Graphical Models: Worksheet 4 MT 2023

Questions will not be marked, however solutions will be provided.

A: Warm Up

Al.

A2.

Causal Models
Let p*(y|z) = [p(y |z, 2)p(z) dz.

(a) Draw a causal graph with vertices X, Y, Z for which p*(y|z) = p(y | do(z)).
This is the graph in which Z — X =Y and Z —> Y.

(b) Show that p* is a valid conditional distribution for Y given X = z. (In other
words, show that it is non-negative and integrates to 1 for each fixed x).

It is clearly non-negative since the integrand is non-negative. Integrating with
respect to y and swapping the order of the integration shows that it integrates to
1.

(c) Show that p*(y|x) =p(y|z) if either X L ZorY 1 Z | X.

z = [plylz 2)p(z|z)dz =
z) doesn’t depend upon z, so

If X L Z then p(z
Iply,z|x)dz = p(y
Py lz) =plylz) [p

) = p(z|z), so [p(y|z, 2)p(z)d
|z). If Y L Z|X then p(y|=,
(

z)dz = p(y| ).
d-Separation

Consider the DAG below.

©®

Which of the following d-separation statements are true?
(i) 2 Lgq 3| 4; False since the path 2 — 4 < 3 is open conditional on 4. However
2 1430 is true.

(ii)) 2 L4 5 | 4; False since the path 2 — 4 < 3 — 5 is open conditional on 4.
However 2 145 | 3,4 is true.

(iii) 1 Lg 5| 3,4; True since all paths out of 5 start with a non-collider (3 or /),
and these are both in the conditioning set.

(iv) 5 Lg 6| 4. True, since 4 is a non-collider on both paths from 5 to 6.

For those that are not true, identify an open path, and also a separating set for which
the statement is true.



B: Core Questions

B1. Front-Door Adjustment

Assume that p is Markov with respect to the graph G shown above, and that (G, p)
represents a causal model.

(a) Show that
py | do(z)) = Z (t|z) Zp ylz,t)p
We have
p(y|do(z Zp o t y
- ;p(y |z, t)p(t | z)p(z)
_ g’p(m«) > rlyl = 0902

as required.
(b) Show further that

> oyl zt)p( Zpy!xt

z

and hence deduce a formula for p(y | do(x)) that does not involve Z. [Hint: write
p(z) = >, p(z|x)-p(z), and use the conditional independences from the graph.]
Note that

> oy =t ZpylthW?Z

z :Zzpy,z,tpz r)p(a)
_Zp |z, 2,t)p(z | 2, t)p(x)
- ; p(y, z |z, t)p(x)
= z;:p(y |z, t)p(x)

It follows that p(y|do(x)) =", p(t|x)> . ply |« t)p(x’) (which is the same as
> p(t|x) - ply|do(t))).



B2. Regression Adjustment

O—W—0

For this question, assume that we are dealing with a Gaussian causal model, so that
the causal effect is just 8yy.c, where C is any valid adjustment set.

(a)

Consider the graph above. Show that:

. Ovvw dyy
Bty.v - 57511} Bwy Coot - /Btw 5wy dm) +,812wdww’

where d,, is the variance of the error term for the structural equation generating
X,.
First note that since o400y = O40py — O’tz,u, we have Ot.y0py = Opytop. Also,
by the trek rule we have that oyy = dwwBweBwy + dttﬂfwﬂwvﬁwy and also oy =
dww + dttﬂfw; hence 0vy = owwBuwvBuwy- Then
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Oyu-t
where the last equality follows from the fact that Buy = Oww/0ww. Then note
that Oy 1S just dy, by the definition of the least squares equation, and oyy.t =
Ovv — 5t2v0tt = dyy + dww 1201} using the trek rule and the fact that T is exogenous.

Deduce that, if v € C then adjustment on X does not give a consistent estimate
of the causal effect T — Y.

Note that the true causal effect is just By Buwy, and the fraction is clearly < 1 if V
is correlated with W (and if the distribution is not degenerate), so clearly V' is not
a valid adjustment set. Clearly we cannot include W in a valid adjustment set,
so the only other candidates are {V'} (which we have ruled out) and (). Hence,
in this particular graph V is not a member of any valid adjustment set.

Use this to deduce that, for any causal DAG G, no member of forbg(T —
Y) can belong to an adjustment set that gives a consistent estimate for most
distributions.

There are two types of member of forbg(T — Y'), things that are in cng(T —
Y) and their strict descendants. Clearly adjusting for something on the causal
path will not be consistent, since the effect could be entirely mediated by that
variable and our estimate would be 0. For any descendant (say V'), we can pick a



distribution in the model so that the entire effect is mediated through the ancestor
in eng(T — YY), and have a single non-trivial path down to V. (If there is a
vertex earlier on the path in the candidate set, then use that instead.) All other
variables can be chosen to be independent. Then the previous analysis shows that
the estimate of the effect is (in general) biased if we adjust with a set containing

V.

