited-length path) still can not be computed by any DP
algorithm proposed so far. Another limitation of all these
DP algorithms is that it is very expensive for them to per-
form data prediction tasks. They can compute the exact
posterior of a new observational data case p(x|D) but the
algorithms have to be re-run for each new data case x.

One approach to computing the posterior of an ar-
bitrary non-modular feature is drawing DAG (directed
acyclic graph) samples {G1, . . . , GT } from the poste-
rior p(G|D), which can then be used to approximate the
full Bayesian model averaging to estimate the posterior
of an arbitrary feature f as p(f |D) ≈ 1

T

∑T
i=1 f(Gi),

or the posterior predictive distribution as p(x|D) ≈
1
T

∑T
i=1 p(x|Gi). A number of algorithms have been



developed for drawing sample DAGs using the boot-
strap technique (Friedman et al., 1999) or Markov Chain
Monte Carlo (MCMC) techniques (Madigan and York,
1995; Friedman and Koller, 2003; Eaton and Murphy,
2007; Grzegorczyk and Husmeier, 2008; Niinimaki et al.,
2011). Madigan and York (1995) developed a Structure
MCMC algorithm that uses the Metropolis-Hastings algo-
rithm in the space of DAGs. Friedman and Koller (2003)
developed Order MCMC procedure that operates in the
space of orders. Order MCMC was shown to be able
to considerably improve over Structure MCMC the mix-
ing and convergence of the Markov chain and to outper-
form the bootstrap approach in (Friedman et al., 1999) as
well. Eaton and Murphy (2007) developed Hybrid MCMC
method (i.e., DP+MCMC method) that first runs the DP al-
gorithm (Koivisto, 2006) to develop a global proposal dis-
tribution and then runs MCMC in the DAG space. Their
experiments showed that Hybrid MCMC converged faster
than Structure MCMC and Order MCMC and resulted in
more accurate structure learning performance. Recently,
Niinimaki et al. (2011) have proposed Partial Order
MCMC method which operates in the space of partial or-
ders. Partial Order MCMC includes Order MCMC as its
special case (by setting the parameter bucket size b to be 1)
and was shown to be superior to Order MCMC in terms of
mixing and structural learning performance when a more
appropriate bucket size b > 1 was set. One common draw-
back of these MCMC algorithms is that there is no guaran-
tee on the quality of the approximation in finite runs. The
approach to approximating full Bayesian model averaging
using the K-best Bayesian network structures was studied
in (Tian et al., 2010) and was shown to be at least as good
as Hybrid MCMC.

Several of these state-of-the-art algorithms work
in the order space, including the exact algo-
rithms in (Koivisto and Sood, 2004; Koivisto, 2006;
Parviainen and Koivisto, 2011) and the approximate
algorithms Order MCMC (Friedman and Koller, 2003)
and Partial Order MCMC (Niinimaki et al., 2011). They
all assume a special form of the structure prior, termed
as order-modular prior (Friedman and Koller, 2003;
Koivisto and Sood, 2004), for computational convenience.
However, the assumption of order-modular prior has the
consequence that the corresponding prior p(G) cannot rep-
resent some desirable priors such as a uniform prior over
the DAG space; and the computed posterior probabilities
are biased since a DAG that has a larger number of topolog-
ical orders will be assigned a larger prior probability. (The
detailed discussion about this bias issue can be found in
(Friedman and Koller, 2003; Grzegorczyk and Husmeier,
2008; Parviainen and Koivisto, 2011). ) One method
that helps Order MCMC (Friedman and Koller, 2003) to
correct this bias was proposed by Ellis and Wong (2008).

In this paper, first we develop a new algorithm that can ef-

ficiently sample orders according to the exact order pos-
terior under the assumption of order-modular prior. Next,
since a DAG consistent with a given order can be efficiently
sampled as described in (Friedman and Koller, 2003) (by
assuming fixed node-indegree), our order sampling algo-
rithm leads to the first algorithm (called DDS) that can effi-
ciently sample DAGs according to the exact DAG posterior
with the same order-modular prior assumption. Our DDS
algorithm has the same time and space complexity as the
exact DP algorithms (Koivisto and Sood, 2004; Koivisto,
2006), and is shown to be considerably more accurate and
more efficient than Order MCMC and Partial Order MCMC
when n is moderate so that our DDS algorithm is appli-
cable. Moreover, the estimator based on our DDS algo-
rithm has several desirable properties; for example, unlike
these MCMC algorithms, the quality of our estimator can
be guaranteed by controlling the number of DAGs sam-
pled by our DDS algorithm. The main application of our
DDS algorithm is to serve as a complement to the exact
DP algorithms (Koivisto and Sood, 2004; Koivisto, 2006;
Parviainen and Koivisto, 2011) (which can only work for
modular features or path features) to estimate the poste-
riors of arbitrary non-modular features such as combined
paths or limited-length paths, or to efficiently perform data
prediction tasks in estimating p(x|D) for a large number
of data cases. Finally, we develop an algorithm (called IW-
DDS) to correct the bias (due to the order-modular prior) in
the DDS algorithm using an idea refined from the one in El-
lis and Wong (2008). The estimator based on our IW-DDS
is consistent and asymptotically unbiased; and we empir-
ically show that our estimator is superior to the estima-
tors based on Hybrid MCMC (Eaton and Murphy, 2007)
and K-best method (Tian et al., 2010), two state-of-the-art
algorithms that can estimate the posterior of any feature
without the order-modular prior assumption. Analogously,
our IW-DDS algorithm serves as a complement to the exact
DP algorithm (Tian and He, 2009) to estimate the posteri-
ors of arbitrary non-modular features or to efficiently per-
form data prediction tasks.

