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Distinguishing Between Causal Models

But can we still tell what causes what from observational data?

O—0O——C© O—0—0

X1z XLz|Y
p(x, z) = p(x)p(2) p(y)p(x,y,z) = p(x,y)p(y, 2)

Maybe!

In order to do this well, we need to understand in what ways causal
models will be observationally different.
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Structure Learning

Given a distribution P (or rather data from P) and a set of
possible causal models...

0,0 %0 °P 4P %0 P
R

...return list of models which are compatible with data.

We can do this by testing whether constraints implied by the
model(s) are satisfied by P. e.g. PC, FCl algorithms.

To do this we need to know what the constraints are (the focus of
this talk).
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Models for Contingency Tables

Take finite discrete random variables Xy = (Xi,..., Xp).

For xy = (xi,...,xn), joint distribution is parameterized by
p(xv) = p(x1,...,xn) = P(X1 = x1,..., Xn = Xn).

We can consider a statistical model defined by polynomial
constraints in the indeterminates p(xi, ..., x,). We always assume

Zp(xv) =1, p(xy) >0 Vxy.
Xy
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Margins

For M C V/, the marginal distribution over X, is

plxm) = > plxv) = D plxm, xp\m)-

XV\M XV\M

A conditional distribution of X, given Xg is

A conditional independence statement X L Xg | Xc assumes
that p(xa | xg, xc) = p(xa | xc), or equivalently

p(xa, xg, xc) - p(xc) — p(xa, xc) - p(xg,xc) =0

for all xa, x5, xc.
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Directed Acyclic Graphs

vertices O o e
edges —— \ l ‘
no directed cycles °

directed acyclic graph (DAG), G

If w — v then w is a parent of v: pag(4) = {1,2}.

If w— --- — v then w is a ancestor of v: ang(5) = {1,2,3,4,5}.

An ancestral set contains all its own ancestors.
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DAG Models

vertex random variable
<~
@ X
graph G model M
e = M(G) = {P satisfying (*)}
p(xv) = H p(xi | Xpa(i))- (*)
ieVv

So in example above:

p(xv) = p(x1) - p(x2) - p(x3| x2) - p(xa | x1,x2) - P(x5 | X3, %a)

12 /62
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Can also define model as a list of conditional independences:

0 pick an topological
ordering of the graph:
e @ ]., 2, 3, 4, 5

Can always factorize a joint distribution as:

p(xv) = p(x1) - p(x2 | x1) - p(x3 | x1, X2) - p(xa | x1, X2, X3)

- p(Xs5 | x1, %2, X3, Xa).
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Algebraic Models

Can also define model as a list of conditional independences:

0 pick an topological
ordering of the graph:
e @ ]., 2, 3, 4, 5

Can always factorize a joint distribution as:

p(xv) = p(x1) - p(x2 | x1) - p(x3 | x1,x2) - p(xa | x1, %2, X3)

- p(xs | x1, X2, X3, X4).
So by identifying this with (x), see the model is the same as setting

p(xi | x1,x2, -+ xi—1) = p(Xi | Xpa(i)) for each i.

13 /62
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Algebraic Models

Thus M(G) is precisely distributions such that:
Xi L Xji-1)\pa(i) \ Xpa(i)s ieV.

Example:

Q e Xo 1L Xq

X; L X1 | Xo
Xy L X3 | X1, Xo

(4) Xs L X1, %o | X, Xe.

So for discrete variables this is an algebraic model.

14 /62



Structural Equation Model View
There is a second way to think about DAG models.

A distribution P € M(G) iff? there exist functions f; and
independent variables E; such that recursively setting

Xi = fi(X

pa(i)» EI)

gives Xy, the distribution P.

“This only makes sense if P has a density.
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Structural Equation Model View
There is a second way to think about DAG models.

A distribution P € M(G) iff? there exist functions f; and
independent variables E; such that recursively setting

Xi = fi(Xpa(iy> Ei)

gives Xy, the distribution P.

