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Literature

DAG models are often used as causal models, and we may not wish to
assume causal sufficiency (i.e. all important variables are measured).

The problem of finding constraints in marginalized DAG models has a
rich literature. In addition to the work of Robins, Pearl, Geiger, Tian and
others on finding equality contraints:

Bell (1964) was the first to propose inequalities on a DAG model, which
he showed could be violated by quantum models.
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This was followed by Clauser et al. (1969) who developed the CHSH
inequality.
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Literature II

Pearl (1995) introduced the instrumental inequality, which gave a
constraint on binary instrumental variable models.

Bonet (2001) expanded Pearl’s work using computational algebra.
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Later, Kang and Tian (2006), Evans (2012), Chaves et al. (2014),
Kédagni and Mourifié (2020) and others proposed graphical approaches
to deriving inequalities.

Manski, Robins and Balke contributed bounds for causal effects, but not
for compatibility (though needing consistency does lead to inequalities).
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Constraints

Does this graph induce constraints over the observed variables?
(A, B and C .)

There are no m-separations. There are also no nested independences.

As it turns out, there are inequality constraints.
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Notation
We have a DAG G with observed and hidden variables (V and L).

These are denoted by triangles and circles respectively.

X A

Given two DAGs, say G and H, we say that they are isomorphic (and
write G ∼ H if there is a mapping from the nodes of one to the nodes of
another that preserves the edge relations.

Example.
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As in this example, this is usually just by dropping indices.
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Inflation

An inflation (say H) of a DAG G is one with vertices Vj for which
HanH(Vj ) ∼ GanG(V ) for each Vj .

Example.

The triangle graph and its ‘capped’ inflation.
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Incompatibility
Logically, there is no reason that we cannot impose a distribution on an
inflated graph taken from the original graph.

Indeed the inflated graph may impose additional independences not
shown in the original.

For example, the ‘cut’ inflation above exhibits A2 ⊥⊥ B1, but there is no
similar independence in G.
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Witnessing Incompatibility
Let [abc] represent P(A = a,B = b,C = c) = 1 for each a, b, c .

Is the distribution ([000] + [111])/2 compatible with the triangle graph?

No! Suppose for contradiction it were. Then this would imply that each
of the two way margins were ([00] + [11])/2, so in the cut inflation we
would have

B1 = x ⇐⇒ C1 = x ⇐⇒ A2 = x .

But this implies that B1 = A2 a.s., which contradicts the graph that says
A2 ⊥⊥ B1.
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Injectable Sets
We say that a subset of vertices (say C ′) in an inflation graph H is
injectable if the image of the equivalent vertices C ∼ C ′ in G is such
that GanG(C) ∼ HanH(C ′).

For example, in the graph above {B1,C1} and {B1,C2} are both
injectable, but {A2,C2} is not.
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Witnessing Incompatibility (again)
What about ([100] + [010] + [001])/3? Again this distribution is not
compatible. To see this, consider the ‘spiral inflation’.

‘Injectable sets’ are {A1,B1,C1},
{A1,B2}, {B1,C2}, {C1,A2}.

Under distribution, have

A2 = 1 =⇒ C1 = 0

B2 = 1 =⇒ A1 = 0

C2 = 1 =⇒ B1 = 0

and A2,B2,C2 all independent.

This means that we must sometimes observe A2 = B2 = C2 = 1, and
this implies that sometimes A1 = B1 = C1 = 0, which is a contradiction.
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Deriving Inequalities

We can derive non-trivial inequalities for causal structures by starting
with trivial ones on an inflated graph, and then putting in conditional
independence constraints.

For example, it holds for all variables A,B,C taking values in {−1,+1}
that:

EAC + EBC ≤ 1 + EAB.

Then note that, in the cut inflation for the triangle graph, we have
A2 ⊥⊥ B1, so

EAC + EBC ≤ 1 + EA · EB

must hold in the triangle graph.

This is a non-trivial inequality.
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Entropy

We can do exactly the same using an entropic inequality:

It holds for all variables A,B,C taking values in a finite set that:

I (A : C ) + I (B : C ) ≤ H(C ) + I (A : B).

Then note that, since A2 ⊥⊥ B1 we have I (A2 : B1) = 0 so

I (A : C ) + I (B : C ) ≤ H(C ).

must hold in the triangle graph.

Again, this is a non-trivial inequality.
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Being Systematic
We say that a set is ai-expressible if it can be written as a disjoint union
of injectable sets, where each injectable set is marginally independent.

Example.
The maximal ai-expressible sets are

{A1,B1,C1},
{A1,B2,C2}, {A2,B1,C2}, {A2,B2,C1},

{A2,B2,C2}.

Notice that PA1B2C2 = PAB · PC , because A1,B2 ⊥d C2 in H.

Similarly PA2B2C2 = PA · PB · PC because they are all d-separated in H.
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Marginal Problem

One approach to testing compatibility for a specific distribution is to use
linear programming.

Consider the ‘cut’ inflation. The
relevant compatibility conditions are:

PAB(a, b) =
∑
c′

PA2B1C1
(a, b, c ′)

PBC (b, c) =
∑
a′

PA2B1C1
(a′, b, c)

PAC (a, c) =
∑
b′

PA2B1C1
(a, b′, c)

So solve Mv = b for v where v
consists of entries over PA2B1C1 and
b of fixed two-way marginals.