The rest of the paper is organized as follows. In
Section 2 we briefly review the Bayesian approach to
learning Bayesian networks from data, the DP algo-
rithms (Koivisto and Sood, 2004; Koivisto, 2006) and Or-
der MCMC algorithm (Friedman and Koller, 2003). In
Section 3 we present our order sampling algorithm, DDS
algorithm and IW-DDS algorithm. We empirically demon-
strate the advantages of our algorithms in Section 4. Sec-
tion 5 concludes the paper.

2 BAYESIAN LEARNING OF BAYESIAN
NETWORKS

A Bayesian network is a DAG G that encodes a joint prob-
ability distribution over a set X = {X1, . . . , Xn} of ran-



dom variables with each node of the DAG representing a
variable in X . For convenience we typically work on the
index set V = {1, . . . , n} and represent a variable Xi by
its index i. We use XPai ⊆ X to represent the parent set
of Xi in a DAG G and use Pai ⊆ V to represent the corre-
sponding index set. Thus, a DAG G can be represented as
a vector (Pa1, . . . , Pan).

Assume that we are given a training data set D =
{x1, x2, . . . , xm}, where each xi is a particular instantia-
tion over the set of variables X . We only consider situa-
tions where the data are complete, that is, every variable in
X is assigned a value. In the Bayesian approach to learning
Bayesian networks from the training data D, we compute
the posterior probability of a DAG G as

p(G|D) =
p(D|G)p(G)

p(D)
=

p(D|G)p(G)∑
G p(D|G)p(G)

. (1)

Assuming global and local parameter independence,
and parameter modularity, p(D|G) can be decom-
posed into a product of local marginal likelihood (of-
ten called local scores) as (Cooper and Herskovits, 1992;
Heckerman et al., 1995)

p(D|G) =

n∏
i=1

p(xi|xPai : D) :=

n∏
i=1

scorei(Pai : D),

(2)

where, with appropriate parameter priors, scorei(Pai : D)
has a closed form solution. In this paper we will assume
that these local scores can be computed efficiently from
data. The standard assumption for structure prior p(G) is
structure-modular prior (Friedman and Koller, 2003):

p(G) =

n∏
i=1

pi(Pai). (3)

where pi is some nonnegative function over the subsets of
V − {i}.

Combing Eq. (2) and Eq. (3), we have

p⊀(G,D) = p(D|G)p(G) =
n∏

i=1

scorei(Pai : D)pi(Pai).

(4)

Note that the subscript ⊀ is intentionally added to mean
that the corresponding probability is the one obtained with-
out order-modular prior assumption. This is different
from the probability computed with order-modular prior as-
sumption, which will be marked by the subscript ≺ for the
distinction.

We can compute the posterior probability of any hypoth-
esis of interest by averaging over all the possible DAGs.

For example, we are often interested in computing the pos-
teriors of structural features. Let f be a structural feature
represented by an indicator function such that f(G) is 1
if the feature is present in G and 0 otherwise. By the full
Bayesian model averaging, we have the posterior of f as

p(f |D) =
∑
G

f(G)p(G|D), (5)

Note that p⊀(f |D) will be obtained if p(G|D) in Eq. (5) is
p⊀(G|D); p≺(f |D) will be obtained if p(G|D) in Eq. (5)
is p≺(G|D). This difference is the key to understanding
the bias issue which will be described in details later.

Since summing over all the possible DAGs is generally in-
feasible, one approach to computing the posterior of f is
to draw DAG samples {G1, . . . , GT } from the posterior
p⊀(G|D) or p≺(G|D), which can then be used to estimate
the posterior p⊀(f |D) or p≺(f |D) as

p̂(f |D) =
1

T

T∑
i=1

f(Gi). (6)

2.1 THE DP ALGORITHMS

The DP algorithms (Koivisto and Sood, 2004; Koivisto,
2006) work in the order space rather than the DAG space.
We define an order ≺ of variables as a total order (linear
order) on V represented as a vector (U1, . . . , Un) where
Ui is the set of predecessors of i in the order ≺. To be
more clear we may use U≺

i . We say that a DAG G =
(Pa1, . . . , Pan) is consistent with an order (U1, . . . , Un),
denoted by G ⊆≺, if Pai ⊆ Ui for each i. If S is a sub-
set of V , we let L(S) denote the set of linear orders on S.
In the following we will largely follow the notation from
Koivisto (2006).

The algorithms working in the order space assume order-
modular prior defined as follows: if G is consistent with ≺,
then

p(≺, G) =

n∏
i=1

qi(Ui)ρi(Pai). (7)

where each qi and ρi is some function from the subsets
of V − {i} to the nonnegative real numbers. (If G is not
consistent with ≺, then p(≺, G) = 0.)