“This only makes sense if P has a density.

e X1 = fi(Er)
Xo = fH(E)
X3 = 3( Xz, E3)
e Xy = f4(X1, X0, E4)
Xs = f5(X3, Xa, Es).

15 /62



Reasons to Like DAG Models

Induced constraints are all conditional independences:
(reasonably) intuitive and simple to interpret;

causal interpretation;
modular structure is useful computationally and statistically;
curved exponential families, known dimension;

algebraic model for discrete variables.

16 /62



Outline

@ Margins of DAG Models

17 /62



Marginalization

Sometimes we cannot observe all the variables. Consider:

with U unobserved.
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Marginalization

Sometimes we cannot observe all the variables. Consider:

with U unobserved. This is a model defined (implicitly) by an

integral:

p(x1, X2, X3, X4) :/P(U)P(Xl)P(Xz\Xl,U)P(X3|X2)P(X4!X3,U) du

We do not assume U is discrete, since we cannot observe it.
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Marginalization

What we consider is not a latent variable model in the usual sense.
No state-space is assumed for hidden variables (though uniform
on (0,1) is sufficient).

p(x1, X2, X3, X4) = /P(U) p(x1) p(x2 | x1, u) p(x3 | x2) p(xa | x3, u) du
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Marginalization

What we consider is not a latent variable model in the usual sense.
No state-space is assumed for hidden variables (though uniform
on (0,1) is sufficient).

p(x1, X2, X3, X4) = /P(U) p(x1) p(x2 | x1, u) p(x3 | x2) p(xa | x3, u) du

But:

@ cannot directly test membership of the model;

@ model is complicated (as we shall see);

@ not even clear it is a (semi-)algebraic model.
We aim to study the set of distributions constructed in this way.
Strategy: find some constraints satisfied by these models, define a

new larger model using these constraints, and study that.

19/62
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Latent Variable Models

Traditional latent variable models would assume that the hidden
variables are discrete with some fixed number of states.

Advantages: semi-algebraic model after eliminating variables is
semi-algebraic, and can fit with (e.g.) EM algorithm.



Latent Variable Models

Traditional latent variable models would assume that the hidden
variables are discrete with some fixed number of states.

Advantages: semi-algebraic model after eliminating variables is
semi-algebraic, and can fit with (e.g.) EM algorithm.

o ¢
@ﬁ@*@i@

But: latent variables lead to singularities and nasty statistical
properties (see e.g. Drton, Sturmfels and Sullivant, 2009)
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Simplifications

Simplification 1. WLOG latents vertices have no parents.

ONO () ()
y N
() () ONONO

hod

<

(Of course, this is not true if we assume a specific state-space: e.g.

phylogenetic model)

N
N

o

(e



Simplifications

Simplification 2. If U, W are latent with chg(W) C chg(U), then
we don't need W.

ONONO
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Simplifications

Simplification 2. If U, W are latent with chg(W) C chg(U), then
we don't need W.

ab
|

ONONO, ORONO
()

1<
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mDAGs

So we only need to consider models like this:

...which we represent with a hyper-graph called an mDAG.
The red edges « are called bidirected.

We want the set of distributions that can be obtained by the latent
variable; this is the complete model M(G) for mDAG G.
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Geared Graphs

Call an mDAG geared if its bidirected edges satisfy the running
intersection property.
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Geared Graphs

Call an mDAG geared if its bidirected edges satisfy the running

intersection property. Examples:

geared

not geared

C—®
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Functional Dependences

Consider the situation below.

(). YOI
O—0—O

Recall the structural equation view: for some ‘error’ variables
Ex, Ey:

X =fx(Z,U,E) Y =fy(X, U, E)).
Without loss of generality, can assume U’ = (U, E, E, ), so all
additional randomness is contained in U’
U’ ‘tells’ X and Y what to do given their other parents.

Set U = (X(z), Y(x)), drawn from finite set of functions.



