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Contingency tables

Let XV = (Xv ∈ Xv : v ∈ V ) take values in finite sets XV = ×v∈VXv .

Suppose V = {1, 2, 3, 4} with dimensions 2, 3, 2 and 4, and that we are
given instances of XV as a 2× 3× 2× 4 contingency table.

We assume that the data are i.i.d. from a mass function p(xV ).

How should we parameterize such a model?

With the mass function p(xV )?
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Log-linear parameters

For A ⊆ V , let xA denote the subvector of xV with entries in A.

The log-linear parameters associated with p are defined by

log p(xV ) =
∑
A⊆V

λA(xA) ∀xV ∈ XV ,

with appropriate identifiability constraints on the λA parameters.
(For example, λA(xA) = 0 if xa = 0 for any a ∈ A.)

If Xv = {0, 1} for each v ∈ V , we can use an inverse Möbius to get:

λA = λA(1A) =
∑

xA∈XA

(−1)|A|−
∑

|xA| log p(xA, 0V\A).

[Here
∑

|xA| is the sum of the 1s in the vector xA.]
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Log-linear parameters

For example, if V = {1, 2} we have:
λ{1,2} = log

p00p11
p10p01

,

the log odds ratio between X1 and X2. [Here pab = P(X1 = a,X2 = b).]

Similarly, If V = {1, 2, 3} then: λ{1,2} = log
p000p110
p100p010

,

the conditional log odds ratio between X1 and X2 given X3 = 0.

Log-linear parameters include:

• (conditional) odds ratios (as a linear transformation);

• three-way interactions.

The collection of log-linear parameters λA for ∅ ≠ A ⊆ V constitutes a
smooth parameterization of the set of positive distributions over XV .
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Margin of interest

Log-linear (LL) parameters are nice description and can model sparse
data very efficiently; however, they do not allow us to easily control
marginal structure. Every parameter is a function of joint probabilities.

Suppose that the entries in our table are sex, race, religiosity, and income
quartile.

We might wish to set that sex and race are marginally independent; or
that sex is independent of religiosity conditional upon race.

These cannot be (straightforwardly!) enforced using LL parameters.
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Marginal log-linear parameters
Bergsma and Rudas (2002) introduced marginal log-linear (MLL)
parameters.

These are log-linear parameters defined within a margin of V .
Includes the multivariate logistic models (Glonek and McCullagh, 1997)
and ordinary log-linear parameters as special cases.

Denote log-linear parameter for effect A in margin M ⊇ A by λM
A (xA).

Example

Suppose we have (X1,X2,X3). We could parameterize these using (e.g.)

{1, 2} λ12
1 , λ12

2 , λ12
12

{2, 3} λ23
3 , λ23

23

{1, 2, 3} λ123
13 , λ123

123

p(x1, x2)

p(x3 | x2)

ϕ13|2(x13 | x2)

Bergsma and Rudas show that it is necessary to have exactly one
parameter for each effect for a smooth parameterization.
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Conditional independence

With log-linear parameters we can enforce conditional independences of
the form Xi ⊥⊥ Xj | XV\{i,j} by setting

λijC = 0 ∀C ⊆ V \ {i , j}.

Similarly, with MLL parameters we can impose a general conditional
independence of the form Xi ⊥⊥ Xj | XK by letting M = K ∪ {i , j} and
choosing

λM
ijC = 0 ∀C ⊆ K .

Inspired by this, Rudas et al. (2010) define the set

D(i , j | K ) = {{i , j} ∪ C : C ⊆ K}.

(See also Forcina et al., 2010)
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Conditional independence
A (discrete) conditional independence model is smooth if it can be
written as a collection of equality constraints among a smooth MLL
parameterization.

• undirected graphs (ordinary LLPs); 1 2 3

• bidirected graphs (multivariate logistic parameters); 1

2

3

4
• directed acyclic graphs;

1

3

2

• Lauritzen-Wermuth-Frydenberg chain graphs (Lauritzen, 1996);1 2

3 4

• maximal ancestral graphs (Evans and Richardson, 2013).

1 2 4

3

• . . .

But not AMP chain graphs (Drton, 2009).
1

32 4
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Conditional independence—example

2 41

3

This graph imposes that X1 ⊥⊥ X3 and X1 ⊥⊥ X4 | X2.