A modular feature is defined as:

f(G) =
n∏

i=1

fi(Pai), (8)

where fi(Pai) is an indicator function returning a 0/1
value. For example, an edge j → i can be represented
by setting fi(Pai) = 1 if and only if j ∈ Pai and setting
fl(Pal) = 1 for all l ̸= i.



With the order-modular prior, we are interested in the pos-
terior p≺(f |D) = p≺(f,D)/p≺(D). p≺(f |D) can be ob-
tained if the joint probability p≺(f,D) can be computed
(since p≺(D) = p≺(f ≡ 1, D) where f ≡ 1, meaning that
f always equals 1, can be easily achieved by setting each
fi(Pai) to be the constant 1). Koivisto and Sood (2004)
show that

p(f,≺, D) =
n∏

i=1

αi(U
≺
i ), (9)

and

p≺(f,D) =
∑
≺

n∏
i=1

αi(U
≺
i ), (10)

where the function αi is defined for each i ∈ V and each
S ⊆ V − {i} as

αi(S) = qi(S)
∑

Pai⊆S

βi(Pai), (11)

in which the function βi is defined for each i ∈ V and each
Pai ⊆ V − {i} as

βi(Pai) = fi(Pai)ρi(Pai)scorei(Pai : D). (12)

Now the summation over the order space is computed by
defining the following function for each S ⊆ V :

L(S) =
∑

≺∈L(S)

∏
i∈S

αi(U
≺
i ), (13)

where U≺
i is the set of variables in S ahead of i in the

order ≺∈ L(S). It can be shown that for every S ⊆ V
the corresponding L(S) can be computed recursively us-
ing the DP technique according to the following equation
(Koivisto and Sood, 2004; Koivisto, 2006):

L(S) =
∑
i∈S

αi(S − {i})L(S − {i}), (14)

starting with L(∅) = 1 and ending with L(V ). Combining
Eq. (10) and Eq. (13), we have

p≺(f,D) = L(V ). (15)

The DP algorithm (Koivisto and Sood, 2004) can only
compute the posteriors of modular features. In this pa-
per, we will show how to use the results of DP algorithm
(Koivisto and Sood, 2004) to efficiently draw DAG sam-
ples, which can then be used to compute the posteriors of
arbitrary features.

2.2 ORDER MCMC

The idea of Order MCMC is to use Metropolis-Hastings
algorithm to draw order samples {≺1, . . . ,≺No} that have

p(≺ |D) as the invariant distribution, where No is the num-
ber of sampled orders. For this purpose we need be able to
compute p(≺, D), which can be obtained from Eq. (9) by
setting f ≡ 1. Let β′

i(Pai) denote βi(Pai) resulted from
setting each fi(Pai) to be the constant 1 . We define α′

i(S)
and L′(S) similarly. Then from Eq. (9) and (15) we have

p(≺, D) =
n∏

i=1

α′
i(U

≺
i ), (16)

and

p≺(D) = L′(V ). (17)

Order MCMC can estimate the posterior of a modular fea-
ture as

p̂≺(f |D) =
1

No

No∑
i=1

p(f | ≺i, D). (18)

For example, from Proposition 3.1 in
(Friedman and Koller, 2003) as well as the definition
of β′

i and α′
i, the posterior of a particular choice of parent

set Pai ⊆ U≺
i for node i given an order is

p(Pai| ≺, D) =
β′
i(Pai)

α′
i(U

≺
i )/qi(U

≺
i )

. (19)

In order to compute arbitrary non-modular features, we fur-
ther draw DAG samples after drawing No order samples.
Given an order, a DAG can be sampled by drawing parents
for each node according to Eq. (19). Given DAG samples
{G1, . . . , GT }, we can then estimate any feature posterior
p≺(f |D) using p̂≺(f |D) shown in Eq. (6).

3 ORDER SAMPLING ALGORITHM
AND DAG SAMPLING ALGORITHMS

3.1 ORDER SAMPLING ALGORITHM

In this subsection, we show that using the results including
α′
i(S) (for each i ∈ V and each S ⊆ V − {i}) and L′(S)

(for each S ⊆ V ) of the DP algorithm (Koivisto and Sood,
2004), we can draw order samples efficiently by drawing
each element in the order one by one. Let an order ≺ be
represented as (σ1, . . . , σn) where σi is the ith element in
the order.

Proposition 1 The conditional probability that the kth
(1 ≤ k ≤ n) element in the order is σk given that the
n − k elements after it along the order are σk+1, . . . , σn

respectively is as follows:

p(σk|σk+1, . . . , σn, D) =
L′(U≺

σk
)α′

σk
(U≺

σk
)

L′(U≺
σk+1

)
, (20)



where σk ∈ V − {σk+1, . . . , σn}, and U≺
σi

= V −
{σi, σi+1, . . . , σn}.
Specifically for k = n, we essentially have

p(σn = i|D) =
L′(V − {i})α′

i(V − {i})
L′(V )

, (21)

where i ∈ V .

Note that all the proofs in this paper are omitted due to the
space constraint. 1

Note that it is clear that for each k ∈ {1, . . . , n},∑
i∈U≺

σk+1
p(σk = i|σk+1, . . . , σn, D) = 1 because

of Eq.(14) and U≺
σk

= U≺
σk+1

− {σk}. Thus,
p(σk|σk+1, . . . , σn, D) is a probability mass function
(pmf) with k possible σk values from U≺

σk+1
.