Geared Graphs

If a graph is geared we can iterate this process to show that a
finite state-space is sufficient:

N
~

(]



Geared Graphs

If a graph is geared we can iterate this process to show that a
finite state-space is sufficient:

(%)



Geared Graphs

If a graph is geared we can iterate this process to show that a
finite state-space is sufficient:



Geared Graphs

If a graph is geared we can iterate this process to show that a
finite state-space is sufficient:

S8
OO
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If a graph is geared we can iterate this process to show that a
finite state-space is sufficient:

Tl Kaloal) >
() (%)
< <
OO

This shows that geared graphs do represent semi-algebraic models.
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Geared Graphs

If a graph is geared we can iterate this process to show that a
finite state-space is sufficient:

X103 (x2)), Xa(xa(x1))

This shows that geared graphs do represent semi-algebraic models.

This representation turns out to be important in proving
completeness of constraints.

27 /62



Non-Geared Graphs

With a graph which is not geared, we cannot do this.

()

/

CO—C)



Non-Geared Graphs

With a graph which is not geared, we cannot do this.

H—E OO

[ b

Open Problem: These models may or may not be semi-algebraic.
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© Ordinary Markov Model
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Ancestral Sets

Recall an ancestral set contains its own ancestors, e.g. {x,y, z}.
° Marginalize w:

p(x,y,2) Zp p(y | x) p(z|x) p(w |y, 2)
) ()
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Ancestral Sets

Recall an ancestral set contains its own ancestors, e.g. {x,y, z}.

Marginalize w:

p(x,y,2) Zp p(y |x) p(z|x) p(w]y,2)
— )y %) plz] %)

@ Obeys graphical model with w removed.
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Ancestral Sets

Recall an ancestral set contains its own ancestors, e.g. {x,y, z}.

Marginalize w:

p(x,y,2) Zp ) p(y | x) p(z | x) p(w |y, 2)
= p(x)ply x)p(z]x)

@ Obeys graphical model with w removed.

Models ‘closed” under marginalization of vertices with no children. J

30 /62



Ancestral Sets

C—C—C)—

p(X17X27X37X4)

= /P(U) p(x1) p(x2 | x1, u) p(x3 [ x2) p(xa | x3, u) du
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Ancestral Sets

—C——

P(Xl, X2, X3)

_Z/ p(x2 | x1,u) p(x3 | x2) p(xa | x3, u) du
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Ancestral Sets
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Ancestral Sets

&

p(x1, X2, X3)

_Z/ p(x2 | x1,u) p(x3 | x2) p(xa | x3, u) du

= [ p(0) ) plo 31 ) s [ 20) 3 pl 3, )

X4

= [ ) plx) ploz 31, ) s ) s
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Ancestral Sets

&

P(X1 X2, X3)

_Z/ p(x2 | x1,u) p(x3 | x2) p(xa | x3, u) du

= /p(U) p(x1) p(xa | x1, u) p(xs | x2) Y p(xa | xs, u) du

X4

= [ ) plx) ploz 31, ) s ) s

— () s |x2) [ p(u) plo 30, 0) s
gives X1 L X3| Xa.
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Districts

Define a district in an mDAG to be maximal sets connected by
latent variables:

/ p(u) plxa | u) plxa | u) p(v) p(xs |1, v) p(xa | X2, v) pl3s |xs) dudv

— [ o) el | 0)p 0] o [ p(v) ploa 1, v) ploc 32, v) o plos )

= q(x1,x2) - q(x3, X% | x1,x2) - q(xs | x3) -



Districts

Define a district in an mDAG to be maximal sets connected by
latent variables:

/ p(u) plxa | u) plxa | u) p(v) p(xs |1, v) p(xa | X2, v) pl3s |xs) dudv

[ @) pla ) o1 0) s [ plv) s 1) plxe e, v) vl )
q(x1,x2) - q(a,xa | x1, %) - q(xs|x3) -

