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Imsets

Imsets were introduced by Studeny (1995), as a method for representing
arbitrary conditional independence models.

Let P(V) be the power-set of a finite set V.

Definition
An imset is an integer-valued multiset, or in other words a function

u:PV)—Z.

Since they are often sparse, we tend to represent them with combinations
of identity functions:

1 ifX=A,
8a(X) = { 0 otherwise.
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Conditional Independence Models
Definition
We identify a semi-elementary imset with a triple (A, B, C) where

uaBlcy = dc — dauc — dsuc + dauBuc-

Ua,B|c) represents the conditional independence X4 IL Xp | Xc. J

Notice this conditional independence is equivalent to:

p(xasc) - p(xc) = p(xac) - p(xac)
log p(xc) — log p(xac) — log p(xsc) + log p(xasc) = 0.

Now we can see the analogy to the log-factorization.

Indeed, one can test a conditional independence by using the entropy
operator H, : P(V) — R, and we have that Xa L Xg | Xc if and only if

(Hp, ugagicy) = H(p(xc)) — H(p(xac)) — H(p(xsc)) + H(p(xasc)) = 0.
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Structural Imsets

Definition
An imset u is said to be structural if there exists some natural number k
such that we can write

k-u= ky - v, k, € NU{0},
veZ(V)

where Z(V) is the collection of (semi-)elementary imsets over the
variables in the set V. )

Structural imsets can be said to represent a model.
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Models

Definition

Given an independence Xa L Xg | Xc, we say that it is represented in
a structural imset v over V (and write A L B | C [u]) if there exists
k € N such that

k-u— U(A,B\C)

is also structural. )

Can be tested with an integer linear program (Bouckaert et al., 2010).

Imsets are useful because they can be used to score models consistently,
and in particular can select the optimal directed acyclic graph model. J

R.J. Evans and Z. Hu, University of Oxford Towards Standard Imsets for Maximal Ancestral Graphs 8 /36



Example

Consider the following imset:

u={+1,-1,+1,-1,-1,+1, 0, O,
0, 0,—-1,+1, 0, 0, 0, 0)
=(+1,-1, 0, 0,-1,+1, 0, O,
0, 0,0 0,0 0, O, O, 0, 0)
+( 0, 0,+1,-1, 0, 0, 0, O,
0, 0,-1,+1, 0, 0, 0, 0)

= U3y U ap)-

Hence u is a structural imset, and represents X; L X5 and X; 1L X | X;. J
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DAG Models

Directed acyclic graphs (DAGs) can represent comparatively simple
independence models.

We can use a local Markov property to completely define the model.

® pick a topological order;

® then each variable is conditionally independent of its predecessors in
the ordering given its parents;

X; 1L Xpre (i)\pa(i) | pa(i) Vie V.
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Imsets for DAG Models

Correspondingly, we can define the standard imset for a DAG G as:

Ug = Z U<i,pre(l')‘ Pa(i)>
iev

=0y — 5@ + Z(‘Spa(i) - 5{i}Upa(i))'
eV

This has several nice properties:

® it is clearly a structural imset;

P is Markov with respect to G if and only if (Ip, ug) = 0;

G and G’ are Markov equivalent if and only if ug = ug/;

® it is sparse (at most 2|V/| terms).
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Characteristic Imsets for DAG Models

There is a bijective (Mobius) transformation we can make to obtain the
characteristic imset (Studeny et al., 2010) for a DAG:

cg(A) =1 ug(B).

BDA

One can then show that

(A :{ 1 if3v:{v} CAC{v}Upag(v)

0 otherwise.

Example. Consider the graph on the
right. Then the non-zero sets are:

0. {1} {2} {3} {13} {2,3}, {1,2,3}.
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MAG Models

A (directed) maximal ancestral graph (MAG) model is just a collection
of independences that can be represented by a DAG with hidden
variables. (Richardson and Spirtes, 2002)

@ (3

This MAG implies the independences
X1 L X3, X, X3 L Xz | X,

which cannot be faithfully represented by any DAG.

R.J. Evans and Z. Hu, University of Oxford Towards Standard Imsets for Maximal Ancestral Graphs 15 / 36



Markov Equivalence

In Hu and Evans (2020), we gave a criterion for two MAGs to be Markov
equivalent based on collections of subsets.

Parametrizing Sets
The parametrizing sets for a MAG G are

S(G)={HUA: He#H(G), ACtailg(H)},

where H(G) is the collection of heads in G.

Given a vertex v in a head H, if we condition on Xy (.}, then the
distribution cannot be m-separated from any t € tailg(H).