Based on Proposition 1, we propose the following order
sampling algorithm to sample an order ≺:

• Sample σn, the last element of the order ≺, according
to Eq. (21).

• For each k from n − 1 down to 1: given the sampled
(σk+1, . . . , σn), sample σk, the kth element of the or-
der ≺, according to Eq. (20).

The following proposition guarantees the correctness of our
order sampling algorithm.

Proposition 2 An order ≺ sampled according to our order
sampling algorithm has its pmf equal to the exact posterior
p(≺ |D) under the order-modular prior, because

n∏
k=1

p(σk|σk+1, . . . , σn, D) = p(≺ |D). (22)

3.2 DDS ALGORITHM

After drawing an order sample, then we can easily sam-
ple a DAG by drawing parents for each node according to
Eq. (19) as described in (Friedman and Koller, 2003) (by
assuming fixed node-indegree). This naturally leads to our
algorithm, termed Direct DAG Sampling (DDS), as fol-
lows:

• Step 1: Run DP algorithm (Koivisto and Sood, 2004)
(i.e., the first three steps of DP algorithm (Koivisto,
2006)) with each fi(Pai) set to be the constant 1.

• Step 2 (Order Sampling Step): Sample No orders such
that each order ≺ is independently sampled according
to our order sampling algorithm.

1 All the material that is omitted in this pa-
per due to the space constraint has been pro-
vided in the supplementary material by the link
http://www.cs.iastate.edu/∼rhe/BySampling/.

• Step 3 (DAG Sampling Step): For each sampled or-
der ≺, one DAG is independently sampled by draw-
ing a parent set for each node of the DAG according
to Eq. (19).

The following theorem guarantees the correctness of our
DDS algorithm.

Theorem 1 The No DAGs sampled according to DDS al-
gorithm are independent and identically distributed (iid)
with the pmf equal to the exact posterior p≺(G|D) under
the order-modular prior.

Given DAG samples, p̂≺(f |D), the estimator for the exact
posterior of any arbitrary feature f , can be constructed by
Eq. (6).

The time complexity of DDS algorithm is as follows. Step
1 takes O(nk+1C(m) + kn2n) time (Koivisto and Sood,
2004), where n is the number of nodes, k is the assumed
constant maximum in-degree, and C(m) is the cost of com-
puting a single local marginal likelihood scorei(Pai : D)
for m data instances. In Step 2, each order sampling takes
O(n2) time. In Step 3, each DAG sampling takes O(nk+1)
time. Thus, the overall time complexity of our DDS algo-
rithm is O(nk+1C(m) + kn2n + n2No + nk+1No). Since
typically we assume k ≥ 1, the order sampling process
(Step 2) does not affect the overall time complexity of DDS
algorithm because of its efficiency. (We have also used
some strategy for Step 3 which can often greatly reduce
its real running time when m is not small. The details are
omitted due to the space constraint. ) The space complex-
ity of our DDS algorithm is O(n2n), the same as the one
of DP algorithm (Koivisto and Sood, 2004).

The estimator p̂≺(f |D) based on our DDS algorithm has
several desirable properties due to Theorem 1.

Corollary 1 For any structural feature f , with respect to
the exact posterior p≺(f |D), the estimator p̂≺(f |D) based
on the No DAG samples from DDS algorithm using Eq. (6)
has the following properties:

(i) p̂≺(f |D) is an unbiased estimator for p≺(f |D).

(ii) p̂≺(f |D) converges almost surely to p≺(f |D).

(iii) p̂≺(f |D) is a consistent estimator for p≺(f |D), i.e.,
p̂≺(f |D) converges in probability to p≺(f |D).

(iv) For any ϵ > 0, any 0 < δ < 1, if No ≥ ln(2/δ)/(2ϵ2),
then p(|p̂≺(f |D)− p≺(f |D)| < ϵ) ≥ 1− δ.

In particular, Corollary 1 (iv), which is essentially from
Hoeffding bound (Hoeffding, 1963; Koller and Friedman,
2009), states that in order to ensure that the probability that
the error of the estimator p̂≺(f |D) from DDS algorithm is
bounded by ϵ is at least 1 − δ, we just need to require the
sample size No ≥ ln(2/δ)/(2ϵ2). This property, which the



MCMC algorithms do not have, can be used to obtain qual-
ity guarantee for the estimator from our DDS algorithm.

3.3 IW-DDS ALGORITHM

In this section we present our DAG sampling algorithm un-
der the general structure-modular prior (Eq. (3)) by effec-
tively correcting the bias due to the use of order-modular
prior.

As mentioned in Section 1, p≺(f |D) has the bias due
to the assumption of order-modular prior. This is essen-
tially because p≺(G|D), which equals

∑
≺s.t.G⊆≺ p(G,≺

|D), does not equal p⊀(G|D) which is based on the stan-
dard structure-modular prior assumption instead of order-
modular prior assumption. In fact, with the common
setting that qi(Ui) always equals 1 (qi(Ui) ≡ 1), if
ρi(Pai) in Eq. (7) is set to be always equal to pi(Pai) in
Eq. (3) (ρi(Pai) ≡ pi(Pai)), the following relation holds
(Ellis and Wong, 2008):

p≺(G|D) ∝ | ≺G | · p⊀(G|D) (23)

where | ≺G | is the number of orders that G is
consistent with and | ≺G | is #P hard to compute
(Brightwell and Winkler, 1991).