= H dp; (XDi | Xpa(Di))



Axiomatic Approach

Define O(G) as set of P satisfying:

1. Ancestrality: P € O(G) only if

> plxv) € 0(G-w)

for each childless w.
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Define O(G) as set of P satisfying:

1. Ancestrality: P € O(G) only if

> plxv) € 0(G-w)

for each childless w.
2. Factorization into districts: P € O(G) only if

p(xv) = [ [ a0(x0 | xpa(p))
D

for districts D and some functions gp.
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Axiomatic Approach

Define O(G) as set of P satisfying:

1. Ancestrality: P € O(G) only if

> plxv) € 0(G-w)

for each childless w.
2. Factorization into districts: P € O(G) only if

p(xv) = [ [ a0(x0 | xpa(p))
D

for districts D and some functions gp.

Call this the ordinary Markov model (OMM).
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Properties of the OMM

First described by Richardson (2003, 2009); factorization and
parametrizations in Evans and Richardson (2013, 2014).

@ Strict superset of latent variable model,

@ equivalent to taking all the conditional independences from
the original model which only involve ‘visible' variables;

@ therefore algebraic (quadratic constraints in the probabilities);
@ has parametrization, so irreducible variety;

@ curved exponential families.

34
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Example

SOX1J|_X4|X2
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Example

®
O O O

So X1 JLX4|X2 and X1 J|_X3.
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Outline

@ Verma Constraints
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A Deficiency

If U is latent, OMM gives only X3 L Xj | Xa.
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A Deficiency

~
~
-~ -
______
---------

If U is latent, OMM gives only X3 L Xj | Xa.

But if we add an arrow X; — X, we still have X3 L Xj | Xa.
So can we detect that X1 A X7

37 /62



The Verma Constraint

O—C——

p(x1, %2, x3, X4) = /P(U) p(x1) p(x2 | x1,u) p(x3 | x2) p(xa | x3,u) du
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The Verma Constraint

O—C——

p(x1, %2, x3, X4) = /P(U) p(x1) p(x2 | x1,u) p(x3 | x2) p(xa | x3,u) du

— p(x1) p(xs | x2) / p(u) p(ra | x1, ) p(xa | x3, u) dlu

= p(x1) p(x3 [ x2) q(x2, xa | x1, X3).

(This is our district factorization.)
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The Verma Constraint

O—C——
P(x1, 30, X3 3) = / p(u) p(x1) p(xa | x1, 1) p(xs | x2) p(xa | x5, u) dlu

— p(x1) p(xs | x2) / p(u) p(ra | x1, ) p(xa | x3, u) dlu

= p(x1) p(x3 [ x2) q(x2, xa | x1, X3).

(This is our district factorization.) But note that

Z 400, xa | x1, %) Z/ p(xa] x1, 1) p(xa | x5, u) du

= p(xa | x3)

is independent of xi, precisely because X3 4 Xj.
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Verma Constraints are Polynomials

This is the Verma constraint (Pearl and Verma, 1990):

p(x1, x2,x3, X4) p(x2 p(x1, X2, X3, x4) p(x2)
p(x1)-p X2,X3) p(x1) - p(x2,x3)
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Verma Constraints are Polynomials

This is the Verma constraint (Pearl and Verma, 1990):

p X17X27X37X4 P X17X27X37X4)P(X2)
p(xi) - p X2,X3) p(x1) - p(x2, x3)

Gives degree-4 polynomial (662 terms) in binary case.
(if X3 L X1 | X2 get degree 6 polynomial with 480 terms)

Note degree increases with number of states of X; and X>.
Generally:

[X1]+ %2 (or [X4](1 +[X2]))

Reflects difficulty of estimating p(x1) and p(x3 | x1, x2) and dividing
out by them(?)

