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The Problem

When is the marginal model of a DAG equivalent to the Markov model of
another DAG without any hidden variables?
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These models are easily seen to be equivalent.
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This model is known not to be equivalent to any DAG.
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Literature

DAG models are often used as causal models, and we may not wish to
assume causal sufficiency (i.e. all important variables are measured).

The problem of finding constraints in marginalized DAG models has a
rich literature. In addition to the work of Robins, Pearl, Verma, Geiger,
Richardson, Spirtes, Tian and others on finding equality contraints:

Bell (1964) was the first to propose inequalities on a DAG model, which
he showed could be violated by quantum models.
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This was followed by Clauser et al. (1969) who developed the CHSH
inequality.
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Literature II

Pearl (1995) introduced the instrumental inequality, which gave a
constraint on binary instrumental variable models.

Bonet (2001) expanded Pearl’s work using computational algebra.
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Later, Kang and Tian (2006), Evans (2012), Chaves et al. (2014), Fraser
(2019), Kédagni and Mourifié (2020) and many others proposed
graphical approaches to deriving inequalities.

Most recently Wolfe et al. (2019) give the inflation technique, a
complete method to obtain inequalities (Navascués and Wolfe, 2020).
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Constraints
The marginal DAG model induces three kinds of constraints on P:

conditional independences;

nested conditional independences;

inequalities.
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We notice that this graph has d-separation W ⊥d T | X .

If we consider

p∗(w , x , y | t) =
p(w , x , t, y)

p(t | x)

then we find Y ⊥d W | T .
This is a nested constraint (or dormant independence).

This gives the ‘Bell graph’, so has a (classical and quantum) inequality.
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Claim

We will show the following result:

Theorem (Main Result)

Given an mDAG G, its marginal model M(G) is the same as M(D) for
an ordinary DAG D if and only if there are no non-trivial inequality
constraints implied by G.

What is a non-trivial inequality constraint?
(Clearly probabilities are be non-negative.)

By this I mean an inequality constraint that is not directly implied by
any of the equality constraints, nor the fact that this is a probability
distribution.

The question of when M(G) =M(D) is of interest in semi-parametric
efficiency theory, since the tangent space of DAGs are well understood.
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DAG Models
A directed acyclic graph (DAG) is a graph with only directed edges
that contains no directed cycle.
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A distribution is in the model for a DAG G if each variable is a
measurable function of its parents and some independent noise.

Equivalently, if for each vertex Y ∈ V, we have

Y ⊥⊥ Xpre(Y ;<)\pa(Y ) | Xpa(Y ).
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mDAGs

An mDAG is obtained from a DAG on V∪̇L by marginalizing (E., 2016).

It consists of a DAG on V and a simplicial complex B (also over V).

Example.

H1 Z

X

Y

W

H2

H3

T

Z

X

Y

W

T

Here B = {A : A ⊆ {X ,Y ,Z} or A ⊆ {W ,Z}}.
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Canonical DAGs

Given an mDAG G, its canonical DAG, Ḡ, is the one that takes the
directed edges from G and adds in a latent for each facet of B.

Example.
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Marginal Model

Consider an mDAG G with vertices V and its canonical DAG Ḡ.

Then we say that a distribution P over V is in the marginal model for G
if there exists a distribution Q such that:

Q is Markov with respect to Ḡ;

the margin of Q over V is P.

We write this collection of distributions (the model) as M(G).

Example. Consider the mDAG X ↔ Y → Z . Then we have that

M(G) := {P : X ⊥⊥ Z | Y }.
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Proof Sketch

Here is an outline of our proof strategy.

It is clear that there are no non-trivial inequalities in any DAG model.

For the other direction:

first, we show that taking the maximal arid projection of the graph
will only increase the size of the model;

then we show that any model with a non-trivial nested constraint
will imply a non-trivial inequality;

then we show that taking the maximal ancestral projection will
only increase the size of the model;

then finally we show that any model with conditional independences
not equivalent to a DAG will also induce a non-trivial inequality.
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A Useful Result

Proposition

Let G be an mDAG and suppose that it contains a bidirected facet
B = C ∪̇D such that:

every bidirected face involving c ∈ C is either a subset of B or all its
vertices are parents of every d ∈ D;

every element of C ∪ paG(C ) is also a parent of every d ∈ D.

Then we can replace B with the separate facets C and D and the
marginal model is preserved.

This a slight extension of Proposition 6.1∗ of Evans (2016).

(Wolfe and Ansanelli, personal communication.)

∗ Proposition 5 of the journal version.

14 / 32



Example
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Intrinsic Sets

The intrinsic closure of a set is obtained by alternating between taking
ancestors and the district (connected by bidirected paths) until we reach
a fixed point.

Example. Consider 〈{Y }〉G

W X T

Y Z

Hence 〈{Y }〉G = {X ,T ,Y }.
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Maximal Arid Graphs

We say that an mDAG is arid if, for every vertex v ∈ V, we have

〈v〉G = {v}.

That is, every singleton vertex is intrinsic.

An arid graph is maximal if every pair of edges with no nested constraint
is adjacent.

Examples.

W X Y

A maximal graph that is not arid.

X T

Y Z

An arid graph that is not maximal.
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Maximal Arid Projection
We can obtain an arid graph that is nested Markov equivalent by
applying the maximal arid projection.

Steps:

first, add directed edges between every w ∈ paG(〈v〉) and v ;

then for any non-adjacent v ,w with bidirected-connected 〈{v ,w}〉G
add a bidirected edge;

then remove any bidirected edges where there is a directed edge.

Example. Consider the model below.

We have 〈{Y }〉G = {X ,T ,Y }, so add W → Y .