Choose the margins {1, 3} and {1, 2, 4} and the effects:

M L

{1, 3} {1}, {3}, {1, 3}
{1, 2, 4} {2}, {1, 2}, {4}, {1, 4}, {2, 4}, {1, 2, 4}
{1, 2, 3, 4} {2, 3}, {1, 2, 3}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

This is a hierarchical parameterization, so smooth.

Set λ13
13 = λ124

14 = λ124
124 = 0 to enforce model.
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Tangent spaces

The tangent space of the model can be in any co-ordinate space...

p10

p01

p11

λ1

λ2

λ12

=⇒

..but the log-linear parameterization gives much more useful directions!
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Conditional independence models
We can think about the tangent space of a discrete model in terms of
(marginal) log-linear parameters.

Let p0 be the uniform distribution, so λM
L = 0 for all L ⊆ M ⊆ V .

Define ΛA as the vector space of perturbations to p0 that:

• modifies λA by ε;

• keeps λL = o(ε) for L ̸= A.

Then we can consider the tangent space of a model at this point:

TC(p0) =
⊕

∅̸=A⊆V

ΛA.

Then the tangent space of a model in which Xi ⊥⊥ Xj | XC is restricted to

TC(p0) =
⊕

∅̸=A/∈D(i,j|C)

ΛA.
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Maximal ancestral models

As noted, we can parameterize maximal ancestral graph (MAG) models
using marginal log-linear parameters.

A (directed) maximal ancestral graph (MAG) model is just a collection
of conditional independences that can be represented by a DAG with
hidden variables (Richardson and Spirtes, 2002).

1

2

0

4

3

This MAG implies the independences

X1 ⊥⊥ X3,X4 X3 ⊥⊥ X2 | X1,

which cannot be faithfully represented by any DAG.
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Markov Equivalence

In Hu and Evans (2020), we gave a criterion for two MAGs to be Markov
equivalent (i.e. same m-separations) based on collections of subsets.

The parameterizing sets for a MAG G are

S(G) = {H ∪ A : H ∈ H(G), A ⊆ tailG(H)},

where H(G) is the collection of heads in G.

Given a vertex v in a head H, if we condition on XH\{v}, then the
distribution cannot be m-separated from any t ∈ H ∪ tailG(H).

As an analogy, for DAGs heads = vertices and tails = parent sets.

Theorem (Hu and Evans, 2020)

Two MAGs G and G′ are Markov equivalent if and only if S(G) = S(G′).
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Parameterizing set

There is an interesting duality between the parameterizing set and the
‘constrained set’.

Suppose a MAG G contains m-separations ai ⊥m bi | Ci for i ∈ I .

Then

P(V ) \ (S(G) ∪ {∅}) =
⋃
i∈I

D(ai , bi | Ci ).

• So in other words, the parameterizing set reflects the sets that are
not constrained by a conditional independence.

• In addition, the parameterizing set is precisely the collection of
effects in an MLL parameterization of the same model.
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Parameterizing Sets Example
Consider this MAG, which implies

X1 ⊥⊥ X3,X4 and X3 ⊥⊥ X2 | X1;

1

2 4

3

head tail parameterizing sets

{1} ∅ {1}
{2} {1} {2}, {1, 2}
{3} ∅ {3}
{4} {3} {4}, {3, 4}

{2, 4} {1, 3} {2, 4}, {1, 2, 4},
{2, 3, 4}, {1, 2, 3, 4}

Parameterizing set is missing only subsets for:

I X1 ⊥⊥ X3,X4 X3 ⊥⊥ X2 | X1

D(I ) {1, 3}, {1, 4}, {1, 3, 4} {2, 3}, {1, 2, 3}.
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Parameterizing Sets Example

Consider this MAG, which implies

X3 ⊥⊥ X1 and X4 ⊥⊥ X1 | X2 :
1 2

3

4

head tail parameterizing sets

{1} ∅ {1}
{2} {1} {2}, {1, 2}
{3} ∅ {3}
{2, 3} {1} {2, 3}, {1, 2, 3}
{4} {2} {4}, {2, 4}

{3, 4} {1, 2} {3, 4}, {1, 3, 4},
{2, 3, 4}, {1, 2, 3, 4}

Parameterizing set is missing only subsets {1, 3}, {1, 4} and {1, 2, 4}.
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Conditional independence models
Note that the Markov equivalence result is entirely nonparametric: it is
independent of the character of the random variables.

One can show that:

• all missing sets are due to m-separations in the graph;

• the sets that are present (and hence those that are absent)
characterize the Markov equivalence class.

