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Abstract

Whether parameters of a DAG model with
hidden variables can be identified is a diffi-
cult question. Here we give algebraic argu-
ments establishing identifiability for two spe-
cial DAG models with certain restrictions on
the size of the finite state spaces of all vari-
ables. These results can be used to shed light
on many other models. As an illustration,
we address identifiability for all binary DAG
models with at most 5 nodes and a single hid-
den variable parental to all observable ones.

1 Introduction

A parameterized statistical model is said to have iden-
tifiable parameters if a joint distribution for that model
uniquely determines the parameters that produced it.
Identifiability of parameters is a basic property that
is essential for a model to be useful in most settings.
In this work we focus on graphical models specified
by directed acyclic graphs (DAGs), i.e. Bayesian net-
works not necessarily of the causal variety, and as-
sume all variables have finite state spaces. Related
work for undirected graphical models exists; see, for
example, Stanghellini and Vantaggi (2013). If all vari-
ables of a DAG model are observable, then under mild
assumptions (e.g., positivity of all parameters) param-
eter identifiability is easy to establish.

Work initiated by Pearl (1995, 2009) investigated the
identification of causal effects in causal Bayesian net-
works when some variables are assumed observable
and some others are hidden. In a non-parametric set-
ting, with no assumptions about the state space of
variables, there is a complete algorithm for determin-
ing which causal effects between variables are identi-
fiable (Huang and Valtorta, 2006; Shpitser and Pearl,
2008; Tian and Pearl, 2002; Pearl, 2012).

As powerful as this theory is, however, it does not
address identifiability when one does make assump-
tions about the nature of the hidden variables. In-
deed, by specializing to finite state spaces, causal ef-
fects that were non-identifiable according to the above
mentioned theory may become identifiable. One fun-
damental result is due to Kruskal (1977), as developed
in Allman et al. (2009).

More generally, with finite state spaces the question
of whether parameters are identifiable for DAG mod-
els with hidden variables can be cast in an algebraic
framework, as the parameterization map for such a
model is polynomial. Given a distribution arising
from the model, the parameters are identifiable pre-
cisely when a certain system of multivariate polyno-
mial equations has exactly one solution (up to label-
swapping of states for hidden variables). In princi-
ple, then, computational algebra software can be used
to investigate parameter identifiability. However, the
necessary calculations are usually intractable for even
moderately large DAGs and/or state spaces. In addi-
tion, one runs into issues of complex versus real roots,
and the difficulty of determining when real roots lie
within stochastic bounds.

As a step toward a general approach to understand-
ing parameter identifiability for DAG models, in this
paper we consider this question for all possible DAG
models with at most 5 binary variables, where one vari-
able is hidden and the parent of all observable vari-
ables. See Table 1 of the Appendix for these graphs.
For each such model, we establish that the parameter-
ization map is generically k-to-one for a specific value
of k. Our arguments are fundamentally algebraic, and
do not depend on any machine computations. One
particular example among these has also been studied
in Kuroki and Pearl (2012), with reference to a specific
causal effect.

We view the main contribution of this paper not as
the determination of parameter identifiability for these
specific models, but rather as the development of the



techniques by which we show our results. We believe
these examples will lead to a more general understand-
ing of identifiability for finite state DAG models. Ulti-
mately, one would like fairly simple graphical rules to
determine which parameters are identifiable, and per-
haps even to yield formulas for them in terms of the
joint distribution. While it is unclear to what extent
this is possible, even partial results covering only cer-
tain classes of DAGs, or some state spaces, are useful.

2 Discrete DAG models and
parameter identifiability

The models we consider are specified in part by DAGs
G = (V,E) in which nodes v ∈ V represent random
variables Xv, and directed edges in E imply certain
independence statements for the joint distribution of
all variables (Lauritzen, 1996). A bipartition of V =
O⊔H is given, in which variables associated to nodes in
O or H are observable or hidden, respectively. Finally,
we fix finite state spaces, of size nv for each variable
Xv.