Noticing this problem, Ellis and Wong (2008) propose to
correct this bias for Order MCMC method as follows: first
run Order MCMC to draw order samples; then for each
unique order ≺ out of the sampled orders, keep drawing
DAGs consistent with ≺ until the sum of joint probabilities
for the unique sampled DAGs,

∑
i p(Gi,≺, D), is no less

than a pre-specified large proportion (such as 95%) of p(≺
, D) =

∑
G⊆≺ p(G,≺, D); finally the resulting union of

all the DAG samples is treated as an importance-weighted
sample for the structural discovery.

By refining the idea of Ellis and Wong (2008), here we
propose our bias-corrected algorithm, termed IW-DDS
(Importance-weighted DDS), as follows:

• Step 1 (DDS Step): Run DDS algorithm with the set-
ting that qi(Ui) ≡ 1 and ρi(Pai) ≡ pi(Pai).

• Step 2 (Bias Correction Step): Make the union set G
of all the sampled DAGs by eliminating the duplicate
DAGs.

Given G, p̂⊀(f |D), the estimator for the exact posterior of
any feature f , can then be constructed as

p̂⊀(f |D) =
∑
G∈G

f(G)p̂⊀(G|D), (24)

where

p̂⊀(G|D) =
p⊀(G,D)∑

G∈G p⊀(G,D)
, (25)

and p⊀(G,D) is given in Eq. (4).

Note that the time and space complexity of our IW-DDS
algorithm are the same as the ones of our DDS algorithm.

While Ellis and Wong (2008) show the effectiveness of
their methods in correcting the bias merely by the exper-
iments, we first prove good properties of p̂⊀(f |D) based
on our IW-DDS as follows.

Theorem 2 For any structural feature f , with respect
to the exact posterior p⊀(f |D), the estimator p̂⊀(f |D)
based on the DAG samples from IW-DDS algorithm using
Eq. (24) has the following two properties:

(i) p̂⊀(f |D) is a consistent estimator for p⊀(f |D), i.e.,
p̂⊀(f |D) converges in probability to p⊀(f |D).

(ii) p̂⊀(f |D) is an asymptotically unbiased estimator for
p⊀(f |D).

The proof for (i) utilizes Theorem 5.5.13 and Slutsky’s
Theorem (Theorem 5.5.17) in (Casella and Berger, 2002).
Proof for (ii) mainly depends on Taylor’s Theorem (with
Lagrange form of the remainder). The details of the proofs
are omitted due to the space constraint.

The competing state-of-the-art algorithms also appli-
cable in BNs of moderate size are Hybrid MCMC
(Eaton and Murphy, 2007) whose first phase runs
DP algorithm (Koivisto, 2006) with time complexity
O(nk+1C(m)+ kn2n) and space complexity O(n2n);
and K-best (Tian et al., 2010) with time complex-
ity O(nk+1C(m)+ K2n2n−1) and space complexity
O(Kn2n). When n > 17, K can only take some moderate
value (such as no more than 100) in order to make K-best
method feasible in current desktop computers.

4 EXPERIMENTAL RESULTS

We have implemented our algorithm in C++ language
and we run several experiments to demonstrate its ca-
pabilities. The tested data sets include one real data
set “Letter” from the UCI Machine Learning Reposi-
tory (Asuncion and Newman, 2007), one synthetic data set
“Syn15” generated from a gold-standard 15-node Bayesian
network built by us, and one synthetic data set “Child”
used in (Tsamardinos et al., 2006). All the data sets contain
discrete variables (or are discretized) and have no missing
values. All the experiments in this section were run un-
der Linux on one ordinary desktop PC with a 3.0GHz Intel
Pentium processor and 2.0GB of memory if no extra speci-
fication is provided. In addition, the maximum in-degree k
is assumed to be 5 for all the experiments.



4.1 EXPERIMENTAL RESULTS FOR DDS

In this subsection, we compare our DDS algorithm with
Partial Order MCMC method (Niinimaki et al., 2011), the
state-of-the-art learning method under the order-modular
prior.

Partial Order MCMC (PO-MCMC) method is imple-
mented in BEANDisco2, a C++ language tool provided
by Niinimaki et al. (2011). The current version of BEAN-
Disco can only estimate the posterior of edge feature, but
as Niinimaki et al. (2011) have stated, PO-MCMC readily
enables estimating the posterior of any structural feature by
further sampling DAGs consistent with an order.

Since n (the size of the problems) is moderate, we are
able to use REBEL, a C++ language implementation of the
DP algorithm in (Koivisto, 2006), to get the exact poste-
rior of every edge under the assumption of order-modular
prior. Thus we can use the criterion of the sum of the
absolute differences (SAD) (Eaton and Murphy, 2007) to
measure the feature learning performance, where SAD is∑

ij |p≺(i → j|D) − p̂≺(i → j|D)|, p≺(i → j|D) is the
exact posterior of edge i → j and p̂≺(i → j|D) is the cor-
responding estimator. The smaller SAD will indicate the
better performance in structure discovery.