Also 〈{Y ,Z}〉G = {X ,T ,Y ,Z} so add Y ↔ Z .

W X T

Y ZG

W X T

Y ZG†
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Why are MArGs Sufficient?

First, taking the maximal arid projection is known not to change the
nested constraints in the model (Shpitser et al., 2018).

Additionally:

Theorem

For any mDAG G we have M(G) ⊆M(G†).

Hence, if G is a counterexample to our result, then so is G†.

So we can consider only maximal arid graphs.
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Nested Constraints

Suppose that there is a non-trivial nested constraint. This means that we
‘create’ an m-separation by fixing a vertex in the graph.

This requires that the graph is not ancestral, i.e. there is a vertex joined
to one of its own ancestors by a latent variable.

W X T YG

After a fixing, we end up with a conditional model, and in this case it is
the Bell graph.

Similar arguments show...

Proposition

For any MArG with non-trivial nested constraint, there is also a
non-trivial inequality.
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Proof Sketch

In order for there to be a (non-trivial) nested constraint, must have:

two vertices (say, c , d) in the same district, c is a collider;

a vertex v in deG(c) ∩ anG(d) not in the same district.

In addition, the new constraint involves a descendant of the fixed node.

After fixing there are generically three cases with a completely new
independence:

W X T Y

W ⊥m Y | T

W

X

T Y

T ⊥m Y | X

W X T Y

X ⊥m Y | T

22 / 32



Proof Sketch

In order for there to be a (non-trivial) nested constraint, must have:

two vertices (say, c , d) in the same district, c is a collider;

a vertex v in deG(c) ∩ anG(d) not in the same district.

In addition, the new constraint involves a descendant of the fixed node.

After fixing there are generically three cases with a completely new
independence:

W X T Y

W ⊥m Y | T

W

X

T Y

T ⊥m Y | X

W X T Y

X ⊥m Y | T

22 / 32



Conditional Independence and MAGs

This means that any model that could be a counterexample cannot
contain a nested constraint.

Therefore G is nested Markov equivalent to a maximal ancestral graph
or MAG (Richardson and Spirtes, 2002).

This is a graph which is

maximal: every pair of edges that cannot be m-separated is joined
by an edge;

ancestral: no vertex shares a latent parent with any of its ancestors.
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Maximal Ancestral Projection
We can obtain an ancestral graph that is ordinary Markov equivalent
by applying the maximal ancestral projection.

Steps: for any pair v ,w that cannot be m-separated:

if v ∈ anG(w) then add v → w (and vice versa);

otherwise, add v ↔ w ;

then remove any bidirected edges between already adjacent nodes.

Example. Consider the model below. Note that everything is ordered, so
we only add directed edges.

W X T YG

W X T YG∗
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Why are MAGs Sufficient?

We know: non-trivial nested constraint implies a non-trivial inequality.

Thus any counterexample will only contain conditional independence
equality constraints.

Taking the maximal ancestral projection is known to preserve these.

Additionally:

Theorem

For any mDAG with G we have M(G) ⊆M(G∗).

Hence, if G counterexample to our result, then so is G∗.

So we can consider only maximal ancestral graphs.

25 / 32



Graphs Inducing Inequalities

Consider the class of MAGs ‘ordinary’ Markov equivalent to G.

This is equivalent to a DAG if and only if there is no edge that is always
bidirected.

This can happen for one of two reasons:

both the end points are unshielded colliders;

there is a discriminating path.

W X

T Y
W X

T

Y

26 / 32



Inequalities
We know that a 4-chain of vertices joined by two unshielded colliders
induces inequalities:

W X

T Y

W X

T Y

W X

T Y

The same is true for discriminating path structures because there is an
‘e-separation’ between the W and Y ,Z (E., 2012).

W X

Y

Z W X T Z

Y

We see that W ⊥e Y ,Z in both cases.
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Done!

We have shown that:

if a graph is a counterexample to the claim, then so is its maximal
arid closure;

if a graph has a non-trivial nested constraint, then it also has an
inequality;

if a graph without nested constraints is a counterexample to the
claim, then so is its maximal ancestral closure;

if a nested-constraint free graph has a definite bidirected edge then
there is non-trivial nested constraint.

Hence we have proven the main result!
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Summary

We have given a result that shows an mDAG is distributionally equivalent
to a DAG if and only if it implies no non-trivial inequalities.

As part of the proof, we have introduced:

maximal arid projection;

nested constraints;

maximal ancestral projection;

discriminating paths;

e-separation.

We could probably simplify the proof if we understood the ‘nested PAG’
(we’re working on this!)
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Thank you!
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Sufficiency of Latent Projection
Suppose we wish to project out the vertex U.

X1 X2

U

Y2Y1 Y3

U ′

Note that U can pass all information about its parents to its children, so
we may just as well draw directed edges.

Then, by a result of Chentsov (1982), it is equivalent to have U be
independent of its parents over the observed margin.
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Sufficiency of Latent Projection

Then we need only consider exogenous latents with maximal child sets.

X1 X2 X3 X4

U U ′ U ′′

Singleton latents can be ignored.
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Intrinsic Closure
Suppose we want the intrinsic closure of {Y }.

W X T

Y ZG

Hence the intrinsic closure of Y is {X ,T ,Y }.

Now consider the intrinsic closure of {Y ,Z}.

W X T

Y ZG

Clearly this is {X ,T ,Y ,Z}, which is bidirected-connected.
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The 16-not-18 Graph
This graph has the m-separations W ⊥m Y | T and W ⊥m Z , but no
joint independence between W and Y ,Z .

W

X

T

Y

Z

G

Hence we can uncover the joint independence by fixing T , because now:

W ⊥m Y ,Z | T .
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