A DAG G entails a collection of conditional indepen-
dence statements on the variables associated to its
nodes, via d-separation, or an equivalent separation
criterion in terms of the moral graph on ancestral
sets. The joint distribution of variables satisfying these
statements has a factorization according to G as

P =
∏
v∈V

P (Xv|Xpa(v)),

with pa(v) denoting the set of parents of v in the
DAG. We refer to the conditional probabilities θ =
(P (Xv|Xpa(v)))v∈V as the parameters of the DAG
model, and denote the space of all possible choices of
parameters by Θ = ΘG . The parameterization map for
the joint distribution of all variables, both observable
and hidden, is denoted

ϕ : Θ → ∆(
∏

v∈V nv)−1,

where ∆k is the k-dimensional probability simplex of
stochastic vectors in Rk+1. Thus ϕ(Θ) is precisely the
collection of all probability distributions satisfying the
conditional independence statements associated to G
(and possibly additional ones).

Since the probability distribution for the model with
hidden variables is obtained from that of the fully ob-
servable model, its parameterization map is

ϕ+ = σ ◦ ϕ : Θ → ∆(
∏

v∈O nv)−1,

where σ denotes the appropriate map marginalizing
over hidden variables. ϕ+(Θ) is thus the collection of

all distributions that may arise from the hidden vari-
able model. This collection depends not only on the
DAG and designated state spaces of observable vari-
ables, but also on the state spaces of hidden variables,
even though the sizes of hidden state spaces are not
readily apparent from an observable joint distribution.

Since all variables have finite state spaces, the param-
eter space Θ can be identified with the closure of an
open subset of [0, 1]L, for some L. We refer to L as
the dimension of the parameter space. In the case of
all binary variables, the dimension of Θ is easily seen
to be

dim(Θ) =
∑
v∈V

2|pa(v)| =
∞∑
k=0

mk2
k, (1)

where mk is the number of nodes in G with in-degree
k.

If a statement is said to hold for generic parameters or
generically then we mean it holds for all parameters
in a set of the form Θ r E, where the exceptional
set E is a proper algebraic subset of Θ. (Recall an
algebraic subset is the zero set of a finite collection
of polynomials.) As proper algebraic subsets of Rn

are always of Lebesgue measure zero, a statement that
holds generically can fail only on a set of measure zero.

As an example of this language, for any DAG model
with all variables finite and observable, generic param-
eters lead to a distribution faithful to the DAG, in the
sense that those conditional independence statements
implied by d-separation rules will hold, and no oth-
ers (Meek, 1995). Equivalently, a generic distribution
from such a model is faithful to the DAG.

There are several notions of identifiability of parame-
ters of a model; we refer the reader to Allman et al.
(2009). If a model has hidden variables an important
issue is label swapping, by which one can always per-
mute the names of the states of hidden variables, mak-
ing appropriate changes to the parameters, without
changing the joint distribution of the observable vari-
ables. Thus for a model with one binary hidden vari-
able, for any generic θ1 ∈ Θ there is at least one other
point θ2 ∈ Θ with ϕ+(θ1) = ϕ+(θ2). Note, however,
that there are exceptional parameter points which are
fixed by the label swapping, and thus are identifiable
in a strict sense.

The strongest useful notion of identifiability for mod-
els with hidden variables is that for generic θ1 ∈ Θ, if
ϕ+(θ1) = ϕ(θ2)

+, then θ1 and θ2 differ only up to la-
bel swapping for hidden variables. This notion is our
primary focus in this paper, which we refer to it as
generic identifiability up to label swapping. In particu-
lar, for models with a single binary hidden variable it



is equivalent to the parameterization map being gener-
ically 2-to-one.

3 Overview of results

In Table 1 of the Appendix, we list each of the binary
DAG models considered in this paper, up to the nam-
ing of the observable nodes. We number the graphs
as A-Bx where A = |O| = |V | − 1 is the number of
observed variables, B = |E| − |O| is the number of di-
rected edges between the observed variables, and x is a
letter appended to distinguish between several graphs
with these same features. As the table presents only
the case that all variables are binary, the joint distri-
bution lies in a space of dimension 2A − 1.

The primary information in this table is in the column
for k, indicating the parameterization map is gener-
ically k-to-one. In fact, the existence of such a k is
not obvious, and does not follow from the behavior of
general polynomial maps in real variables, as we now
review.