As an analogy, for DAGs heads = vertices and tails = parent sets. J
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Parametrizing Sets Example
Consider this MAG, which implies

X3_|J_X1 and X4J.|_X1 |X2:
O—0 4

| parametrizing sets

head | tail
{1} 0
{2+ | {1}
{3} 0
{2,3} | {1}
{4 | {2}
{3,4} | {1,2}

{1}

{2}, {1,2}
{3}
{2,3},{1,2,3}
{4},{2,4}

{3,4},{1,3,4},
{2,3,4},{1,2,3,4}

Parametrizing set is missing only subsets {1,3}, {1,4} and {1,2,4}. J
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Markov Equivalence Class and Characteristic Imsets

The parametrizing sets also give a representation of the Markov
equivalence class of a MAG.

Theorem (Hu and Evans, 2020)
Two MAGs G and G’ are Markov equivalent if and only if S(G) = S(G’)

V.

Now note that the characteristic imset for a DAG takes the same form:

S(9) ={{v}UA: AC pag(v)}

={A:cg(A) =1}
So let's try using the parametrizing set to build the characteristic imset
for a MAG! )
Definition

Define the characteristic imset for a MAG G as

1 ifAeS((9)
0 otherwise.

colA) = {
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Retrofit for MAGs

Then define the ‘standard’ imset as the inverse transformation of this.

ug(A) = Y (~1)/P\(1 — c(B)).

BDA

Proposition
Given a MAG G, the ‘standard’ imset is the same as:

ug = (5\/ e (5(}) e Z Z l)IH\W|(5WUT,

HEM(G) WCH

where T = tailg(H). )

Note that this is consistent with the definition for DAGs.
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Defining the Model

We used ILPs to check which ‘standard’ imsets define the model.

There are three cases, based on whether the ‘standard’ imset ug:
(i) does define the same model as G;

(i) defines a model with a (strict) subset of the independence
restrictions of G;

(iii) is not structural (so does not define any model).

For small graphs, we find that they usually fall into category (i).
For all MAGs with 5 or 6 nodes, and 7 nodes and < 13 or > 18 edges:

n | equiv. classes | (i) Gi) (i)
5 285 284 1 0
6 13,303 13,248 54 1

I 1,161,461 1,146,501 14,562 8
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Defining the Model
(2

For n =5 ‘standard’ imsets all define the J e 0

model, except for the bidirected 5-cycle.

The bidirected 6-cycle is not even structural. J
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‘Simple’ MAGs

Definition
We say that a MAG is simple if its maximal head
size is at most two. 0

V| equiv. classes simple MAGs  DAGs o‘
5 285 205 119

6 13,303 6,278 2,025 e
T 1,161,461 331,310 57,661 e

Example.

*having at most 13 or at least 18 edges.

Proposition

For every simple MAG G, the standard imset does define the model
implied by the graph. In addition, it contains at most 2(|V/| + | E|) terms.
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Local Markov Property for MAGs

The (ordered) local Markov property for MAGs is more complicated
than that for DAGs.

We consider every ancestral set (closed under taking parents) A, and
the maximal vertex in that set v.

Then P satisfies the ordered local Markov property w.r.t. G if
Xy L Xa\(not) | X(HOuT)\{v} 5

where H is the ‘maximal’ head in A, and T its tail.
That is, the set of vertices joined to v by paths of colliders within A.

Clearly we can restrict to ‘maximal’ sets A for each head.
This is the reduced OLMP for MAGs (Richardson, 2003).
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Reduced Ordered Local Markov Property

Use the numerical order, which is topological, and consider 4.
For the reduced OLMP, we have:

Xy L Xy | Xz, X3 Xo L X1 | Xa.
But! Notice that we already knew that X3 L Xj | Xz, so:

X4J|_X1|X2,X3 AN X3J|_X1|X2 — X3,X4J|_X1‘X2
— X4J|_X1|X2.

So the second independence is redundant.
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Power DAGs

Draw a power DAG whose vertices represent heads. Draw edge from H
to H' if we can marginalize a non-maximal vertex in H to obtain H’.

4,56
[
3,5,6 1,4,6
yd
1,3,6 3,6
3

o) €— W
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Refined OLMP

We can automate this using a refined ordered local Markov property.

4,56
4\
3,5,6 1,4,6

We have a separate component for each maximal vertex.

In fact, we only need one edge into each vertex (the one from the
‘maximal’ head). J
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Refined OLMP

In the case of the previous graph, our refined OLMP gives:

Xo L X | X3 Xs L Xs, Xa | Xu
Xo 1L X1 | Xz, X3, X4, X5 Xo L Xy | X2, X3
X L Xo.

Notice that the ‘standard’ imset will define the model in this case.

The reduced OLMP gives

Xo L X | X3 Xs L X5, Xe | Xu
Xo L X1 | Xo, X3, X4, X5 Xo L X1, X4 | X2, X3
X6 1L XI;XZaX4-
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Model Scoring

Usual consistent score for model scoring is the BIC. This requires us to
find the maximum likelihood for each model we score. J

We have a proposal for a scoring models (Andrews, 2022):
h(G) := 2n(Hp, ug) — klog n,

where n is the number of samples, k is the number of parameters, and Ip
is the interaction information operator (see appendix).

