
Graphical Models: Worksheet 3 MT 2023

A: Warm Up

A1. Directed Acyclic Graphs
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(a) List all the conditional independences implied by applying the local Markov
property to the DAG G shown above.

These are

X1 ⊥⊥ X6, X2 ⊥⊥ X6 | X1

X3 ⊥⊥ X1, X6 | X2 X4 ⊥⊥ X1, X2, X6 | X3

X5 ⊥⊥ X2, X3 | X1, X4, X6 X6 ⊥⊥ X1, X2X3, X4.

(b) Find the moral graph. Is it decomposable?

The moral graph is:

1 2

3

4

6

5

This graph is not decomposable, since there is a chordless cycle 1, 2, 3, 4.

(c) Find all the sets of vertices C ⊆ {2, 3, 5, 6} such that X1 ⊥⊥ X4 | XC according
to the global Markov property.

The ancestors of 1 and 4 include 2 and 3, so any subset C must include one of
these. If we include 5 then they will not be separated because of the v-structure
1→ 5← 4. On the other hand, we can always include 6 without problems.

X1 ⊥⊥ X4 | X2, X1 ⊥⊥ X4 | X3, X1 ⊥⊥ X4 | X2, X3

X1 ⊥⊥ X4 | X2, X6, X1 ⊥⊥ X4 | X3, X6, X1 ⊥⊥ X4 | X2, X3, X6.

A2. Markov Equivalence

List all the graphs (either undirected or directed acyclic) that are Markov equivalent
to the one shown.

1



X Y

Z

W

There are no v-structures, so the undirected graph with the same skeleton is Markov
equivalent. For directed graphs we just need any graph with the same skeleton and
no v-structures. If X → Y then we need Y → Z and Y →W to avoid a v-structure,
so there are two possibilities depending on the orientation of the remaining edge. If
Y → X then we can have the other three edges in any orientation that accounts for
a topological ordering of Y,W,Z: there are six such orderings.

In total there are 8 directed graphs (including the one shown) and one undirected.

A3. Junction Trees

Consider the graphical model shown.

X YW

Z

(a) Draw a junction tree suitable for performing probability inference on a distribu-
tion that is Markov with respect to this graph.

The graph has no v-structures, so is Markov equivalent with respect to the (de-
composable) undirected graph with the same skeleton. One possible junction tree
for the cliques is

X,W X X,Y X X,Z

Though any of the nodes can be in the centre.

(b) Suppose that the distribution is given by

p(z) =
z = 0 1

0.4 0.6
p(x | z) =

z x = 0 1

0 0.9 0.1
1 0.4 0.6

p(w | x) =

x w = 0 1

0 0.1 0.9
1 0.2 0.8

p(y | x) =

x y = 0 1

0 0.7 0.3
1 0.4 0.6

Give an initialization of potentials in your junction tree consistent with this joint
distribution. [Hint: you shouldn’t need to do any calculations.]

The obvious way to do this is to set ψXW = p(w | x), ψXY = p(y | x) and
ψXZ = p(z) · p(x | z); the two separators can just be ψX = ψ̃X = 1.

(c) Using the junction tree algorithm, calculate the consistent potentials for this
junction tree.
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Choosing XW as the root node, we will collect the evidence first. We have

ψXZ = p(x, z) =

z\x 0 1

0 0.36 0.04
1 0.24 0.36

so the marginal distribution of X is (0.6, 0.4). This becomes the value of the
potential ψ̃X , replacing 1, so then

ψ′XY =
ψ̃′X
1
ψXY = p(x)p(y | x) =

x y = 0 1

0 0.42 0.18
1 0.16 0.24

Repeating this with a propagation to the final table gives

ψ′XW =
ψ′X
1
ψXW = p(x)p(w | x) =

x w = 0 1

0 0.06 0.54
1 0.08 0.32

One can verify that all the potentials are now consistent, and therefore the dis-
tribute step will not change anything.