If a single polynomial p(x) in one variable is given, of
degree n, then it is well known that the map from C to
C that it defines will be generically n-to-one. Indeed
the equation p(x) = a will be of degree n for each
choice of a, and generically will have n distinct roots.
This fact generalizes to polynomial maps from Cn to
Cm; there always exists a k ∈ N ∪ {∞} such that the
map is generically k-to-one.

However if p(x) has real coefficients, and is instead
viewed as a map from (a subset of) R to R, it may
not have a generic k-to-one behavior. For instance, it
is immediately clear from a typical graph of a cubic
that there are some sets of positive measure on which
it is 3-to-one, and others on which it is one-to-one, as
well as an exceptional set of measure zero on which
the cubic is 2-to-one. While this exceptional set arises
since a polynomial may have repeated roots, the lack
of a generic k-to-one behavior is due to passing from
considering a complex domain for the function, to a
real one.

The fact that the polynomial parameterizations for the
models in the table have a generic k-to-one behavior,
then, depends on the particular form of the parameter-
izations. In later sections we prove this essentially one
model at a time, while obtaining the value for k. In the
case of finite k, we actually go further and character-
ize the k elements of ϕ−1(ϕ(θ)) in terms of a generic θ.
Of course when k = 2 this is nothing more than label
swapping, but for the cases of k = 4 more is required.
Precise statements appear in later sections. In some
cases, we also give descriptions of an exceptional sub-
set of Θ where the generic behavior may not hold. In

all cases, the reader can deduce such a set from our
arguments.

The models 4-3e and 4-3f, for which the parameteri-
zation maps are generically 4-to-one, are particularly
interesting cases, as for these models there are non-
identifiability issues that arise neither from overparam-
eterization (in the sense of a parameter space of larger
dimension than the distribution space) nor from label
swapping. While these models are ones that can plau-
sibly be imagined as being used for data analysis, they
in fact have a rather surprising failure of identifiability,
which is explored more precisely in Section 6.3.

In establishing all these results, we first show that we
need only consider DAGs up to Markov equivalence.
We then consider two special models, 3-0 and 4-3b,
whose identifiability we study through certain matrix
factorizations. Importantly, the results we obtain for
them are not limited to the binary case that we other-
wise focus on in this paper. These two models subse-
quently play a key role in analyzing many of the others
we consider.

4 Markov equivalence and parameter
identifiability

Two DAGs on the same sets of observable and hid-
den nodes are said to be Markov equivalent if they
entail the same conditional independence statements
through d-separation. (Note this notion does not dis-
tinguish between observable and hidden variables; all
are treated as observable.) Thus for fixed choices of
state spaces of the variables, two different but Markov
equivalent DAGs, G1

∼= G2, have different parameter
spaces Θ1,Θ2, and different parameterization maps,
yet ϕ1(Θ1) = ϕ2(Θ2).

The relevance of this notion to parameter identifiabil-
ity is made clear by the following:

Theorem 1. With all variables having finite state
spaces, consider two Markov equivalent DAGs, G1 and
G2, possibly with hidden nodes. If the parameterization
map ϕ+1 is generically k-to-one for some k ∈ N, then
ϕ+2 is also generically k-to-one.

In particular if such a model has parameters that are
generically identifiable up to label swapping, so does
every Markov equivalent model.

This theorem is a consequence of the following:

Lemma 2. With all variables having finite state
spaces, consider two Markov equivalent DAGs, G1 and
G2, with parameter spaces Θi and parameterization
maps ϕi for the joint distribution of all variables. Then
there are generic subsets Si ⊆ Θi and a rational home-
omorphism ψ : S1 → S2, with rational inverse, such



that for all θ ∈ S1

ϕ1(θ) = ϕ2(ψ(θ)).

Proof. Recall that an edge i → j of a DAG is said
to be covered if pa(j) = pa(i) ∪ {i}. By Chickering
(1995), Markov equivalent DAGs differ by applying a
sequence of reversals of covered edges.

We thus first assume the Gi differ by the reversal of a
single covered edge i → j of G1. Let W = paG1

(i) =
paG2

(j), so paG1
(j) = W ∪ {i}, paG2

(i) = W ∪ {j}.
Now any θ ∈ Θ1 is a collection of conditional probabil-
ities P (Xv|Xpa(v)), including P (Xi|W ), P (Xj |Xi,W ).
From these, successively define

P (Xi, Xj |W ) = P (Xj |Xi,W )P (Xi|W ),

P (Xj |W ) =
∑
k

P (Xi = k,Xj |W ),

P (Xi|Xj ,W ) = P (Xi, Xj |W )/P (Xj |W ).