For the fair comparison, for our algorithms, we used the K2
score (Heckerman et al., 1995) and we set qi(Ui) = 1 and
ρi(Pai) = 1/

(
n−1
|Pai|

)
for each i, Ui, Pai, where |Pai| is

the size of the set Pai, since such a setting is used in both
BEANDisco and REBEL.

For the setting of PO-MCMC, we set bucket size b to be
10, which is based on the suggestion for the optimal setting
from Niinimaki et al. (2011). We run the first 10, 000 itera-
tions for “burn-in”, and then took 200 partial order samples
at intervals of 50 iterations, thus, 20, 000 iterations in total.
(The time cost of each iteration in PO-MCMC is O(nk+1+
n22bn/b).) In PO-MCMC, for each sampled partial or-
der Pi, p(f |D,Pi) is obtained by p(D, f, Pi)/p(D,Pi)
= p(D, f, Pi)/p(D, f ≡ 1, Pi), where p(D, f, Pi) =∑

≺⊇Pi

∑
G⊆≺ f(G)p(G,≺)p(D|G). (Notation

∑
≺⊇Pi

means that each total order ≺ that is a linear extension
of the sampled partial order Pi will be included to obtain
p(D, f, Pi).) Finally, the estimated posterior of each edge
is computed using p̂≺(f |D) = (1/T )

∑T
i=1 p(f |D,Pi).

For DDS algorithm, we just set No = 20, 000, that is,
20, 000 (total) orders were sampled.

Table 1 shows experimental results in terms of both SAD
and total running time Tt for each data case with n vari-
ables and m instances. For each of two methods, we per-
formed 15 independent runs for each data case. The sample
mean and the sample standard deviation of SAD of each

2BEANDisco is available at
http://www.cs.helsinki.fi/u/tzniinim/BEANDisco/.

method, denoted by µ̂(SAD) and σ̂(SAD) respectively, are
listed along each column in Table 1. Correspondingly, the
sample mean of the total running time Tt of each method,
denoted by µ̂(Tt), is also shown in Table 1. In addition, the
sample mean of the running time of DAG sampling step of
DDS, denoted by µ̂(TDAG), is listed along the last column
in Table 1.

Table 1 clearly illustrates the performance advantage of
our DDS method over PO-MCMC method. The overall
time costs of our DDS based on 20, 000 DAG samples are
much smaller than the corresponding ones of PO-MCMC
method based on 20, 000 MCMC iterations in the partial or-
der space. Using much smaller time, µ̂(SAD) and σ̂(SAD)
using our DDS method are much smaller than the ones us-
ing PO-MCMC method for 16 out of all the 18 data cases.
The two exceptional cases are Syn15 with m = 2, 000
and Syn15 with m = 5, 000. Furthermore, since both
µ̂(SAD) and σ̂(SAD) are given, by the two-sample t test
(Casella and Berger, 2002) with unequal sample variance,
we can conclude with strong evidence (with level 0.001)
that the real mean of SAD using our DDS method is smaller
than the real mean of SAD using PO-MCMC method for
each of these 16 data cases. For each of these two excep-
tions, by the same t test we can conclude (with p-value
> 0.2) the null hypothesis that there is no significant dif-
ference in the real means of SAD.

4.2 EXPERIMENTAL RESULTS FOR IW-DDS

In this subsection, we compare our IW-DDS algo-
rithm with Hybrid MCMC (i.e., DP+MCMC) method
(Eaton and Murphy, 2007) and K-best method (Tian et al.,
2010), two state-of-the-art methods that can estimate
the posteriors of any features without the order-modular
prior assumption. The implementation of Hybrid MCMC
method (called BDAGL) and the implementation of K-best
method are both made available online by their correspond-
ing authors.

Again, since n is moderate, we are able to use POSTER,
a C++ language implementation of the DP algorithm
(Tian and He, 2009) to get the exact posterior of each edge
under the assumption of structure-modular prior instead of
order-modular prior. Thus we can also use SAD criterion
(
∑

ij |p⊀(i → j|D) −p̂⊀(i → j|D)|) to measure the per-
formance of these three methods in the structural learning.

For the fair comparison, for our algorithm we used the
BDeu score (Heckerman et al., 1995) with equivalent sam-
ple size 1 and set pi(Pai)(≡ ρi(Pai)) ≡ 1, since these
settings are also used in POSTER and the implementation
of K-best method.

As for DP+MCMC methods, we note that the most part
of its implementation (in BDAGL tool) is written in Mat-
lab, which is different from the tool of K-best method



Table 1: The Comparison of PO-MCMC & DDS in Terms of SAD and Time (Time Is in Seconds)

Name n m PO-MCMC DDS PO-MCMC DDS DDS
µ̂(SAD) σ̂(SAD) µ̂(SAD) σ̂(SAD) µ̂(Tt) µ̂(Tt) µ̂(TDAG)

Syn15 15 100 0.9024 0.2258 0.2622 0.0190 677.29 6.94 3.09
200 0.6449 0.1569 0.2228 0.0172 677.47 8.74 3.78
500 0.3424 0.1214 0.1116 0.0126 686.51 8.24 0.53