39/62



Subgraphs

q(x2, x4 | x1,x3) behaves as a density in which X1 L X4 | X3,
though this does not hold under p.
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Subgraphs

q(x2, xa | x1,x3) behaves as a density in which X; L Xy | X3,

though this does not hold under p.

X1

®

©

X3

X2

—®
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Subgraphs

q(x2, x4 | x1,x3) behaves as a density in which X1 L X4 | X3,
though this does not hold under p.

— [
® ()

p(XlaX27X37X4)
p(x1) - p(x3 | x2)

= /p(u) p(x2 | x1,u) p(xa | x3, u) du

So each factor of the distribution gp corresponds to a ‘piece’ of
the graph G[D].

40 /62



Districts

/ p(xi|u) p(xa|u) p(xs|x1,v)p(xa|x2,v) p(xs|x3) dudv
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Districts

/ p(xi|u) p(xa|u) p(xs|x1,v)p(xa|x2,v) p(xs|x3) dudv

— [ pGalu)palu) du- [ plolx,v) ol e, v) dv- plos )
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Districts

/ p(xi|u) p(xa|u) p(xs|x1,v)p(xa|x2,v) p(xs|x3) dudv

— [ pGalu)palu) du- [ plolx,v) ol e, v) dv- plos )
= q(x1,x) - q(x3,xa | x1,x2) - q(x5|x3) .

The form of each g is important.

41 /62



Districts

O

—()

/ p(u) pOa | u) pxa[u) p(v) pOxs | X1, v) plxa | X2, v) p(xs|xs) dudv

X2

— (%)

X3

- ®
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Districts

—

X1

R

X2

X3

- ®

p(u) pOa | u) pxa[u) p(v) pOxs | X1, v) plxa | X2, v) p(xs|xs) dudv

= / (v) p(xa | u) p(x2 | u) du / p(v) p(xs | x1,v) p(xa | x2, v) dv p(xs|x3)



Districts

X1

—— X3—>®

X2

/ p(u) pOa | u) pxa[u) p(v) pOxs | X1, v) plxa | X2, v) p(xs|xs) dudv

= q(X1;X2) .

1

/ p(u) plxs | 0) (s | 1) d / p(v) P | 31, v) p(xa | 32, v) dv [BR15)
q(x3, xa | x1,x2) - q(xs[x3) .

= [ a0.(x0, | %pa(0,))

Each gp piece should come from the model based on district
subgraph and its parents (G[D]).



Axiomatic Approach Il
Define N(G) as a model satisfying:

1. Ancestrality P € N(G) only if

> plxv) €N(G-w)

Xw

for each childless w.
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Axiomatic Approach Il
Define N(G) as a model satisfying:

1. Ancestrality P € N(G) only if

> plxv) €N(G-w)

Xw

for each childless w.
2. Factorization into districts P € N(G) only if

p(Xv) = H QD(XD ’Xpa(D))
D

for districts D, where gp € N (G[D]).

Note that one can iterate between 1 and 2.
Call this the nested Markov model (NMM).

43 /62
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Verma Example

&

Xy childless, so if P € N(G), then

p(x1, %2, x3) = p(x1) - </ p(u) - p(x2 | x1, u) dU> - p(x3 | x2)
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Verma Example

Xy childless, so if P € N(G), then

p(x1, x2,x3) = p(x1) - (/ p(u) - p(x2 | x1, u) dU> - p(x3 | x2)
= p(x) - pOe|x1) - p(xs ] x2),

and therefore X; 1L X3 | Xj.

44 /62
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®
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Can consider the district {2,4} and distribution go4...
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Verma Example

X1

X3

®

Can consider the district {2,4} and distribution go4...

and then marginalize X,.

We see that X7 1L X3, X4 [q24].

45 /62



Properties of the Nested Markov Model

M(G) S N(G) € 0(9),

i.e. the constraints given by nested Markov property are
‘correct’;
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Properties of the Nested Markov Model

M(G) CN(G) € O(9G),
i.e. the constraints given by nested Markov property are
‘correct’;
@ in general M(G) € N(G), because of inequality constraints;
@ constraints are generalization of conditional independence;

@ curved exponential families (discrete case).