Using these last two conditional probabilities, along
with those specified by θ for all v ̸= i, j, define pa-
rameters ψ(θ) ∈ Θ2. Now ψ is defined and continuous
on the set S1 where P (Xi|W ) and P (Xj |Xi,W ) are
strictly positive.

One easily checks that the same construction applied
to the edge j → i in G2 gives the inverse map.

If G1,G2 differ by a sequence of edge reversals, one de-
fines the Si as subsets where all parameters related to
the reversed edges are strictly positive, and let ψ be
the composition of the maps for the individual rever-
sals.

Proof of Theorem 1. Suppose that ϕ+1 is k-to-one
when restricted to S′

1 = Θ1 r E′
1, and S1 = Θ1 r E1,

S2 = Θ2 r E2 are the sets of Lemma 2, with E′
1, E1,

and E2 proper algebraic subsets. Since ϕ+i is polyno-
mial, we may replace the Ei with the smallest alge-
braic sets containing (ϕ+i )

−1(ϕ+i (Ei)), which, since k
is finite, are also proper subsets. Then using the map
ψ of Lemma 2, let E′

2 ( Θ2 be the smallest algebraic
set containing ψ(E′

1 ∩ S1). The identity

ϕ+2 (θ) = ϕ+1 (ψ
−1(θ))

shows that ϕ+2 is k-to-one when restricted to S2rE′
2 =

Θ2r (E2 ∪E′
2). Thus the set on which we have shown

ϕ+2 to be k-to-one omits only a proper algebraic subset
from Θ2.

5 Two special models

In this section, we explain how one may explicitly solve
for parameter values in the models 3-0 and 4-3b from a

joint distribution of the observable variables. We work
in more generality than is necessary for the rest of this
paper, allowing certain cases of non-binary variables,
as the arguments extend easily to these cases.

The generic identifiability up to label swapping of
model 3-0 is an instance of a much more general
theorem of Kruskal (1977). See also (Stegeman and
Sidiropoulos, 2007; Rhodes, 2010). However, Kruskal’s
theorem does not yield an explicit procedure for re-
covering parameters. Nonetheless, a more restricted
theorem (the essential idea of which is not original to
this work, and has been rediscovered several times)
does. We include this argument in Theorem 3 below,
since it is still not widely known and provides motiva-
tion for the approach to the proof of identifiability for
model 4-3b. Our analysis of model 4-3b appears to be
entirely novel. For both models, we characterize the
exceptional parameters for which these procedures fail,
giving a precise characterization of the set containing
all non-identifiable parameters.

5.1 Special cases of Kruskal’s Theorem with
explicit solutions

The model we consider corresponds to DAG 3-0 in
Table 1, but we allow more general finite state spaces
than binary ones.

Parameters for the model are:

1. p0 = P (X0) ∈ ∆n0−1, a stochastic vector giving
the distribution for the n0-state hidden variable
X0.

2. For each of i = 1, 2, 3, a n0 ×ni stochastic matrix
Mi = P (Xi|X0).

We also use the following terminology.

Definition. The Kruskal row rank of a matrix M is
the maximal number r such that every set of r rows of
M is linearly independent.

Note that the Kruskal row rank of a matrix may be
less than its rank, which is the maximal r such that
some set of r rows is independent.

Our special case of Kruskal’s Theorem is the following:

Theorem 3. Consider the model represented by the
DAG of model 3-0, where the variable Xi has ni ≥ 2
states, with n0 = n1 = n2 = n. Then generic pa-
rameters of the model are identifiable up to label swap-
ping, and an algebraic procedure for determination of
the parameters from the joint probability distribution
P (X1, X2, X3) can be given.

More specifically, if p0 has no zero entries, M1,M2

have full rank, and M3 has Kruskal rank at least 2,



then the parameters can be found through determina-
tion of the roots of certain n-th degree univariate poly-
nomials and solving linear equations. The coefficients
of these polynomials and linear systems are rational
expressions in the joint distribution.