Solving LPs is generally easy, so this is very efficient for a particular
distribution.
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Marginal Problem

Another approach is to use quantifier elimination to obtain inequalities
only over identifiable quantities.

Fourier-Motzkin is the classic method for this.

The general approach employed is to solve the marginal satisfiability
problem for a collection of variables. This is known to be NP-complete in
general, and is in practice often very hard.

However, we can obtain weaker constraints by just adapting logical
relations.
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Logical Relations

Recall the spiral inflation and the distribution ([100] + [010] + [001])/3
being incompatible with the triangle graph. The following is a (related)
logical tautology:

¬{A2 = C1 = 1} ∧ ¬{B2 = A1 = 1} ∧ ¬{C2 = B1 = 1} ∧ · · ·
¬{A1 = B1 = C1 = 0} =⇒ ¬{A2 = B2 = C2 = 1}.

Hence we can take the contrapositive

{A2 = B2 = C2 = 1} =⇒ {A2 = C1 = 1} ∨ · · ·
∨ {B2 = A1 = 1} ∨ {C2 = B1 = 1} ∨ {A1 = B1 = C1 = 0},

and then use a union bound to obtain

PA2B2C2(111) ≤ PA1B2(11) + PB1C2(11) + PC1A2(11) + PA1B1C1(000)

=⇒ PA(1)PB(1)PC (1) ≤ PAB(11) + PBC (11) + PCA(11) + PABC (000).
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Finding Tautologies

We can obtain a list of tautologies by inspecting the matrix M used in
the marginal problem.

First we construct a hypergraph with vertices given by maximal
ai-expressible sets and edges given by states over all the variables.

In our case, the vertices are the 40 = 5× 23 valuations of:

{A1,B1,C1}, {A1,B2,C2}, {A2,B1,C2}, {A2,B2,C1}, {A2,B2,C2}.

Edges are the 26 possible values of these 6 variables.

Then we construct a second sub-hypergraph by picking an antecedent
(e.g. A2 = B2 = C2 = 1) removing any vertices and edges not consistent
with it (as well as the antecedent itself).

This leaves 14 vertices and 8 edges in our case.
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Finding Tautologies
The relevant entries of M are:

vertex
A1B1C1 (since A2 = B2 = C2 = 1)

000 100 010 110 001 101 011 111

A1B1C1

000 1 0 0 0 0 0 0 0

100 0 1 0 0 0 0 0 0

010 0 0 1 0 0 0 0 0

110 0 0 0 1 0 0 0 0

001 0 0 0 0 1 0 0 0

101 0 0 0 0 0 1 0 0

011 0 0 0 0 0 0 1 0

111 0 0 0 0 0 0 0 1

A1B2C2
011 1 0 1 0 1 0 1 0

111 0 1 0 1 0 1 0 1

A2B1C2
101 1 1 0 0 1 1 0 0

111 0 0 1 1 0 0 1 1

A2B2C1
110 1 1 1 1 0 0 0 0

111 0 0 0 0 1 1 1 1
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Completeness
In fact, Navascués and Wolfe (2020) show that inflation can completely
solve the causal compatibility problem without using any of these clever
tricks.

Assume we have a correlation scenario, in which all edges are directed
from latent nodes to observed ones (e.g. the triangle).
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Higher Order Inflation
Define the nth order inflation Hn as the graph with:

hidden variables U1
i , . . . ,U

n
i for each Ui in G, i = 1, . . . , L,

observed variables Aj1...jL
i where jk is the copy number of the latent

version of Uk that points to Aj1...jL
i .

The 2nd order inflation of the triangle graph.
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Bound

Navascués and Wolfe show that if a distribution P is not in the marginal
model for G, then the nth order inflation will be able to witness it if

inf
Q∈M(G)

‖P − Q‖2 > O

(√
L

n

)

where L is the number of latent variables in G.
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Bound

In fact, one can adapt their proof to show that (if n ≥ L) we have

dTV (P̃⊗2,P⊗2) ≤ L

n
.

Hence relatively simple algebra shows that if the program has a solution,
then there is a distribution P̃n in the model such that

‖P̃n − P‖2 ≤
√

L

n
.

So, as n grows, we get a sequence of solutions which converges to any
compatible distribution, and if it is not compatible then there will be an n
such that the program has no feasible solution.
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Exogenization

WLOG latent vertices have no parents.

X1 X2

U

Y2Y1 Y3

M
=

X1 X2

Y2Y1 Y3

U ′
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Unpacking

WLOG observed vertices have no observed parents.

We simply replace vertices by their potential outcome vectors.

Now everything is a correlation scenario!

30 / 34



Summary

Inflation is a method that allows one to certify that any distribution not
in the marginal DAG model for a graph G is such.

Testing for compatibility of a particular distribution can be
performed relatively inexpensively.

There are systematic methods for obtaining a large number of
inequalities in this manner, and they are also fairly computationally
cheap.

Computationally it can be very expensive to implement these
methods to obtain symbolic bounds.

However, it is unclear whether this is necessarily a difficult problem,
and it is possible that someone will find a shortcut.
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