B3. Adjustment Sets

A cardiologist is interested in the mechanisms which cause a myocardial infarction
(heart attack, Y). She believes that it is directly affected by the patient’s diet (),
their weight (1), and the build up of fat in their arteries (A). The patient’s weight
is also an effect of their diet, and a cause of fat in their arteries. Weight and diet are
each affected by the patient’s socio-economic status (E), and weight is also a function
of their sex (S). Suppose also that the doctor has access to a new drug, X, which
she assigns at random conditional on the patient’s sex, and whose only effect is to
reduce the arterial fat build up.

(a) Draw a directed acyclic graph over the seven variables, that minimally represents
the causal story described.

The graph should be:

(b) List all the valid adjustment sets for the causal effect of W on Y.
This would be:

{N,S} (N, X} (N, X,S}
{N,S,E} (N, X,E} (N, X, S, E}.

(¢) Suppose that we assume a linear model for each of the variables conditional upon
their parents. Which of the valid adjustment sets is likely to lead to the estimate
of the causal effect that has the lowest variance, and why?

By Henckel’s Theorem (Theorem 8.34), we know that the lowest variance belongs
to the set

Og(W —Y) = pag(cng(W — Y)) \ ({W} Ueng(W — Y))
={X, WA NI\ {W AY}
= {X,N}.

(d) Compute the forbidden projection for (W,Y), and hence verify your answer.
The graph should be:



S W Y
-/

and hence pag(Y) \ {W} = {X, N} as required.

C: Optional

C1l. Mediation

Let G be the graph shown below, and suppose that (X1, X5, X3)T ~ N(0,X) is causal
with respect to the graph below.

Let Bij.a := 04j.4/0i.a be the coefficient of the variable X; when performing a linear
regression of X; on X;, X 4. Note that this quantity does not depend upon any causal
structure.

(a) Write (13.2 in terms of entries of .
Using the definition of the Schur complement, we have
Biza = (013 — 012023/022) /(011 — 075/ 022)
= (022013 — 012033) /(022011 — 01y).

(b) Using the trek rule, show directly that be; = 12, and b3y = S13.2.
The trek rule gives 011 = d11, and

o12 = di1ba1, 013 = d11b21b32 + d11b31
093 = di1ba1b31 + d11b3,b32 + dasbso.
Hence B2 = 012/011 = ba1 as required. The bottom of the ratio above for (13.9 is
022011 — 05 = (dag + b31d11)d1y — (di1ba1)® = daodiy.
The top is

022013 — 012023

= (dag + b31d11)(d11b21b32 + d11b31) — di1ba1(di1ba1bar + di1b3;bse + dagbsg)
= da2(d11b21b32 + d11b31) — d11b21d22b32)
= daad11b31.

This gives the result.



(c) Argue that if 7 is a parent of j then bj; = 3.4, where A = pag(j) \ {i}.
[Hint: see Sheet 3 qB3.]

Using part (c) of the question suggested, we see that X; can be written as a linear
function of its parents (with coefficients bj; and an independent error term); hence
the regression coefficients are just as described.

(d) Show that 013 = 013.2 + 012023/0922 and hence (or otherwise) deduce that
P13 = P32 + B12f231.

[Hint: let rg := X3 — $13.0X1 — B23.1 X2, and recall that Bi13.2, f12.1 are defined so
that rs is uncorrelated with both X1 and Xo.]

Using the bilinearity of covariance (i.e. it is linear in each of its arguments),

Cov(X1, X3) = Cov(X1, X3 — B23.1X2) + Cov(X71, B23.1X2)
= Cov(X1, f13.2X1) + B23.1 Cov(X1, X2)

013 = 011513.2 + 0125231,

where Cov(X1, X3 — f231X2) = Cov(Xy, f132X1) follows from the hint that
Cov(X1, X3 — 231 X2 — fi132X1) = 0.

Note that the same result can also be deduced from the trek rule in the graph
shown above.

In a system such as G, the first term of this formula is sometimes called the direct
effect of X1 on X3, and the second term the indirect effect via Xo.

(e) Can you separate out causal effects in a more general way? For example, consider
partitioning into paths of length [ > 1.
We have

I
Bk = > | R

1>1 i9<i1 <ig<---<i; s=1

This is (almost) just the trek rule applied to a graph in which the first variable
has no parents, and hence all treks are just directed paths from 1 to k.

C2. Causal Effects

The average causal effect on Y of changing Z = 2z to Z = 2’ is defined as
ACEz vy (7,2) :=E[Y | do(Z = 2')] — E[Y | do(Z = 2)].

(a) Show that if (G,p) is causal and p(zy) is a multivariate Gaussian distribution,
then

ACE;j(w;, @) == Biyj(wi — x;)

where (3;_,; is the regression coefficient of X; when regressing X; on X;, Xp for
any valid adjustment set B.