Proof. Let P = P (X1, X2, X3) be a probability distri-
bution of observable variables arising from the model,
viewed as a n× n× n3 array.

Marginalizing P over X3 (i.e., summing over the 3rd
index), we obtain a matrix which, in terms of the un-
known parameters, is the matrix product

P··+ = P (X1, X2) =MT
1 diag(p0)M2.

Similarly, if M3 = (mij), then the slices of P with
third index fixed at i (i.e., the conditional distributions
given Xi = i, up to normalization) are

P··i = P (X1, X2, X3 = i)

=MT
1 diag(p0) diag(M3(·, i))M2,

where M3(·, i) is the ith column of M3.

AssumingM1,M2 are non-singular, and p0 has no zero
entries, P··+ is invertible and we see

P−1
··+P··i =M−1

2 diag(M3(·, i))M2.

Thus the entries of the columns of M3 can be deter-
mined (without order) by finding the eigenvalues of the
P−1
··+P··i, and the rows of M2 can be found by comput-

ing the corresponding left eigenvectors, normalizing so
the entries add to 1. (IfM3 has repeated entries in the
ith column, the eigenvectors may not be uniquely de-
termined. However, since the matrices P−1

··+P··i for var-
ious i commute, and M3 has Kruskal rank 2 or more,
the set of these matrices do uniquely determine a col-
lection of simultaneous 1-dimensional eigenspaces. We
leave the details to the reader.) This determines M2

andM3, up to the simultaneous ordering of their rows.

A similar calculation with P··iP
−1
··+ determinesM1, and

M3, up to the row order. Since the rows of M3 are
distinct (because it has Kruskal rank 2), fixing some
ordering of them fixes a consistent order of the rows
of all of the Mi.

Finally, one determines p0 from M−T
1 P··+M

−1
2 =

diag(p0).

The hypotheses on the rank and Kruskal rank of the
parameter matrices can be expressed through the non-
vanishing of minors, so all assumption on parameters
used in this procedure can be phrased as the non-
vanishing of certain polynomials. As a result, the ex-
ceptional set where it cannot be performed is contained
in a proper algebraic subset of the parameter set.

Since the computations to perform the procedure in-
volve computing eigenvalues and eigenvectors of matri-
ces whose entries are rational in the joint distribution,
the second paragraph of the theorem is justified.

5.2 Another special model

The model we consider next has the DAG of model
4-3b in Table 1, but we again allow more general finite
state spaces than binary ones.

Parameters for the model are:

1. p0 = P (X0) ∈ ∆n0−1, a stochastic vector giving
the distribution for the n0-state hidden variable
X0.

2. Stochastic matrices M1 = P (X1|X0) of size n0 ×
n1; Mi = P (Xi|X0, X1) of size n0n1 × ni for i =
2, 3; and M4 = P (X4|X0, X3) of size n0n3 × n4.

Theorem 4. Consider the model represented by the
DAG of model 4-3b, where the variable Xi has ni ≥ 2
states, with n0 = n2 = n4 = n. Then generic pa-
rameters of the model are identifiable up to label swap-
ping, and an algebraic procedure for determination of
the parameters from the joint probability distribution
P (X1, X2, X3, X4) can be given.

More specifically, suppose p0,M1,M3 have no zero en-
tries, the n× n matrices

M i
2 = P (X2|X0, X1 = i), 1 ≤ i ≤ n1, and

M j
4 = P (X4|X0, X3 = j), 1 ≤ j ≤ n3

have full rank, and there exists some i, i′ with 1 ≤
i < i′ ≤ n1 such that for all 1 ≤ j < j′ < n3,
1 ≤ k < k′ ≤ n4 the entries of M3 satisfy inequality
(5) below. Then from the resulting joint distribution
unique parameters can be found through determination
of the roots of certain n-th degree univariate polyno-
mials and solving linear equations. The coefficients of
these polynomials and linear systems are rational ex-
pressions in the entries of the joint distribution.

Proof. With P = P (X1, X2, X3, X4) viewed as an n1×
n× n3 × n array, we work with n× n ‘slices’ of P ,

Pi,j = P (X1 = i,X2, X3 = j,X4),

(i.e., we essentially condition on X1, X3, though omit
the normalization).