If ug defines the model, we have
n<HPa UQ> ~ EQ(P; XV)v
SO our score approximates the BIC.

Hence the score is consistent over this set of MAGs
(i-e. the highest score is given asymptotically to the true model). J

We restrict our search to simple MAGs.
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Simulation

We randomly simulate 100 ADMGs with

® n e {5,10,15,20} nodes;
® average node degree 3;
® edges are directed with probability 0.8.

These are then projected to a Markov equivalent MAG, and then a
random SEM is generated.

Edge strengths are drawn uniformly from £[0.1, 1].

We compare our algorithm to one of Claassen and Bucur (2022), greedy
PAG search (GPS), which uses the exact BIC.

We also compare to the constraint-based FCl and GFCI algorithms.
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Results (Edge mark accuracy)
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Summary

® Imsets can be used to define arbitrary conditional independence
models;

® they have particularly nice properties when applied to DAGs.

® Some of those properties are replicated in MAGs, but
(unfortunately) not all of them!

® Problem is that (for some graphs) it is not possible to describe the
model without using conditional independences that repeat sets.

® |msets that do represent the models can be used to give a new
consistent score, which is easier to compute than the BIC.

® We have also developed a greedy algorithm for learning MAGs.
Open Problems

® How do we see if a graph has a perfectly Markovian ‘standard’
imset?

® Can we develop a Markov property that does not include overlapping
sets?
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Thank you!

R.J. Evans and Z. Hu
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Multi-information
We define the entropy H(P) of a distribution P as

H(P) = / P(x) log P(x) d(x).

The relative entropy (or KL-divergence) of P with respect to Q is

H(P | @) = H(P) ~ [ P(x)log Q(x) du(x).

The multi-information over a set of variables Xs is the relative entropy
between P(Xs) and [];cs P(X,-). That is:

m(Ps) = )= > H(P
seS
The interaction information for a set S is
I(Ps) :== > _(=1)S\TIH(Pr).
TCS

The multi-information and interaction information functions for P
are operators

mp : S — m(Ps) and lp:S—I(Ps).
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'Standard’ imset

Theorem
For a MAG @G, with vertices [n] (topologically ordered), we have

n

g = Z{“<i7[i—1]\mb(i7[i])lmb(",["])>

i=1

+ Z Z (_1)|K+1U(i,HT\H’T’K|H’T’\i)}-

HeH(G)\{i} DCKCH\{i}:
H<i H—"H'
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Simplest Model

How do we know that ug is the ‘standard’ imset?

If ug does define the model, it is the simplest possible imset that does so. |

Why? Well, we know that cg <1 and that if we add any additional
semi-elementary imset to get u; = ug + U p|c), then:

(S) =cg(S) = > Iis—(apjucr)-
cce

Hence c; < 1 but any additional independences will lead to sets with a
coefficient of —1. J
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Heads and Tails

Let G be an acyclic directed mixed graph (ADMG). This includes all
MAGs as a special case.

A head H is a subset of vertices such that the vertices are all in the same
district of G.n(), and all barren (have no children) within that set.

The associated tail is tailg(H) = pag(disanq)(H)).

Example.

H T

. T ]

0 9 {72}, 7{2, 73}7 7{O7 ,2, ;3} {1}
{4},{1,4},{0,1,4} | {2}

e o {0,3,4} {1,2}

Missing sets correspond to constraints:
X1_|J_X2; XoJLX3 |X1; XoJl_X4|X2; X3J|_X4|X1,X2.
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Heads and Tails Example

This MAG has the head {4,5,6}, but no subset of size two is a head!

R.J. Evans and Z. Hu, University of Oxford

H T
{1},{2}, {3}, {1, 2}, 0
{1,3},{2,3},{1,2,3}
{4},{1,4},{1,2,4} {3}
{5},{2,5},{2,3,5} {1}
{6},{3,6},{1,3,6} {2}
{2,4,5} {1,3}
{1,4,6} {2,3}
{3,5,6} {1,2}
{4,5,6} {1,2,3}
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Moves

Parameters: ¢t number of colliders/non-colliders to consider.

Initialize: P is empty PAG.

Start from a PAG P.

For each missing edge i,/ in the skeleton of P, add in i s j:

® Suppose i # j += k is a (new) unshielded triple. Use invariant edge
marks from P to reduce the search space.

® If a new discriminating path is created, then consider both possible
orientations of the relevant edges.

® Finally, consider exchanging each collider for a non-collider, and vice
versa.

If we find graph with lower score, record the score of new optimal PAG
P’, then go back to the start.

Otherwise, return P.
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