Theory of nested Markov model is well developed:

@ global, local, factorization and moralization based Markov
properties;

@ parametrization in discrete case (Shpitser et al, 2012);

e fitting and search methods (Shpitser et al, 2013).

46
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Example

In the below example, X and Y are not adjacent: is there a
constraint implied?
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Example

In the below example, X and Y are not adjacent: is there a

constraint implied?
2 @
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Example

In the below example, X and Y are not adjacent: is there a

constraint implied?

Wy

@

W,
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Example

In the below example, X and Y are not adjacent: is there a

] @ @

constraint implied?

®<_

Wy

So X L Y| W in a twice re-weighted distribution P**.

W,
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Example

In the below example, X and Y are not adjacent: is there a

constraint implied?
] @ @

@(— W1 W2

So X L Y| W in a twice re-weighted distribution P**.

So can distinguish between these two structures...
...but this is a degree-12 polynomial!
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@ Results
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Main Result

How do we know there isn't another ‘axiom’ we could use?
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Main Result

How do we know there isn't another ‘axiom’ we could use?

Theorem (Evans)

For any discrete DAG model, the nested and complete Markov
models are algebraically equivalent (i.e. same dimension):

N(G) = M(9).

where S is the Zariski closure of S.

In addition:

Theorem (Evans and Richardson)

Nested models are curved exponential families.

This has very nice statistical implications.

49 /62
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Proof idea for main result

@ The nested model can be defined parametrically;
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Proof idea for main result

@ The nested model can be defined parametrically;

@ therefore its Zariski closure is an irreducible variety;

@ hence if, in a neighbourhood of a single point, the nested and
complete models are the same dimension, then they have the
same Zariski closure;

@ the uniform distribution (complete independence, all states
equally likely) is contained in any mDAG model;

@ we can perturb the relationship between latent and observed
variables to ‘move’ M in any direction within the tangent
space of V.
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Proof Qutline

Can use log-linear parameters:

log p(xv) Z Aa(xa).
ACV

Uniform distribution has A4 = 0 for all A # 0.
If Xa 1L Xpg ’XC, then AD(XD) ~ 0 for D such that

DCAUBUC, DNA#0, DNB#0.

Lemma

If Xa L Xg|Xc under M, then Ap L TCy(M) for D as above.

In fact, this is true even for a dormant independence.




Verma Example
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We have X1 L X3| X, and (after a re-weighting) X1 L Xz | X3.
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Verma Example

PN

We have X1 L X3| X, and (after a re-weighting) X1 L Xz | X3.
Hence A1z + A1o3 + A1g + A13g L TCo(M).

So: need to show all the other spaces A4 are inside the tangent
cone.

53 /62



Verma Example

D—CF——&
Perturbing | controls
X1 | M
X3| Xz | N3+ N3
Xo(x1) | A2+ A2
Xa(x3) | Na+ N34

Xa(x1), Xa(x3) jointly

Nog + N12a + Noza + Ni234
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Verma Example

D—CF——&
Perturbing | controls
X1 | M
X3| Xz | N3+ N3
Xo(x1) | A2+ A2
Xa(x3) | Na+ N34

Xa(x1), Xa(x3) jointly

Nog + N12a + Noza + Ni234

NA13, A123, A14, A134 are constrained, so that's all of them!
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Geared Graphs

Back to our harder example:

CRaboe)) Keloall] >
& ®
@D Y G
& &
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@D Y G
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Perturbing ‘ controls

X3(x2) | A3+ A

Xa(x1) | Na+ Aia
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Perturbing | controls
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Geared Graphs

Back to our harder example:

) Xaloala)) >

S

Perturbing | controls

X3(x2) | A3+ A

Xa(x1) | Na+ Aia
X1(x3(x2)) | A1+ A1z + Arzs
Xo(xa(x1)) | Ao+ Nog + N12a

Xao(xa(x1)), X1(x3(x2)) jointly

A12 + A124 + A123 + A123s+
+N\134 + Nozs + N3a

55/62
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Inequality Results

O—® ©

plxy|2) = [ plu)plx|2.0) ply | x.u) do

Let p'(x.y2) = [ p(u) (x| 2,u) - ply | x = 0.0)
Can’t observe p* but:
e Compatibility: p(0,y |z) = p*(0,y|z) for each z,y; and
@ Independence: Y I Z under p*.
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Inequality Results

O—® ©

plxy|2) = [ plu)plx|2.0) ply | x.u) do

Let p'(x.y2) = [ p(u) (x| 2,u) - ply | x = 0.0)
Can’t observe p* but:
e Compatibility: p(0,y |z) = p*(0,y|z) for each z,y; and
@ Independence: Y I Z under p*.

This ‘compatibility’ requirement turns out to place an inequality
restriction on p:  max E max p(x,y|z) <1.
X z
y



Inequality Results

Generalizing this argument, we find a rich theory of results on
inequalities (Evans, 2012).
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Inequality Results

Generalizing this argument, we find a rich theory of results on
inequalities (Evans, 2012).

However these results are not exhaustive!

Finding all inequality constraints in marginal models is probably an
NP hard problem.

Additionally:

o fitting models with inequality constraints is not trivial;

@ the usual asymptotic results do not necessarily apply.

Maybe the nested model is a good compromise!
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Summary

We have seen that:

@ we can provide graphical derivations of constraints on DAG
models; this leads to:
(i) the ordinary Markov model (conditional independences);
(ii) the nested Markov model (higher order polynomial
constraints);
(iii) some inequalities.
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Summary

We have seen that:

@ we can provide graphical derivations of constraints on DAG
models; this leads to:

(i) the ordinary Markov model (conditional independences);
(ii) the nested Markov model (higher order polynomial
constraints);
(iii) some inequalities.
@ the nested Markov model is ‘complete’ for algebraic
constraints;

@ statistical and practical properties generally better than latent
variable models;

@ we can also give graphical derivations for some inequalities.

60 /62
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Algebraic Questions

Are the complete models always semi-algebraic?

Are polynomials of higher order harder to learn in finite samples?
Is so, can we give a careful explanation of why?

Can we give a full characterization of when two complete models
are the same?

We've dealt with marginalization, but what about conditioning?

61 /62



Thank you!
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d-Separation

A path is a sequence of edges in the graph; vertices may not be
repeated.

A path from a to b is blocked by C C V' \ {a, b} if either

(i) any non-collider is in C:

O—(©—0 O——0

(ii) or any collider is not in C, nor has descendants in C:

O—@—0O O—{?—O
©®

Two vertices a and b are d-separated given C C V' \ {a, b} if all
paths are blocked.

64 /62



Parameterizations

The nested and ordinary Markov models are also defined by

PXv=xv)= > (-1 ] au(xr).

occcv He[Clg

for some pairs of sets (H, T), and partitioning function [-]g. (See
Evans and Richardson, 2014, for details)

Note the form is the same for the ordinary and nested models, but
the partitioning function differs (as does the interpretation of the
parameters q).
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ADMGs are not sufficient

In general we need to distinguish between {1,2,3} and {1, 2},
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ADMGs are not sufficient

In general we need to distinguish between {1,2,3} and {1, 2},

@<\—’/®
1
® &

The model on the right is not saturated. Still true if we
dichotomize.
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ADMGs are not sufficient

Lemma

Let F, G, H be mutually independent o-algebrae (so that
F 1L GV H and so on), and let X, Y and Z be random variables
such that

(i) X is FV G-measureable;
(ii) Y is GV H-measureable;
(iii) Z is F V H-measureable.
Then P(X =Y =Z) > 1— e implies

Var X < 3e.
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