Note that these slices can be expressed as

Pi,j = (M i
2)

TDi,jM
j
4 , (2)

where Di,j = diag(P (X0, X1 = i,X3 = j)) is the diag-
onal matrix given in terms of parameters by

Di,j(k, k) = p0(k)M1(k, i)M3((k, i), j),



and M i
2 and M j

4 are as in the statement of the Theo-
rem.

Equation (2) implies for 1 ≤ i, i′ ≤ n1 and 1 ≤ j, j′ ≤
n3 that

P−1
i,j Pi,j′P

−1
i′,j′Pi′,j =

(M j
4 )

−1D−1
i,j Di,j′D

−1
i′,j′Di′,jM

j
4 , (3)

and the hypotheses on the parameters imply the
needed invertibility. But this shows the rows of M j

4

are left eigenvectors of this product.

In fact, if i ̸= i′, j ̸= j′, then the eigenvalues of this
product are distinct, for generic parameters. To see
this, note the eigenvalues are

M3((k, i), j
′)M3((k, i

′), j)/(M3((k, i), j)M3((k, i
′), j′)),

(4)
for 1 ≤ k ≤ n, so distinctness of eigenvalues means for
all 1 ≤ k < k′ ≤ n

M3((k, i), j
′)M3((k, i

′), j)M3((k
′, i), j)M3((k

′, i′), j′)

̸=M3((k, i), j)M3((k, i
′), j′)M3((k

′, i), j′)M3((k
′, i′), j),

(5)

and thus a generic choice ofM3 leads to distinct eigen-
values.

With distinct eigenvalues, the eigenvectors are deter-
mined up to scaling. But since each row of M j

4 must

sum to 1, the rows of M j
4 are therefore determined by

P .

The ordering of the rows of the M j
4 has not yet been

determined. To do this, first fix an arbitrary ordering
of the rows of M1

4 , say, which imposes an arbitrary
labeling of the states for X0. Then using equation
(2), from Pi,1(M

1
4 )

−1 we can determine Di,1 and M i
2

with their rows ordered consistently withM1
4 . For j ≥

1, using equation (2) again, from (M i
2)

−TPi,j we can

determine Di,j and M j
4 with a consistent row order.

Thus M2 and M4 are determined.

To determine the remaining parameters, again appeal-
ing to equation (2), we can recover the distribution
P (X0, X1, X2) using

(M i
2)

−TPi,j(M
j
4 )

−1 = diag(P (X0, X1 = i,X3 = j)).

With X0 no longer hidden, it is straightforward to de-
termine the remaining parameters.

Remark. In the case of all binary variables, the ex-
pression in (4) is just the conditional odds ratio for the
observed variables X1, X3, conditioned on X0. The
inequality (5) can thus be interpreted as saying there
is a non-zero 3-way interaction between the variables
X0, X1, X2, which is the generic situation.

6 Small binary DAG models

We now turn to establishing the remaining results in
Table 1. All variables are thus assumed binary.

For many of the models A-Bx the dimension of the
parameter space computed by equation (1) exceeds the
dimension 2A − 1 of the probability simplex in which
the joint distribution of observed variables lies. In all
these cases the following Proposition applies to show
the parameterization is generically infinite-to-one. We
omit its proof for brevity.

Proposition 5. Let f : S → Rm be any map defined
by real polynomials, where S is an open subset of Rn

and n > m. Then f is generically infinite-to-one.

This proposition applies to all models in Table 1 with
an infinite-to-one parameterization, with the single ex-
ception of 4-2a. For that model, amalgamating X1

and X2 together, and likewise X3 and X4, we obtain
a model with two 4-state observed variables that are
conditionally independent given a binary hidden vari-
able X0. One can show that the probability distribu-
tions for this model forms an 11-dimensional object,
and then a variant of the above proposition applies.

For models 3-0 and 4-3b (and the Markov equivalent
4-3a), specializing the results of the previous section
to binary variables yields the claims in the table.

For the remaining models, the strategy is to first
marginalize or condition on an observable variable to
reduce the model to one already understood. One then
attempts to ‘lift’ results on the reduced model back to
the original one.

We consider in detail only some of the models, indi-
cating how the arguments we give can be adapted to
others with minor modifications.