(d) Use the junction tree to compute p(w | y = 1).

Introducing the evidence {Y = 1} into the relevant clique changes that table to

ψXY =

x y = 0 1

0 0 0.429
1 0 0.571

so the marginal of X is (0.429, 0.571) (as opposed to 0.6, 0.4 before). Propagating
to the XW table gives

ψ′XW = ψXW
ψ′X
ψX

=

x w = 0 1

0 0.043 0.386
1 0.114 0.457

giving a marginal distribution of (0.157, 0.843) for W . Hence p(w = 1 | y = 1) =
0.843 (note it was p(w = 1) = 0.86 before this evidence was introduced, so there
is no dramatic change!)

B: Core Questions

B1. Markov Blanket

Let G be a DAG. The Markov blanket of a vertex v is

mbG(v) ≡ chG(v) ∪ paG({v} ∪ chG(v)) \ {v}.

(i.e., the parents of v, children of v, and the other parents of children of v, but not v
itself).
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(a) Show that, in the moral graph Gm, the boundary of v is precisely bdGm(v) =
mbG(v).

The neighbours of v in the original graph are its parents and children. The only
edges that are added in Gm are between the parents of a common child, so k (say)
will become a neighbour of v if and only if v → i ← k for some i. Hence, the
neighbours are precisely the parents, children, and other parents of children.

(b) Deduce that if p is Markov with respect to G then

Xv ⊥⊥ XV \(mb(v)∪{v}) | Xmb(v) [p] v ∈ V. (1)

We know that if p is Markov with respect to G then it is also Markov with respect
to Gm. Hence, it satisfies the local Markov property for Gm, which means Xv ⊥⊥
XV \(bd(v)∪{v}) | Xbd(v) [p]. But we have shown that bdGm(v) = mbG(v), so this
gives the result.

(c) Suppose p satisfies (1). Does this imply that p is Markov with respect to G?
Justify your answer.

No, as can be seen by considering the graph a→ c← b, or indeed any graph with
a v-structure.

B2. Structural Equation Models

Let G be a DAG and let XV be a multivariate normal vector with zero mean and
positive definite covariance matrix Σ.

(a) Let v be a vertex that has no children in G, and denote W = V \ {v}. Show that

Xv | XW = xW ∼ N(bvWxW , Σvv·W ).

where Σvv·W = Σvv−ΣvW (ΣWW )−1ΣWv is the Schur complement (see Worksheet
0, question 5) and bvW = (bvw)w∈W is a vector which you should find.

The log density function of XV (ignoring constant terms) is

log f(xV )

= −1

2

(
xv
xW

)T (
Σvv ΣvW

ΣWv ΣWW

)−1(
xv
xW

)
+ const.

where (using Sheet 0 q5)(
Σvv ΣvW

ΣWv ΣWW

)−1
=

(
Σ−1vv·W −Σ−1vv·WΣvW (ΣWW )−1

−Σ−1vv·WΣvW (ΣWW )−1 Σ−1WW ·v

)
.

Expanding this out and ignoring terms not depending on xv we get

= −1

2
Σ−1vv·Wx

2
v + xvΣ−1vv·WΣvW (ΣWW )−1xW + const.

so completing the square:

=
1

2
Σ−1vv·W (xv − ΣvW (ΣWW )−1xW )2 + const.;

hence the result holds with bvW = ΣvW (ΣWW )−1.
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(b) Show that Σ is Markov with respect to G if and only if both (i) ΣWW is Markov
with respect to GW and (ii) bvw = 0 for each w /∈ paG(v).

Using the local Markov property from lectures under an ordering in which v comes
last, we have that Σ is Markov with respect to G if and only if XW is Markov with
respect to GW and Xv ⊥⊥ XW\pa(v) | Xpa(v). The distribution of XW is Gaussian
with covariance ΣWW which gives (i). The latter condition is clearly equivalent
to saying that the entries in the vector bvW corresponding to non-parents are
zero, since otherwise the conditional distribution will depend upon their value;
this gives (ii).

