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Causal Structure Search
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Our Procedure
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Search Space Assumptions

• Causal Markov

• Causal Faithfulness

• overlapping data sets

• set of variables is jointly causally insufficient

• cyclic or acyclic causal structure

• experimental and observational data sets

• d-separation oracle
- in the cyclic case we can consider a linear Gaussian 

parameterization (see Spirtes, 1995)

- known problems for the discrete case (see Pearl & Dechter, 
1996, and Neal, 2000)
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d-separation

path: sequence of consecutive edges in the graph, without any 
restrictions on the types or orientations of the edges involved.

d-separation: a path is d-connecting with respect to a 
conditioning set C if every collider c on the path is in C and 
no other nodes on the path are in C, otherwise the path is d-
separated. Two nodes are d-connected if there is a d-
connecting path between the two nodes. 
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SATisfiability solver

• finds a truth value assignment for a Boolean formula in 
Conjunctive Normal Form (CNF)

• a Boolean term X is a backbone variable if X takes the 
same value (T or F) in all satisfying truth value assignments 
of a given formula
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Encoding: track the endpoints of paths
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Encoding continued

8

x y
l x yz

yzx

∨⇔
�

z/∈C

�

z∈C

1

1

l − 1

l − 1

x yz

�

z/∈C

1 l − 1

∨ x yz

�

z/∈C

1 l − 1 ∨

⇔
x y{ if y /∈ J

0 otherwise

⇔
x y{ 0 otherwise

if x, y /∈ J

⇔ 0

x
1 y

x
1 y

x
1 y



9

longest path 
that needs to be 

considered:
l_max = 2n-4 
where n = |V|



Example of Encoding

For a network of n=10 variables

• 10*9+10*9/2 = 135 possible edges (incl. confounders)

• 2^135 ~ 10^40 different graphs
For a data set

• 10*9/2*2^8 = 11520 different conditional dsep/dcon 
relations

• 2^10 = 1024 different intervention sets

• longest d-connecting path that needs to be considered is 
lmax = 2*n-4 = 16

• ~ 5million path variables

• Gigabytes of CNF formulas, but only define those that you 
need!
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Algorithm

Proceed in order of conditioning set size

• heuristically find unknown d-separation / d-
connection relations and determine them.

• Encode the relations into the working formula F, 
including definitions as needed.

• Determine the “backbone” of F using the SAT-
solver, i.e. for each pair of variables (x,y) in V and 
for each edge type determine whether it is

- present in all causal structures consistent 
with the input.

- absent in all causal structures consistent with 
the input.

- unknown, i.e. present in some, and absent in 
other causal structures consistent with the 
input.
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Test Pruning Heuristic

• Given an intermediary solution of present, absent & 
unknown edges:

- Consider a minimal model: all unknown edges absent

- Consider a maximal model: all unknown edges present

- Search for d-separation relations in which the minimal 
and maximal model differ

- Omit tests that contain nodes that cannot be on a d-
connecting path (e.g. nodes known to be disconnected)
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Compare to FCI or CCD

• Both FCI and CCD use a representation of the current 
equivalence class to inform the choice of next 
independence test

• For our search space we have no such representation

- recall the blow-up of the equivalence class in the search 
space of acyclic models in overlapping data sets for the 
ION and IOD algorithm (see Tillman et al. 2009, Triantafillou et al. 
2010)

13



Completeness

• The procedure is d-separation complete: it determines all d-
separation relations that can be determined given the data 
sets (without, in general, doing all possible tests).

- in restricted search spaces we can copy the test 
schedules of e.g. PC, FCI, CCD or ION for efficiency 
(while integrating background or experimental 
constraints)
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Simulations: Complexity & Identifiability

(a) Median runtime of the procedure as a function of the total 
number of nodes in the model.

(b)Proportion of edges (solid lines) and absences of edges 
(dashed) identified as a function of max |C|

100 graphs, edge probability 0.2, 10 overlapping experiments with equal probability for 
each node to be observed, intervened or hidden.
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Simulations: Search Space Assumptions

• Proportion of directed edge presences and absences 
identified, under various model space assumptions, for 
acyclic true models without latent variables (left), acyclic 
models with latents (center), and cyclic models without 
latents (right).
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Handling Statistical Errors

• do what any other constraint based methods do

- retract and return “don’t knows” when conflicts arise

- focus on reliable tests first and stop

- different cut-offs for d-separation vs. d-connection

- try doing some type of false discovery rate control

➡ use weighted maxSAT techniques
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Developments

• encodings that are query specific 

• encodings that scale

• scheduling test selection vs. SAT-solving

• use of more expressive solvers
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Conclusion

• a constraint based inference procedure for a search space 
that includes causal models with latents and cycles

• combination of input obtained from experimental or 
observational overlapping data sets

• inclusion of wide variety of background 
knowledge

- change to a query based approach to causal discovery

- code package availabe
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