The upshot is that the parameterizing set (and therefore the tangent
space in the discrete case) is a signature for every Markov equivalence
class of a MAG model.

TC(p0) =
⊕

A∈S(G)

ΛA.

We conjecture something similar characterization of the tangent space is
true in the general case.
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Tangent spaces

Go to a book on semi-parametric statistics (e.g. Tsiatis, 2006), and it
might say something like:

The tangent space of a nonparametric model at a distribution P is the
set of functions that have expectation zero under P.

p0

v1

v2

w
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Tangent spaces

Suppose that V = {1, . . . , k} := [k].

This can be decomposed into a sequence of conditional spaces:

TC(p0) = Λ1(p0)⊕ Λ2|1(p0)⊕ · · · ⊕ Λk|[k−1](p0),

where Λi|[i−1] = {h : E[h(X1, . . . ,Xi ) | X1 = x1, . . . ,Xi−1 = xi−1] = 0}.

But we can go further! We can write

Λk|[k−1] =
⊕

C⊂[k−1]

ΛC∪{k},

where ΛA = {h : E[h(XA) | XA\{a} = xA\{a}] = 0, ∀a ∈ A, xA\{a}}.
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Conditional distributions and sets

Inspired by this derivation, we choose to associate a conditional
distribution of the form Xi | XB with the collection of sets

D({i} | B) = {{i} ∪ A : A ⊆ B}.

For example, the conditional distribution P(X | Y ,Z ) can be associated
with

D({X} | {Y ,Z}) = {{X}, {X ,Y }, {X ,Z}, {X ,Y ,Z}}.

We can deduce from this that (for example), P(Xi ,Xj | XB) should be
associated with

D({i , j} | B) := D({i} | {j} ∪ B) ∪ D({i} | B)
= {C : C ⊆ B ∪ {i , j} and C ∩ {i , j} ≠ ∅}.
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Alignment of conditionals
Graham et al. (2024) consider data fusion based on sources with aligned
conditionals.

That is, we are interested in a target distribution Q, and there are
sources P(· | S = s) for s = 1, . . . ,K such that for each s:

Q(Xj | XA) = P(Xj | XA,S = s).

Their Example 3 concerns a prospective study on a different population
and a case-control study. In other words:

P(Y | L,A,S = 1) = Q(Y | L,A)
P(L,A | Y ,S = 2) = Q(L,A | Y ).

Two natural questions are:

• Under what circumstances do we obtain constraints on P?

• What set of alignments is sufficient to recover Q?
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Alignment of conditionals

The tangent space representation helps us to answer these questions.

There will be an equality constraint only if we have two conditionals i | B
and j | C such that: (i) i = j or (ii) i ∈ C and j ∈ B.

That is, if there is no set common to D(i | B) and D(j | C ), there is no
equality constraint.

Theorem
There is no equality constraint on P if there is no intersection between
any of the sets D(i | B) for aligned conditionals P(Xi | XB).

Conjecture

If there is an intersection between any of the sets D(i | B) for aligned
conditionals P(Xi | XB), then at least for some state-spaces, there is an
equality constraint.
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Alignment: example

Example 3, scenario (iii.a) assumes Q contains causally sufficient
covariates L, treatment A and outcome Y . We have data from:

• a prospective study on a population with different distribution of
L,A;

• a case-control study on the target Q.

So we have: P(Y | L,A,S = 1) = Q(Y | L,A)
P(L,A | Y ,S = 2) = Q(L,A | Y ).

We can see that sources 1 and 2 respectively give:

D({Y } | {L,A}) = { {Y }, {L,Y }, {A,Y }, {L,A,Y }}

D({L,A} | {Y }) = {{L}, {A}, {L,A}, {L,Y }, {A,Y }, {L,A,Y }}

giving an intersection of {L,Y }, {A,Y }, {L,A,Y }.
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Constraints

We know that

Q(L,A) · Q(Y | A, L) = Q(Y ) · Q(A, L | Y )

Q(L,A) · P(Y | A, L,S = 1) = Q(Y ) · P(A, L | Y ,S = 2)

P(Y | A, L,S = 1)

P(A, L | Y ,S = 2)
=

Q(Y )

Q(L,A)
.

In other words, these conditionals are the same up to a product of
functions of Y and functions of L,A.

This is because OR({Y }, {L,A}) is contained in both conditionals!