(c) Deduce that Σ is Markov with respect to G if and only if we can write

Xv =
∑

w∈paG(v)

bvwXw + εv,

for all v ∈ V , where εV = (εv)v∈V is a Gaussian random vector with independent
components. (Here an empty sum is zero by convention.)

We have shown that the expression above holds for the final vertex in a topological
ordering, and it follows from the form of the conditional distribution above that
εv ⊥⊥ XW . Hence, invoking an inductive argument, we have the equation for all
v, and since εW is a function of XW , we also have the necessary independences.

(d) By writing the previous result in matrix form, show that

Σ = (I −B)−1D(I −B)−T ,

where I is the identity matrix, D is diagonal, and B is a lower triangular matrix
with (i, j)th entry bij .

We have

XV = BXV + ε,

where B is the specified lower triangular matrix, and ε has diagonal covariance
matrix, say D. It follows that

XV = (I −B)−1ε

(the invertibility of I − B follows from its form), and hence Σ = CovXV =
(I −B)−1(Cov ε)(I −B)−T , giving the result.

(e) Let K = Σ−1 be the concentration matrix for XV . Show that if i 6= j then

kij =
∑
`∈Cij

d−1`` b`ib`j − d
−1
jj bji − d

−1
ii bij

where Cij = chG(i) ∩ chG(j). Deduce a graphical condition (i.e. a condition on
G) that will ensure Xi ⊥⊥ Xj | XV \{i,j}.

We have K = (I −B)TD−1(I −B), so this is easily reduced to

kij =
∑
`

(I −B)`i(I −B)`jd
−1
`` .

If ` 6= i, j the only terms are B`iB`jd
−1
`` which is only non-zero if ` is a child of

i and j; this gives the first term. If i = ` we obtain −Bijd
−1
ii = −d−1ii bij, and

similarly for ` = j.

We deduce that kij = 0 if i and j are not adjacent (so that bij = bji = 0) and do
not share any common children (so then b`ib`j = 0).
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B3. Evidence Propagation

Let T be a junction tree with cliques C1, . . . , Ck, and suppose that all potentials are
consistent.

(a) Let e ∈ Ci and f ∈ Cj . Explain why the calculation of p(xf | {Xe = ye}) only
requires messages to be passed from ψCi along the (unique) path in T to ψCj .

We can imagine a sub-junction tree that only consists of these cliques: then these
sets will also be consistent, and after introducing evidence we only need to make
these sets consistent to know that each of our potentials contains the relevant
marginal. Further (as covered in lectures), we only need to propagate in one
direction, because each clique is already consistent with the separator set ‘away’
from ψCi, and will remain so after the update is passed through it.

Suppose we have random variables S, T, U, V,W,X, Y, Z all taking values in {0, 1},
arranged in the junction tree below. Initially, the potentials are all consistent.

X,YY,Z

Y,W

X, V, UZ, T

S,X

(b) How would you calculate p(z = 0 | s = 1) in the most efficient way possible using
the tree?

We can ignore all but the nodes S,X, X,Y and Y, Z, since they are sufficient
to answer the query. Then replacing ψSX = p(x, s) with p(x | s = 1) and pass-
ing messages from S,X to X,Y and from X,Y to Y, Z will leave ψY Z(y, z) =
p(y, z | s = 1). The solution can be computed just by summing over y.

(c) How many additions and multiplications do you need to perform in order to cal-
culate p(z = 0 | s = 1) using (i) the method above; (ii) from the joint distribution
directly?

Calculating p(x | s = 1) from p(s, x) requires one addition for p(s = 1) = p(x =
0, s = 1) + p(x = 1, s = 1), and then two multiplications to get the conditionals.

Each message pass from ψC to ψD involves 2|C\S| additions to compute the new
separator ψS, and 2|S| multiplications to compute the ratio ψ′S/ψS. Then we need
2|D| multiplications to compute ψ′D. In our case, this amounts to 2 additions and
6 multiplications per message.