1,000 0.1558 0.0496 0.0724 0.0118 716.31 12.48 0.24
2,000 0.0465 0.0209 0.0473 0.0071 731.50 21.18 0.15
5,000 0.0217 0.0144 0.0247 0.0086 731.05 48.21 0.14

Letter 17 100 0.9530 0.1285 0.2948 0.0229 1,322.43 23.40 8.19
200 0.3854 0.0825 0.1758 0.0142 1,315.01 20.44 1.78
500 0.4369 0.1529 0.1326 0.0107 1,338.33 28.46 1.35

1,000 0.3007 0.1254 0.0828 0.0171 1,343.88 39.47 0.43
2,000 1.3740 0.9177 0.1386 0.0288 1,358.29 62.63 0.42
5,000 0.0669 0.0139 0.0292 0.0088 1,610.37 130.26 0.28

Child 20 100 0.4997 0.1153 0.1772 0.0146 3,710.49 197.62 96.64
200 0.1896 0.0528 0.0982 0.0101 3,717.10 183.31 71.19
500 0.2385 0.0702 0.0816 0.0123 3,757.76 207.17 70.62

1,000 0.1079 0.0525 0.0406 0.0080 3,799.47 199.13 25.15
2,000 0.0864 0.0521 0.0275 0.0083 4,018.03 269.05 26.34
5,000 0.0938 0.0539 0.0246 0.0066 4,531.20 483.74 31.51

and our tool which are written in C++. In order to make
the relatively fair comparison in terms of running time,
we used REBEL tool, a C++ implementation of DP al-
gorithm (Koivisto, 2006), to perform the computation in
the DP phase (but we changed its scoring criterion into
the BDeu score with equivalent sample size 1 and set
qi(Ui) ≡ 1 and ρi(Pai) ≡ 1). To perform the compu-
tation in the MCMC phase, we had to use Matlab imple-
mentation and we ran it under Windows 7 on an ordinary
laptop with 2.40 Intel Core i5 CPU and 4.0 GB memory.
The MCMC used the pure global proposal (with local pro-
posal choice β = 0) since such a setting was reported in
(Eaton and Murphy, 2007) to have the best performance
for edge discovery when up to about 190, 000 MCMC it-
erations were performed in their experimental results. We
ran totally 190,000 MCMC iterations each time and dis-
carded the first 100,000 iterations as burn-in period. Then
we set the thinning parameter as 3 to get the final 30,000
DAG samples. As a result, the time statistics of the DP
phase (the number before + sign) but not the MCMC phase
(the number after + sign) can be directly compared with
the ones of the other two methods. For each data case, we
performed 20 independent MCMC runs based on the DP
outcome from REBEL to get the results.

For our method, we set No = 30, 000. We performed
20 independent runs for each data case to get the results.
With reference to K-best method, note that SAD of K-best
method is fixed since there is no randomness in the com-
puted results. So we only run it once to get the result. We
set K to be 100 for Syn15 and Letter, i.e., we got the 100
best DAGs from each of six cases of Syn15 and each of six
cases of Letter. We set K to be only 20 for Child because
our experiments showed that for Child K-best program run

out of memory with the setting of K > 20.

Table 2 shows experimental results in terms of both SAD
and total running time Tt for each data case. The table
clearly demonstrates that the advantage of our method over
the other two methods. By using much less computation
time, µ̂(SAD) using our method is less than the correspond-
ing one using DP+MCMC method for 17 out of the 18 data
cases. The only exceptional case is Syn15 with m = 200.
Furthermore, based on the two-sample t test with unequal
variance, we can conclude with level 0.05 that the real
mean of SAD using our method is less than the correspond-
ing one using DP+MCMC method for 16 out of the 18
cases. The two exceptional cases are Syn15 with m = 100
and Syn15 with m = 200. Similarly, using much less com-
putation time, µ̂(SAD) of our method is less than the one
using K-best method for 17 out of 18 cases. The only ex-
ception is Syn15 with m = 5,000. Furthermore, based on
the one-sample t test (Casella and Berger, 2002), we can
conclude with level 1 × 10−4 that the real mean of SAD
using our method is less than the corresponding one using
K-best method for each of these 17 cases.

4.3 LEARNING PERFORMANCE OF
NON-MODULAR FEATURES

In Section 4.1 and 4.2 we did not provide experimental
results on the learning performance of non-modular fea-
tures. We did not do so in Section 4.2 because there
is no known method to compute the true/exact posterior
probability of any non-modular feature p⊀(f |D) except by
the brute force enumeration over all the (super-exponential
number of) DAGs so that the quality of the correspond-
ing p̂⊀(f |D) learned from any method cannot be precisely
measured. We did not do so in Section 4.1 because the



Table 2: The Comparison of DP+MCMC, K-best & IW-DDS in Terms of SAD and Time (Time Is in Seconds)

Name n m DP+MCMC K-best IW-DDS DP+MCMC K-best IW-DDS IW-DDS
µ̂(SAD) σ̂(SAD) SAD µ̂(SAD) σ̂(SAD) µ̂(Tt) Tt µ̂(Tt) µ̂(TDAG)

Syn15 15 100 12.8705 7.6384 11.8685 10.1216 0.1650 4.96 + 1,284.00 901.83 9.21 4.81
200 4.5090 2.5875 7.5232 4.9225 0.0605 5.98 + 1,286.20 913.09 9.97 4.53
500 5.5466 1.9175 4.4379 4.2333 0.1854 8.92 + 1,336.80 911.28 9.46 1.14