If only have controls (Y = 0) from our case-control study, there is no
dependence information contained in Q(A, L | Y = 0), so no constraint.
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Nested Markov models

Marginal models are not defined purely by conditional independence:

1 2 3 4

U

This is a model defined (implicitly) by an integral:

p(x1, x2, x3, x4) =

∫
p(u) p(x1) p(x2 | x1, u) p(x3 | x2) p(x4 | x3, u) du

We do not assume U is discrete, since we cannot observe it.
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The Verma Constraint

1 2 3 4

U

p(x1, x2, x3, x4) =

∫
p(u) p(x1) p(x2 | x1,u) p(x3 | x2) p(x4 | x3,u) du

= p(x1) p(x3 | x2)
∫

p(u) p(x2 | x1,u) p(x4 | x3,u) du

= p(x1) p(x3 | x2) q(x2, x4 | x1, x3).

But note that∑
x2

q(x2, x4 | x1, x3) =
∑
x2

∫
p(u) p(x2| x1, u) p(x4 | x3, u) du

= p(x4 | x3)

is independent of x1, precisely because X1 ̸→ X4.

Robin Evans, University of Oxford MLLPs: the Continuous Case 32 / 45



Nested Markov model
In other words, we find that
X1 ⊥⊥ X4 | X3 after we have ‘fixed’
(intervened on) X3. 1 2 3 4

U

Equality constraints of the kind on the previous slide are called nested
constraints (or Verma constraints, or dormant independences).

We describe the set of distributions restricted in this way as the nested
Markov model for G, or N (G).

Importantly, at the uniform distribution (or anywhere such that
X2 ⊥⊥ X3), the directions restricted by the nested constraint are the
same as those restricted by a model in which the ordinary conditional
independence X1 ⊥⊥ X4 | X3 holds.

Consequently, we can show that TCp0(N (G)) =
∑

A∈S(G)

ΛA.
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Marginal model

We define the marginal model as the set of distributions that can be
realised over the observed variables for arbitrary latent variables.

Then our proof requires us to show that we can move in any direction
within TCp0(N (G)) in the marginal model.

1 2 3 4

U

To do this, we construct very specific distributions. For example, to show
that we can move in λ124, we shift:

p(u) · p(x2 | x1, u) · p(x4 | u) [note not p(x4 | x3, u)]

in a co-ordinated way.
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Getting the picture

M

(nested) N
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Main result

The tangent spaces of the nested Markov model (N (G)) and the
marginal model (M(G)) are the same at the uniform distribution p0:

TCp0(N (G)) = TCp0(M(G)).

Hence the dimension of the two models is the same.

This result holds in the discrete case, but does it hold in general?
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Causal simulation

Z

X Y

The frugal parameterization (Evans and Didelez, 2024) of the causal
system above is:

p(z , x) p(y | do(x)) ϕ∗
ZY |X (z , y | x),

where ϕ∗
ZY |X parameterizes the conditional dependence between Z and Y

given X . This is typically a copula if one of Y or Z is discrete.

This parameterization corresponds to log-linear ‘effects’ as:

p(z , x) {Z}, {X}, {Z ,X}

p(y | do(x)) {Y }, {X ,Y }

ϕ∗
ZY |X (z , y | x) {Z ,Y }, {Z ,X ,Y }.
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Odds ratio for general distributions

The odds ratio for generic distributions with density p is defined as

OR(x , y) =
p(x , y) · p(x∗, y∗)

p(x∗, y) · p(x , y∗)
,

for some arbitrary baseline values x∗, y∗ provided that p(x , y∗) > 0 and
p(x∗, y) > 0 almost surely.

Chen (2007) shows that a general likelihood for random variables X and
Y can be written as

p(x , y) =
p(x | y∗)OR(x , y)p(y | x∗)∫

p(x | y∗)OR(x , y)p(y | x∗) dµ(x , y)
. (∗)
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Marginal independence models

We can use this to parameterize the bidirected four cycle graph in the
case of a general distribution:

X1 ⊥⊥ X3 X2 ⊥⊥ X4.

12

3 4

Shown by Lupparelli et al. (2009) that setting the marginal log-linear
parameters

λ13
13 = λ24

24 = 0

and completing with parameters from V = {1, 2, 3, 4} is a smooth and
variation independent parameterization.
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Marginal independence for general distributions

A similar approach can be taken in the general case. We work with the
quantities

p(x13) p(x24) OR(x13, x24),

enforcing that the first two distributions factorize into independent
pieces.