Finally, we need one addition to compute p(z = 0 | s = 1) = p(x = 0, z = 0 |
s = 1) + p(x = 1, z = 0 | s = 1). This gives a total of 6 additions and 14
multiplications.

The näıve method certainly involves computing p(s = 1) which means at least
27 − 1 = 127 additions (note p(z = 0, s = 1) can be computed as part of this
calculation). Then one multiplication is needed to get the final answer.

Some variation is possible depending on the exact approach taken.

(d) How would you calculate p(t = 0 | s = 1, y = 1)?

Again we can ignore all but the nodes on the path from S,X to Z, T . Proceed as
in (a), until we have reached the point where ψY Z(y, z) = p(y, z | s = 1). Now
we can replace this with ψY Z(y, z) = p(z | s = 1, y = 1), and pass a final message
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from Y,Z to Z, T to give the solution. since they are sufficient to answer the
query. Then replacing ψSX = p(x, s) with p(x | s = 1) and passing messages
from S,X to X,Y and from X,Y to Y,Z will give the answer.

The important point here is that we must update in a clique that already has the
information S = 1, otherwise the distribution we divide by will be p(y = 1) rather
than p(y = 1 | s = 1).

C: Optional

C1. Junction Tree Efficiency

Let X1, . . . , Xk be binary random variables arranged in a junction tree with max-
imum clique size c and diameter d (the diameter is the length of the longest path
in the tree). What is the maximum complexity (in terms of the number of addi-
tions, multiplications, divisions) required to calculate p(xi | xj = 0)? What about
p(xi | xj = 0, xk = 0)?

C2. Triangulation

The Tarjan elimination algorithm is a method for taking an undirected graph G and
an ordering of the vertices of G, and returning a triangulated graph G′ ⊇ G.

1. Pick the largest element v of V under the ordering;

2. Join together all neighbours of v, and remove v from G;

3. Repeat 1–2 until all vertices have been eliminated;

4. Construct a new graph which contains all the additional edges.

The ordering of the vertices used above is called an elimination order. An elimination
order is said to be perfect if G′ = G.

(a) Apply the algorithm to the graph below using the elimination orderings (i)
1, 2, 3, 4, 5, 6; (ii) 6, 1, 2, 3, 4, 5. (NB: the last vertex is eliminated first.) What are
the resulting cliques?

6

1

2

3 4

5

(i) Eliminating 6 first immediately results in a complete graph. (ii) Eliminating 5
adds an edge between 1 and 4, and then eliminating 4 adds an edge between 1 and
3. The resulting graph is triangulated and has cliques {1, 4, 5, 6}, {1, 3, 4, 6}, {1, 2, 3, 6},
so this is a significantly smaller graph.

(b) Show that the graph returned by the Tarjan Elimination algorithm is triangu-
lated.

7



We proceed by induction on the number of vertices p. All graphs of size p ≤ 3 are
triangulated, so the result holds. Otherwise if v is the largest vertex, the algorithm
constructs a graph that has a decomposition (v,bdG(v), V \ ({v} ∪ bdG(v))) and
such that bdG(v) is complete. By the induction hypothesis, the graph G′V \{v} is

decomposable, so therefore G′ is also decomposable (hence triangulated).

(c) Show that there exists a perfect elimination order if and only if G is triangulated.

By definition, if there is a perfect elimination order the resulting graph is the same
as the original one, and therefore both are triangulated by the previous part. For
the converse, we use induction: if the graph is decomposable then it has cliques
C1, . . . , Ck satsifying the RIP. Then let v ∈ Ck \ Sk, and note that its boundary
is Ck \ {v} and that (vk, Ck \ {v}, V \ Ck) is a proper decomposition. Hence, by
the induction hypothesis there is a perfect elimination ordering on GV \{v}, and
so adding v to the end of it gives one for G.
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