1,000 0.3974 0.3299 0.0848 0.0497 0.0061 13.70 + 1,364.60 922.62 12.92 0.39
2,000 1.8263 1.7095 0.3701 0.0999 0.0187 22.71 + 1,372.10 918.88 21.96 0.36
5,000 0.0304 0.0094 8.89E-4 0.0021 0.0002 48.72 + 1,356.70 944.82 52.01 0.34

Letter 17 100 27.1507 4.0940 24.4313 15.9160 0.3181 24.37 + 1,572.60 7,650.88 19.28 2.89
200 15.1587 3.5615 9.4512 6.7787 0.1032 28.20 + 1,576.80 7,978.11 24.14 4.25
500 3.4637 4.6789 1.7237 0.6364 0.0101 36.79 + 1,598.90 8,269.46 28.92 1.06

1,000 0.1761 0.0166 0.0837 0.0739 0.0028 48.60 + 1,575.60 8,392.43 40.31 0.61
2,000 3.5085 3.1132 2.0976 0.1328 0.0193 72.09 + 1,591.00 7,631.15 64.47 0.83
5,000 0.1182 0.0442 0.0160 0.0073 0.0004 136.88 + 1,636.40 8,146.71 131.12 0.71

Child 20 100 11.8987 3.1086 11.6189 7.0372 0.1084 200.43 + 1,785.10 15,097.72 237.13 134.66
200 4.7066 4.3749 5.0729 2.8646 0.0242 207.91 + 1,760.80 14,234.72 239.38 126.25
500 2.4716 1.3489 1.5304 0.5315 0.0274 234.10 + 1,818.70 14,028.80 218.00 79.28

1,000 2.6061 2.2909 0.7066 0.1507 0.0172 274.21 + 1,817.20 15,516.68 231.26 53.90
2,000 1.4286 1.2290 1.5279 0.0758 0.0537 346.99 + 1,841.40 16,121.77 295.95 47.21
5,000 1.2533 1.7313 0.8783 0.0153 0.0015 555.79 + 1,846.40 15,384.47 508.86 53.11

current PO-MCMC tool (BEANDisco) only supports to es-
timate the posterior of edge feature so that the compari-
son of our method and PO-MCMC can only be limited
in terms of edge feature. (Thus, we did not make the
comparison in terms of path feature (which is one partic-
ular non-modular feature), though there exists the DP al-
gorithm (Parviainen and Koivisto, 2011) that can compute
the exact posterior of a path feature p≺(f |D).) Our idea
is that by showing our algorithms have significantly bet-
ter performance in computing one feature (directed edge
feature), which should be due to the better quality of our
DAG samples with respect to the corresponding p⊀(G|D)
or p≺(G|D), we expect they will also be superior in com-
puting other features using the same set of DAG samples.

To verify our expectation, we performed the experiments
on the real data set “Iris” (with n = 5) from the UCI Ma-
chine Learning Repository (Asuncion and Newman, 2007)
and the well-studied data set “Coronary” (Coronary Heart
Disease) (with n = 6) (Edwards, 2000). Since n is small,
by enumerating all the DAGs we were able to compute
p⊀(fi|D), the true posterior probability for several inter-
esting non-modular features: f1, a directed path feature;
f2, a limited-length directed path feature that has its path
length no more than 2; f3, a combined directed path fea-
ture that represents a directed path from node i via node j
to node k. Then we compared SAD performance of (di-
rected) edge feature from DP+MCMC, K-best and IW-
DDS with the corresponding SAD performance of feature
fi (i ∈ {1, 2, 3}) from these three methods. The experi-
mental results on both data sets show that if SAD of IW-
DDS is significantly smaller than SAD of the competing
method (DP+MCMC or K-best) in terms of edge feature,
then SAD of IW-DDS will also be smaller (usually sig-

nificantly smaller) than SAD of the competing method in
terms of each feature fi. Thus, our expectation is supported
by the experiments. The detailed experimental results are
omitted due to the space constraint.

4.4 PERFORMANCE GUARANTEE FOR DDS
ALGORITHM

To testify the quality guarantee for the estimator based on
DDS algorithm (Corollary 1 (iv)), we performed the exper-
iments based on two data cases (Syn15 with m = 100 and
Letter with m = 100) which have relatively large µ̂(SAD)
shown in Table 1. Based on the hypothesis testing, we can
conclude with very strong evidence that performance guar-
antee for our estimator holds on both data cases. The details
are omitted due to the space constraint.

5 CONCLUSION

We develop new algorithms for efficiently sampling DAGs
in problems of moderate size. The sampled DAGs can then
be used to build the estimators for the posteriors of any
features. The corresponding estimators have good proper-
ties; for example, performance guarantee can be provided
for our estimator when assuming the order-modular prior.
Our algorithms serve as the complements to the exact algo-
rithms (Koivisto and Sood, 2004; Parviainen and Koivisto,
2011; Tian and He, 2009) to estimate the posteriors of ar-
bitrary non-modular features. We empirically show that
our algorithms perform considerably better than previous
state-of-the-art methods with or without assuming order-
modular prior.
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