6.1 Model 4-1

Since node 2 is a sink, marginalizing over X2 gives
an instance of model 3-0 with the same parameters,
after discarding P (X2|X0, X1). Thus generically all
parameters except P (X2|X0, X1) are determined, up
to label swapping.

But note that if the (unknown) joint distribution of
X0, X1, X2, X3 is written as an 8× 2 matrix U , with

U((i, j, k), ℓ) = P (X0 = ℓ,X1 = i,X2 = j,X3 = k),

and M4 = P (X4|X0), then the matrix product UM4

has entries

(UM4)((i, j, k), ℓ) = P (X1 = i,X2 = j,X3 = k,X4 = ℓ),

which form the observable joint distribution. Since
generically M4 is invertible, from the observable dis-



tribution and each of the already identified label swap-
ping variants of M4 we can find U . From U we
marginalize to obtain P (X0, X1, X2) and P (X0, X1).
Under the generic condition that P (X0), P (X1|X0) are
strictly positive, P (X0, X1) is as well, and so we can
compute P (X2|X0, X1) = P (X0, X1, X2)/P (X0, X1).

Models 4-0 and 4-2d are handled similarly, by
marginalizing over a sink.

An alternative argument for model 4-1 and 4-0 pro-
ceeds by amalgamating the observed variables, X1, X2,
into a single 4-state variable, and applying Theorem 3
directly to that model. We leave the details to the
reader.

6.2 Models 4-2b,c

The DAGs for these models are Markov equivalent.
Thus by Theorem 1, it is enough to consider model
4-2c.

We condition on X1 = j, j = 1, 2 to obtain two related

models. Letting X
(j)
i denote the conditioned variable

at node i, the resulting observable distributions are

P (X
(j)
2 , X

(j)
3 , X

(j)
4 ) = P (X2, X3, X4 | X1 = j)

= P (X1 = j)−1P (X1 = j,X2, X3, X4).

With a hidden variable X
(j)
0 and observed variables

X
(j)
2 , X

(j)
3 , X

(j)
4 , these distributions arise from a DAG

like that of model 3-0. With parameters for the origi-
nal model p0 = P (X0), 2×2 matricesMi = P (Xi|X0)
for i = 1, 4, and 2× 4 matrices Mi = P (Xi | X0, X1),
i = 2, 3 and ej the standard basis vector, parameters
for the conditioned models are:

1. the vector

p
(j)
0 = P (X

(j)
0 ) = P (X0|X1 = j)

= P (X1 = j)−1P (X0, X1 = j)

=
1

pT
0M1ej

(diag(p0)M1ej),

2. the 2×2 stochastic matrixM
(i)
4 = P (X

(i)
4 |X(i)

0 ) =
M4, and

3. for i = 2, 3, the 2 × 2 stochastic matrix M
(j)
i =

P (X
(j)
i |X(j)

0 ), whose rows are the (0, j) and (1, j)
rows of Mi.

Now if p0 and column j of M1 have non-zero entries,

it follows that p
(j)
0 has no zero entries. If additionally

M
(j)
2 ,M

(j)
3 ,M4 all have rank 2, by Theorem 3 the pa-

rameters of these conditioned models are identifiable,

up to the labeling of the states of the hidden variable.
As these assumptions are generic conditions on the
parameters of the original model, we can generically
identify the parameters of the conditioned models.

In particular, M4 can be identified and is invertible.
But let U denote the (unknown) 8 × 2 matrix with
U((i, j, k), ℓ) = P (X0 = ℓ,X1 = i,X2 = j,X3 = k).
Then P = UM4, has as its entries the observable dis-
tribution P (X1, X2, X3, X4). Thus U = PM−1

4 can
be determined from P . Since U is the distribution of
the induced model on X0, X1, X2, X3 with no hidden
variables, it is then straightforward to identify all re-
maining parameters of the original model.

Thus all parameters are identifiable generically. More
specifically, they are identifiable provided that for ei-

ther j = 0 or 1 the three matricesM4,M
(j)
2 ,M

(j)
3 have

rank 2, and p0 and the jth column of M1 have non-
zero entries.

6.3 Models 4-3e,f

Due to Markov equivalence, we consider only 4-3e.