From the beginning of Section 8.6 and the fact that B is a valid adjustment set,
we know that E[X; | do(x;)] can be obtained by averaging a regression model for
X; given X;, Xp over p(xg). It follows that E[X; | do(x;)] = o+ Bi—sjz; for some
constants o, B;_j; it follows from the same derivation that B;—; is the coefficient
of X; in that regression. Hence, E[X; | do(x})] — E[X; | do(z;)] = Bimsj(x} — x;).



C3.

C4.

(b) Show further that
Bisi = > 1 b
7T€'Dij k—lemw

where D;; is the set of directed paths from ¢ to j. [Hint: consider the quantity
Cov(X;, X; — > ybicXc) and use the trek rule.]

Let C = pag(i); this is a valid adjustment set so we can write
COV(X] , X — Z bchC)
fini = Var(X; — 5 waC)

cEpag z

poag

cepag z

[This is like regressing X; on its parents and then regressing X; on the residual.]
Now,

Cov(X;,Xi— Y bieXc) =Cov(X;,Xi) = > bie Cov(X;, Xe).

cEpag (i) c€pag (i)

Now, by the trek rule, the first term includes all treks from j to i, while the sum
removes precisely treks from i to j that begin with an edge i <— c. This leaves only
one-sided treks with source i, i.e. directed paths from i to j. This is identical to
the expression given, except for a factor of dy;.

However,

Var(X Z bieXc) = Var(e;) = dj;
cEpag (i)

(in the usual notation), so this gives the result.

Forbidden Projection

Prove Theorem 8.40, stating that if G is the forbidden projection of G with respect
o (T,Y), then

Og(T' = Y) = pag(Y) \{T}.

First we show that Og(T — Y) C pag(Y) \ {T'}. Suppose that v € Og(T —Y) =
pag(eng(T' = Y)) \ (eng(T — Y) U {T}), so it is a parent of a causal node. Since
every eng(T — Y') is in forbg(T — Y'), this means that there is a directed path from
v to y such that all intermediate nodes are projected out in G.

For the converse, note that pag(Y) consists of nodes that were previously (strict)
ancestors of Y, but such that the nodes on the directed path to Y have been removed
in G. This is precisely the definition of an element of Og(T — Y'), because the
ancestors of Y that are removed are precisely the elements of cng(T — Y)\{Y'}, and
the immediate strict parents of this set cng(T — Y') are precisely Og(T — Y )U{T'}.

Instrumental Variables

Consider the four Gaussian variable causal system shown.




(a) Show that, if Cov(Z, X) # 0, we have fx_,y = Cov(Z,Y)/ Cov(Z, X).
Using the trek rule, we have Cov(Z,Y) = d;;by:bys, and Cov(Z,X) = d;;b,..
Then, provided Cov(Z,X) # 0, (so in particular by, # 0) this gives the result.
(b) Explain the utility of this result if U is unobserved.

The formula provided only involves the other three variables, so we can obtain
an estimate of the causal effect of X on Y even in the presence of unobserved
confounders.

Note that this result relies strongly on there being no direct effect of Z on'Y, nor
any correlation between U and Z.

In the literature you may see this described as ‘two-stage least squares’ (2SLS)
because we perform two ordinary linear regressions (Y on Z and X on Z) to get
our estimate.

C5. Correlated Errors

In our formulation of Gaussian DAGs we found that the error terms were independent
(see question B3 on Sheet 3), and hence the matrix D = Cov(e) is diagonal. One
possible extension to this model is to allow for correlated errors, i.e. so that D is an
arbitrary covariance matrix.

We can represent this graphically by including a bidirected edge (i <> j) whenever

dij = dji # 0.
O—B——®

(a) Consider the graph shown. Evaluate (I — B)~!.

Following the usual derivation we have (I — B)™' = I+ B + B? + B>. In this
case B% =0, so we just get I + B, i.e.

1 0 0 O
boy 1 0 O
0O 0 1 0
0 0 bygs 1

(b) Hence derive ¥ in terms of bai, byz and non-zero entries of D.

We have
1 0 0 O\ /dys O 0 0 1 0 0 0\"
5 b1 1 0 O 0 dyo dog O by 1 0 O
o 0O 0 1 O 0 dog dsz O 0O 0 1 o0
0 0 by 1 0 0 0 dya 0 0 by3 1
di1 0 0 0 1 by 0 O
| di1ba dog do3 0 0O 1 0 O
o 0 d23 d33 0 0 0 1 b43
0 dos3byz  d3zbyz  dag 0 0 0 1
di1 d11b21 0 0
_ | dirbn doo + d11b3,  dos da3bys3
0 do3 ds3 d33b43
0 dazbas3 dssbys  daa + d33bly



(¢) Derive an analogue of the trek rule that applies to graphs with correlated errors
of this form.

As you might guess from the derivation above, we now need to include as a trek
the possibility of the source being a bidirected edge. For example, in the graph
in the question, the entry for ooo consists of the usual treks two from 2 to itself.
However, for go4 = dasbas this looks like a trek with source 2 <+ 3, left hand side
consisting of the trivial path 2, and right hand side consisting of 3 — 4.



