
Statistical Programming Worksheet 4

1. Cholesky Decomposition.

(a) Write a function with argument n to generate a random symmetric n×n-positive definite
matrix. To do this:

• generate an n×n matrix C whose entries are independent normal random variables;

• return CCT .

Check your matrices are positive definite using the eigen() function.

(b) Implement the recursive Cholesky decomposition algorithm from the lecture.

(c) Test it using your function for generating positive definite matrices, and by comparing
the answers to chol().

(d) Create a function which takes a vector mu and a symmetric positive definite matrix Sigma

and uses them to generate a multivariate normal vector Nn(µ,Σ). Your function should
check that Sigma is positive definite using eigen() and symmetric using isSymmetric().

2. Sorting. Here is an algorithm called ‘Quicksort’ for sorting the objects in a vector.

Function: sort a vector x
Input: vector x of length n
Output: a vector Q(x) containing entries of x arranged in ascending order

1. if n ≤ 1 return x;

2. pick an arbitrary ‘pivot’ element i ≤ n;

3. let z = (xj | xj < xi) and y = (xj | xj > xi);

4. let z′ = Q(z) and y′ = Q(y); [i.e. call the algorithm on the smaller vectors]

5. let x′ be the entries in x not used in y or z; [i.e. any entries equal to xi]

6. return (z′, x′, y′).

(a) Implement the algorithm in R, and test it on some random numbers.

(b) What is the complexity if xi is always the smallest element?

(c) Show that, if the pivot xi is the median element on each call, that the complexity is at
most O(n log2(n)).

1

3. Back Solving. Here is a recursive algorithm to solve Ax = b where A is an upper triangular
matrix, using back substitution.

Function: solve Ax = b for x by back-substitution
Input: n× n upper triangular matrix A and vector b of length n
Output: vector x of length n solving Ax = b

1. If n = 1 return x = b/A;

2. create a vector x of length n;

3. set xn = bn/Ann;

4. set b′ = b1:(n−1) −A[1:(n−1),n]xn;

5. set A′ = A[1:(n−1),1:(n−1)];

6. solve A′x′ = b′ for x′ by back-substitution ;

7. set x[1:(n−1)] = x′;

8. return x.

(a) Implement this algorithm as a recursive function in R. Your function should take as input
an upper triangular n× n matrix A and return a solution x satisfying Ax = b.

(b) For n = 10, create an n×n upper triangular matrix A and a vector b of length n. Check
the solution from your function against backsolve() and solve().

4. Longest Increasing Subsequence.∗

The object of this exercise is to write a function that, given a sequence of numbers a =
(a1, . . . , ak), returns Q(a) = (as1 , . . . , asL), the longest subsequence of a such that as1 <
· · · < asL . [Note that it is implicit in the idea of a subsequence that s1 < · · · < sk.]

(a) Write a function that, for each i, recursively calculates the longest increasing subsequence
of (a1, . . . , ai−1, ai) that ends with ai. [Hint: remove the final element of a and invoke
the function on this shorter vector; then add ak to the longest subsequence whose final
element is less than ak.]

(b) Use this to return a function that solves the problem of finding Q(a).

(c) Calculate the computational complexity of this method.

2