We also have a relationship between p(x13 | x∗24) and p(x13) which uses
OR(x13, x24) and p(x24 | x∗13).

This enables us to set up an integral equation that we conjecture will
always converge to likelihood in (∗).
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Recap

• Marginal log-linear parameters are a flexible way to model
multivariate discrete data.

• The effects in a collection of marginal log-linear parameters are
related to tangent spaces of the corresponding models.

• This makes them relevant to many other areas, at least conceptually
(and at least for me!):

• demonstrating equivalence of different models;
• Markov equivalence of MAGs;
• model selection methods;
• constraints on conditional distributions
• causal parameterization and simulation;
• general likelihoods.

• I am convinced that better understanding of how (marginal)
log-linear parameters can be extended to the general nonparametric
case, will help to open up exciting new frontiers in multivariate
statistics!
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Thank you!
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Marginal log-linear parameters

Consider a collection of pairs L = {(M, L) : L ⊆ M ⊆ V }. Let

mar(L) = {M : (M, L) ∈ L}
eff(L) = {L : (M, L) ∈ L}.

A parameterization is said to be complete if every L ⊆ V is represented
exactly once in the collection L.

The parameterization is said to be hierarchical if we can order the
elements of mar(L) as M1, . . . ,Mk so that:

• Mi ⊈ Mj for i > j ;

• up to the jth margin the parameterization is complete for each j ≤ k.
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Imsets
An integer-valued multi-set (imset) is an algebraic way to represent
conditional independence introduced by Milan Studený (e.g. Studený,
2005).

It is a vector with entries indexed by subsets of V and integer values;

let δA(B) =

{
1 if A = B
0 otherwise.

The imset u⟨A,B|C⟩ = δC − δA∪C − δB∪C + δA∪B∪C represents the
conditional independence XA ⊥⊥ XB | XC , in the sense that

⟨H, u⟨A,B|C⟩⟩ := H(XC )− H(XA,XC )− H(XB ,XC ) + H(XA,XB ,XC ) = 0

if and only if XA ⊥⊥ XB | XC under p, where H(·) is the entropy operator:

H(XA) = −
∫
XA

p(xA) log p(xA) dxA.
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Structural/characteristic imsets
An imset like u⟨A,B|C⟩ is called structural.

If we perform a Möbius transform it becomes a characteristic imset,
denoted by c⟨A,B|C⟩. Then one can show that

c⟨A,B|C⟩(S) =

{
0 if S ∈ D(A,B | C )

1 otherwise.

So, if a conditional independence model can be represented by
cond. independences XA ⊥⊥ XB | XC for which the sets D(A,B | C ) are
disjoint, then

cG(S) =

{
0 if S ∈ D(A,B | C ) for any ⟨A,B | C ⟩ ∈ I(G)

1 otherwise.

Further, the model can be scored by using the corresponding structural
imset, and indeed

⟨H, uG⟩ ≈ −ℓ(p;X1, . . . ,Xn).
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Decomposition Proof
Given h(xV ), let t(xV ) = h(xV ) · p(xV ), so if h ∈ Λk|[k−1]:∫

Xk

t(x[k]) dxk = p0(x[k−1])

∫
Xk

p0(xk | x[k−1])h(x[k]) dxk = 0.

Then write

t(k−1)(x[k−2], xk) =

∫
Xk−1

t(x[k]) dxk−1,

so that

t(x[k]) =
{
t(x[k])− t(k−1)(x[k−2], xk)

}
︸ ︷︷ ︸

∈Tk−1,k|[k−2]

+ t(k−1)(x[k−2], xk)︸ ︷︷ ︸
Tk|[k−2]

.

Now one can check that Tk|[k−1] = Tk−1,k|[k−2] ⊕Tk−1|[k−2] and that
these spaces are orthogonal.
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Subset spaces

By a recursion:

Tk|[k−1] =
⊕

C⊂[k−1]

TC∪{k},

so we can decompose into separate subset spaces, such that each t ∈ TA

is a function only of xA and where∫
Xa

t(xA\{a}, ya) dya = 0 ∀a ∈ A, xA\{a} ∈ XA\{a}.

These correspond to ΛA where h ∈ ΛA if Ep[h(xA) | XA\{a} = xA\{a}] = 0
for all a ∈ A and xA\{a} ∈ XA\{a}.
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