By conditioning on X1 = j, j = 1, 2 we obtain two
models of the form of 3-0. One checks that the induced
parameters for these conditioned models are generic.
Indeed, in terms of the original parameters they are
P (Xi | X0, X1 = j), i = 2, 3, 4, which are generically
non-singular since they are simply submatrices of the
P (Xi | X0, X1), and at the hidden node

P (X0 | X1 = j) =
P (X1 = j | X0)P (X0)∑

ℓ P (X1 = j | X0 = ℓ)P (X0 = ℓ)

which generically has non-zero entries.

Thus for generic parameters on the original model we
can determine P (X0 | X1 = j) and P (Xi | X0, X1 =
j), i = 2, 3, 4 up to label swapping. However, we do
not have an ordering of the states of X0 that is con-
sistent for the recovered parameters for the two mod-
els. Thus generically we have 4 choices of parame-
ters for the 2 models taken together. Each of these 4
choices leads to a possible joint distribution P (X0, X1)
(viewing this joint distribution as a matrix, the 4 ver-
sions differ only by independently interchanging the
two entries in each column, thus keeping the same
marginalization P (X1)), and then different parameters
P (X0) and P (X1|X0). The matrices P (Xi|X0, X1)
i = 2, 3, 4 are then obtained using the same rows as
in P (Xi | X0, X1 = j), though the ordering of the
rows is dependent on the choice made previously.

Having obtained 4 possible parameter choices, it is
straightforward to confirm that they all lead to the
same joint distribution. Thus the parameterization
map is generically 4-to-one.



7 Conclusion

Paraphrasing Pearl (2012), the problem of identify-
ing causal effects in non-parametric models has been
“placed to rest” by the proof of completeness of the do-
calculus and related graphical criteria. In this paper
we show that the introduction of modest (parametric)
assumptions on the size of the state spaces of variables
allows for identifiability of parameters that otherwise
would be non-identifiable. Causal effects can be com-
puted from identified parameters, if desired, but our
techniques allow for the recovery of all parameters. In
the process of proving parameter identifiability for sev-
eral small networks, we use techniques inspired by a
theorem of Kruskal, and other novel approaches. This
framework can be applied to other models as well.

We have at least three reasons to extend the work
described in this paper. The first is to develop new
techniques and to prove new theoretical results for pa-
rameter identifiability; this provides the foundation of
our work. A second is to reach the stage at which one
can easily determine parameter identifiability for DAG
models with hidden variables that are used in statis-
tical modeling; this motivates our work. A third and
related focus of future work is to address the scalability
of our approach and to automate it. We noted above
that some of our proofs do not depend on variables be-
ing binary. Also, a strategy that we used successfully
to handle larger models is to first marginalize or con-
dition on an observable variable to reduce the model
to one already understood, and then to ‘lift’ results
on the reduced model back to the original one. We
are working towards turning this strategy into an al-
gorithm.
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Appendix

Table 1 shows all DAGs with 4 or fewer observable
nodes and one hidden node that is a parent of all ob-
servable ones. See Section 3 for model naming conven-
tion. Markov equivalent graphs appear on the same
line. The dimension of the parameter space is dim(Θ),
and 2A− 1 is the dimension of the probability simplex
in which the joint distribution lies. The parameteriza-
tion map is generically k-to-one.



Table 1: Small binary DAG models.
Model Graph dim(Θ) 2A − 1 k

2-B, B ≥ 0 ≥ 5 3 ∞

3-0

0

1 2 3 7 7 2
3-Bx, B ≥ 1 ≥ 9 7 ∞

4-0

0

1 2 3 4 9 15 2

4-1

0

1 2 3 4 11 15 2

4-2a

0

1 2 3 4 13 15 ∞

4-2b,c

0

1 2 3 4 ,

0

2 1 3 4 13 15 2

4-2d

0

1 3 2 4 15 15 2

4-3a,b

0

1 2 3 4 ,

0

2 1 3 4 15 15 2

4-3c,d

0

1 3 2 4 ,

0

1 2 4 3 17 15 ∞

4-3e,f

0

2 1 3 4
,

0

1 2 3 4
15 15 4

4-3g

0

1 2 3 4
17 15 ∞

4-3h

0

1 2 4 3
25 15 ∞

4-3i

0

1 2 3 4
25 15 ∞

4-Bx, B ≥ 4 ≥ 19 15 ∞


